Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?

Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future 6G communications. Beam training is an effective way to acquire channel state information (CSI) for XL-RIS. Existing beam training schemes re...

Full description

Saved in:
Bibliographic Details
Published inChina communications Vol. 19; no. 6; pp. 193 - 204
Main Authors Wei, Xiuhong, Dai, Linglong, Zhao, Yajun, Yu, Guanghui, Duan, Xiangyang
Format Journal Article
LanguageEnglish
Published China Institute of Communications 01.06.2022
Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future 6G communications. Beam training is an effective way to acquire channel state information (CSI) for XL-RIS. Existing beam training schemes rely on the far-field codebook. However, due to the large aperture of XL-RIS, the scatters are more likely to be in the near-field region of XL-RIS. The far-field codebook mismatches the near-field channel model. Thus, the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted near-field communications. To solve this problem, we propose the efficient near-field beam training schemes by designing the near-field codebook to match the near-field channel model. Specifically, we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS. Then, the optimal codeword for XL-RIS is obtained by the exhausted training procedure. To reduce the beam training overhead, we further design a hierarchical near-field codebook and propose the corresponding hierarchical near-field beam training scheme, where different levels of sub-codebooks are searched in turn with reduced codebook size. Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme.
AbstractList Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future 6G communications. Beam training is an effective way to acquire channel state information (CSI) for XL-RIS. Existing beam training schemes rely on the far-field codebook. However, due to the large aperture of XL-RIS, the scatters are more likely to be in the near-field region of XL-RIS. The far-field codebook mismatches the near-field channel model. Thus, the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted near-field communications. To solve this problem, we propose the efficient near-field beam training schemes by designing the near-field codebook to match the near-field channel model. Specifically, we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS. Then, the optimal codeword for XL-RIS is obtained by the exhausted training procedure. To reduce the beam training overhead, we further design a hierarchical near-field codebook and propose the corresponding hierarchical near-field beam training scheme, where different levels of sub-codebooks are searched in turn with reduced codebook size. Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme.
Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6G communications.Beam training is an effec-tive way to acquire channel state information(CSI)for XL-RIS.Existing beam training schemes rely on the far-field codebook.However,due to the large aper-ture of XL-RIS,the scatters are more likely to be in the near-field region of XL-RIS.The far-field code-book mismatches the near-field channel model.Thus,the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted near-field communications.To solve this problem,we pro-pose the efficient near-field beam training schemes by designing the near-field codebook to match the near-field channel model.Specifically,we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS.Then,the optimal codeword for XL-RIS is obtained by the ex-hausted training procedure.To reduce the beam train-ing overhead,we further design a hierarchical near-field codebook and propose the corresponding hierar-chical near-field beam training scheme,where differ-ent levels of sub-codebooks are searched in turn with reduced codebook size.Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme.
Author Dai, Linglong
Wei, Xiuhong
Duan, Xiangyang
Zhao, Yajun
Yu, Guanghui
AuthorAffiliation Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China
AuthorAffiliation_xml – name: Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China
Author_xml – sequence: 1
  givenname: Xiuhong
  surname: Wei
  fullname: Wei, Xiuhong
  organization: Beijing National Research Center for Information Science and Technology (BNRist) as well as the Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Linglong
  surname: Dai
  fullname: Dai, Linglong
  organization: Beijing National Research Center for Information Science and Technology (BNRist) as well as the Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Yajun
  surname: Zhao
  fullname: Zhao, Yajun
  organization: ZTE Corporation, Shenzhen 518038, China
– sequence: 4
  givenname: Guanghui
  surname: Yu
  fullname: Yu, Guanghui
  organization: ZTE Corporation, Shenzhen 518038, China
– sequence: 5
  givenname: Xiangyang
  surname: Duan
  fullname: Duan, Xiangyang
  organization: ZTE Corporation, Shenzhen 518038, China
BookMark eNp9kD1PwzAQhj0UiVK6I7F4YUzxR2InLAhFFIqQkPgYmKyLc4lSUgc5QbT8elwKDAzccrrT-9xJzwEZuc4hIUeczYTMeHZ6k-czwYSYMTVjPBmRMVdaRkkc630y7fslC5UqJZUYk-e8K7HouhdaYt_UjoIraYGwooOHxjWuplXnKa4HjytsN7QFX2PUW2iR3i8ezugcfFQ12JY05Bz-TOeHZK-Ctsfpd5-Qp_nlY34d3d5dLfKL28iKTA6RsFaoRKPmRWpjARnYsMpAc1HJIrFpom0BMVSJlQIUYBZzrVBJW5Y6BSEn5GR39x1cBa42y-7Nu_DRfNTDeiuCKcZVyLFdzvqu7z1W5tU3K_Abw5n5MmeCObMFDFMmmAuI-oPYZoCh6dxWTvsfeLwDG0T8_ZOlnPE4lp_7gX6K
CODEN CCHOBE
CitedBy_id crossref_primary_10_1109_OJCOMS_2023_3292357
crossref_primary_10_1109_TWC_2022_3222198
crossref_primary_10_1109_LCOMM_2024_3355144
crossref_primary_10_1109_TCOMM_2023_3278728
crossref_primary_10_1109_ACCESS_2024_3496570
crossref_primary_10_1109_LCOMM_2024_3360266
crossref_primary_10_1109_LWC_2022_3212344
crossref_primary_10_1109_ACCESS_2022_3206831
crossref_primary_10_1109_JSAC_2024_3413949
crossref_primary_10_1109_JSAC_2025_3531550
crossref_primary_10_1109_TAP_2024_3382869
crossref_primary_10_1109_ACCESS_2024_3417223
crossref_primary_10_1109_TWC_2023_3324176
crossref_primary_10_1109_TWC_2024_3351712
crossref_primary_10_1109_ACCESS_2024_3498862
crossref_primary_10_1109_LCOMM_2023_3312378
crossref_primary_10_1109_TMC_2024_3398296
crossref_primary_10_1109_TSP_2024_3440326
crossref_primary_10_1109_MCOM_024_2300440
crossref_primary_10_1109_JSTSP_2022_3195671
crossref_primary_10_1109_LCOMM_2024_3482455
crossref_primary_10_1109_COMST_2024_3361991
crossref_primary_10_1109_TWC_2023_3336328
crossref_primary_10_1109_JSAC_2024_3459088
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_MNET_2024_3491301
crossref_primary_10_1109_TCOMM_2023_3329224
crossref_primary_10_1109_COMST_2024_3387749
crossref_primary_10_1109_JSTSP_2023_3285431
crossref_primary_10_1109_TMC_2024_3462960
crossref_primary_10_1109_TWC_2024_3355108
crossref_primary_10_1109_TCOMM_2023_3286450
crossref_primary_10_1109_TVT_2023_3311868
crossref_primary_10_1007_s11432_023_3970_7
crossref_primary_10_1109_TWC_2024_3507795
crossref_primary_10_1109_LWC_2022_3205038
crossref_primary_10_3390_electronics11192977
crossref_primary_10_1109_ACCESS_2022_3183139
crossref_primary_10_1631_FITEE_2400375
crossref_primary_10_1109_JPROC_2024_3397910
crossref_primary_10_1109_ACCESS_2025_3531909
crossref_primary_10_1109_TCOMM_2023_3282592
crossref_primary_10_1109_TWC_2024_3422257
crossref_primary_10_1109_MSP_2024_3508474
crossref_primary_10_1109_TCOMM_2023_3344600
crossref_primary_10_1109_TGCN_2023_3259579
crossref_primary_10_1109_TWC_2024_3393412
crossref_primary_10_1109_LWC_2023_3259465
crossref_primary_10_1109_TWC_2023_3262063
crossref_primary_10_1109_TVT_2023_3331707
crossref_primary_10_1109_TWC_2023_3281885
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.2022.06.015
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 204
ExternalDocumentID zgtx202206016
10_23919_JCC_2022_06_015
9810144
Genre orig-research
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
RIG
2B.
4A8
93N
PSX
ID FETCH-LOGICAL-c293t-2cc2657e71b8c42a9ac2cc9a712f3b5c857cba4af5c32a6ae94176e63cdd78a23
IEDL.DBID RIE
ISSN 1673-5447
IngestDate Thu May 29 03:54:26 EDT 2025
Tue Jul 01 04:27:12 EDT 2025
Thu Apr 24 23:07:10 EDT 2025
Wed Aug 27 02:07:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords near-field codebook design
beam training
extremely large-scale RIS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2cc2657e71b8c42a9ac2cc9a712f3b5c857cba4af5c32a6ae94176e63cdd78a23
PageCount 12
ParticipantIDs ieee_primary_9810144
crossref_citationtrail_10_23919_JCC_2022_06_015
wanfang_journals_zgtx202206016
crossref_primary_10_23919_JCC_2022_06_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2022
Publisher China Institute of Communications
Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China
Publisher_xml – name: China Institute of Communications
– name: Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China
SSID ssj0000866362
Score 2.546054
Snippet Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future...
Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6G...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 193
SubjectTerms Antenna arrays
Array signal processing
beam training
Channel estimation
Channel models
extremely large-scale RIS
near-field codebook design
Signal to noise ratio
Symmetric matrices
Training
Title Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?
URI https://ieeexplore.ieee.org/document/9810144
https://d.wanfangdata.com.cn/periodical/zgtx202206016
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF3qBAkUsLcgHLkhkl_i56aWqVqwACQ48JHqK7InDgSWL2KxE-fUdO8kKVQhxi6Ox5HjszOubGYADrclMLpFuGpKlI8uhTmzhVMK9puMjfKZUSBS-uNSnt_L8Tt0twdEiF8Z7H8Fnvh8eYyy_mOI8uMoGWahGJeUyLJPh1uRqLfwppJprEfuHptqEeL80TVSSiyzNBuejERmDnMdinaEH7hspFNuqxKSdqrTV_Rv5Ml6Hi25lDazkoT-vXR9f_yva-Nmlf4W1VtFkv5uTsQFLvtqE1S4PebYFf0bTIoZKWRFRHMxWBXPePrKubQQjhZbRzzu4ECd_2SSAxpMZMdWzq7Prn2xsn5OIgGNEV_lu9Osb3I5PbkanSdtoIUGS9nXCEblWxpvUDVFym1mkV5k1KS-FUzhUBp2VtlQouNXWZzI1mriJRWGGlottWKmmld8BhqRSYJmWBpWTx57saxLC3JUFCiOsFT0YdBufY1uFPHzVJCdrJLIqJ1blgVV5QNylqgeHixlPTQWOD2i3wtYv6Npd78F-y9u8vaGz_PW-fgkzYz2a3ffnfYcvgaRBhv2Alfp57vdIB6ndfjx8_wDXk9ca
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqAXaEurLlDqQy-Vmt3Gzw0XVK26WijLgYdET5E9cTh0ySI2KwG_nrGTrFBVVb3F0VhyPHbm9c0MwGetyUwukW4akqUjy6FObOFUwr2m4yN8plRIFJ6e6smlPL5SV2vwdZUL472P4DPfD48xll_McRlcZYMsVKOS8gW8JLmv0iZba-VRIeVci9hBNNUmRPylaeKSXGRpNjgejcgc5DyW6wxdcJ_JodhYJabtVKWtrp9JmPEWTLu1NcCS3_1l7fr4-EfZxv9d_GvYbFVN9r05G29gzVdvYaPLRF5sw6_RvIjBUlZEHAezVcGctzesaxzBSKVl9PsOTsTZA5sF2HiyILZ6dnZ0fsDG9i6JGDhGdJXvRofv4HL842I0SdpWCwmSvK8Tjsi1Mt6kboiS28wivcqsSXkpnMKhMuistKVCwa22PpOp0cRPLAoztFy8h_VqXvkPwJCUCizT0qBy8psnC5vEMHdlgcIIa0UPBt3G59jWIQ9fNcvJHomsyolVeWBVHjB3qerBl9WM26YGxz9ot8PWr-jaXe_BfsvbvL2ji_zxur4PM2NFmp2_z_sEG5OL6Ul-cnT6cxdeBfIGJ7YH6_Xd0n8kjaR2-_EgPgE6kNpj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Codebook+design+and+beam+training+for+extremely+large-scale+RIS%3A+Far-field+or+near-field%3F&rft.jtitle=China+communications&rft.au=Wei%2C+Xiuhong&rft.au=Dai%2C+Linglong&rft.au=Zhao%2C+Yajun&rft.au=Yu%2C+Guanghui&rft.date=2022-06-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=19&rft.issue=6&rft.spage=193&rft.epage=204&rft_id=info:doi/10.23919%2FJCC.2022.06.015&rft.externalDocID=9810144
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg