Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?
Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future 6G communications. Beam training is an effective way to acquire channel state information (CSI) for XL-RIS. Existing beam training schemes re...
Saved in:
Published in | China communications Vol. 19; no. 6; pp. 193 - 204 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
China Institute of Communications
01.06.2022
Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future 6G communications. Beam training is an effective way to acquire channel state information (CSI) for XL-RIS. Existing beam training schemes rely on the far-field codebook. However, due to the large aperture of XL-RIS, the scatters are more likely to be in the near-field region of XL-RIS. The far-field codebook mismatches the near-field channel model. Thus, the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted near-field communications. To solve this problem, we propose the efficient near-field beam training schemes by designing the near-field codebook to match the near-field channel model. Specifically, we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS. Then, the optimal codeword for XL-RIS is obtained by the exhausted training procedure. To reduce the beam training overhead, we further design a hierarchical near-field codebook and propose the corresponding hierarchical near-field beam training scheme, where different levels of sub-codebooks are searched in turn with reduced codebook size. Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme. |
---|---|
AbstractList | Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future 6G communications. Beam training is an effective way to acquire channel state information (CSI) for XL-RIS. Existing beam training schemes rely on the far-field codebook. However, due to the large aperture of XL-RIS, the scatters are more likely to be in the near-field region of XL-RIS. The far-field codebook mismatches the near-field channel model. Thus, the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted near-field communications. To solve this problem, we propose the efficient near-field beam training schemes by designing the near-field codebook to match the near-field channel model. Specifically, we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS. Then, the optimal codeword for XL-RIS is obtained by the exhausted training procedure. To reduce the beam training overhead, we further design a hierarchical near-field codebook and propose the corresponding hierarchical near-field beam training scheme, where different levels of sub-codebooks are searched in turn with reduced codebook size. Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme. Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6G communications.Beam training is an effec-tive way to acquire channel state information(CSI)for XL-RIS.Existing beam training schemes rely on the far-field codebook.However,due to the large aper-ture of XL-RIS,the scatters are more likely to be in the near-field region of XL-RIS.The far-field code-book mismatches the near-field channel model.Thus,the existing far-field beam training scheme will cause severe performance loss in the XL-RIS assisted near-field communications.To solve this problem,we pro-pose the efficient near-field beam training schemes by designing the near-field codebook to match the near-field channel model.Specifically,we firstly design the near-field codebook by considering the near-field cascaded array steering vector of XL-RIS.Then,the optimal codeword for XL-RIS is obtained by the ex-hausted training procedure.To reduce the beam train-ing overhead,we further design a hierarchical near-field codebook and propose the corresponding hierar-chical near-field beam training scheme,where differ-ent levels of sub-codebooks are searched in turn with reduced codebook size.Simulation results show the proposed near-field beam training schemes outperform the existing far-field beam training scheme. |
Author | Dai, Linglong Wei, Xiuhong Duan, Xiangyang Zhao, Yajun Yu, Guanghui |
AuthorAffiliation | Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China |
AuthorAffiliation_xml | – name: Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China |
Author_xml | – sequence: 1 givenname: Xiuhong surname: Wei fullname: Wei, Xiuhong organization: Beijing National Research Center for Information Science and Technology (BNRist) as well as the Department of Electronic Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Linglong surname: Dai fullname: Dai, Linglong organization: Beijing National Research Center for Information Science and Technology (BNRist) as well as the Department of Electronic Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Yajun surname: Zhao fullname: Zhao, Yajun organization: ZTE Corporation, Shenzhen 518038, China – sequence: 4 givenname: Guanghui surname: Yu fullname: Yu, Guanghui organization: ZTE Corporation, Shenzhen 518038, China – sequence: 5 givenname: Xiangyang surname: Duan fullname: Duan, Xiangyang organization: ZTE Corporation, Shenzhen 518038, China |
BookMark | eNp9kD1PwzAQhj0UiVK6I7F4YUzxR2InLAhFFIqQkPgYmKyLc4lSUgc5QbT8elwKDAzccrrT-9xJzwEZuc4hIUeczYTMeHZ6k-czwYSYMTVjPBmRMVdaRkkc630y7fslC5UqJZUYk-e8K7HouhdaYt_UjoIraYGwooOHxjWuplXnKa4HjytsN7QFX2PUW2iR3i8ezugcfFQ12JY05Bz-TOeHZK-Ctsfpd5-Qp_nlY34d3d5dLfKL28iKTA6RsFaoRKPmRWpjARnYsMpAc1HJIrFpom0BMVSJlQIUYBZzrVBJW5Y6BSEn5GR39x1cBa42y-7Nu_DRfNTDeiuCKcZVyLFdzvqu7z1W5tU3K_Abw5n5MmeCObMFDFMmmAuI-oPYZoCh6dxWTvsfeLwDG0T8_ZOlnPE4lp_7gX6K |
CODEN | CCHOBE |
CitedBy_id | crossref_primary_10_1109_OJCOMS_2023_3292357 crossref_primary_10_1109_TWC_2022_3222198 crossref_primary_10_1109_LCOMM_2024_3355144 crossref_primary_10_1109_TCOMM_2023_3278728 crossref_primary_10_1109_ACCESS_2024_3496570 crossref_primary_10_1109_LCOMM_2024_3360266 crossref_primary_10_1109_LWC_2022_3212344 crossref_primary_10_1109_ACCESS_2022_3206831 crossref_primary_10_1109_JSAC_2024_3413949 crossref_primary_10_1109_JSAC_2025_3531550 crossref_primary_10_1109_TAP_2024_3382869 crossref_primary_10_1109_ACCESS_2024_3417223 crossref_primary_10_1109_TWC_2023_3324176 crossref_primary_10_1109_TWC_2024_3351712 crossref_primary_10_1109_ACCESS_2024_3498862 crossref_primary_10_1109_LCOMM_2023_3312378 crossref_primary_10_1109_TMC_2024_3398296 crossref_primary_10_1109_TSP_2024_3440326 crossref_primary_10_1109_MCOM_024_2300440 crossref_primary_10_1109_JSTSP_2022_3195671 crossref_primary_10_1109_LCOMM_2024_3482455 crossref_primary_10_1109_COMST_2024_3361991 crossref_primary_10_1109_TWC_2023_3336328 crossref_primary_10_1109_JSAC_2024_3459088 crossref_primary_10_1109_JSAC_2025_3536557 crossref_primary_10_1109_MNET_2024_3491301 crossref_primary_10_1109_TCOMM_2023_3329224 crossref_primary_10_1109_COMST_2024_3387749 crossref_primary_10_1109_JSTSP_2023_3285431 crossref_primary_10_1109_TMC_2024_3462960 crossref_primary_10_1109_TWC_2024_3355108 crossref_primary_10_1109_TCOMM_2023_3286450 crossref_primary_10_1109_TVT_2023_3311868 crossref_primary_10_1007_s11432_023_3970_7 crossref_primary_10_1109_TWC_2024_3507795 crossref_primary_10_1109_LWC_2022_3205038 crossref_primary_10_3390_electronics11192977 crossref_primary_10_1109_ACCESS_2022_3183139 crossref_primary_10_1631_FITEE_2400375 crossref_primary_10_1109_JPROC_2024_3397910 crossref_primary_10_1109_ACCESS_2025_3531909 crossref_primary_10_1109_TCOMM_2023_3282592 crossref_primary_10_1109_TWC_2024_3422257 crossref_primary_10_1109_MSP_2024_3508474 crossref_primary_10_1109_TCOMM_2023_3344600 crossref_primary_10_1109_TGCN_2023_3259579 crossref_primary_10_1109_TWC_2024_3393412 crossref_primary_10_1109_LWC_2023_3259465 crossref_primary_10_1109_TWC_2023_3262063 crossref_primary_10_1109_TVT_2023_3331707 crossref_primary_10_1109_TWC_2023_3281885 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.23919/JCC.2022.06.015 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EndPage | 204 |
ExternalDocumentID | zgtx202206016 10_23919_JCC_2022_06_015 9810144 |
Genre | orig-research |
GroupedDBID | -SI -SJ -S~ 0R~ 29B 4.4 5GY 6IK 92H 92I 97E AAHTB AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABPEJ ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI CAJEJ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL Q-- Q-9 RIA RIE RNS TCJ TGT U1G U5S U5T AAYXX CITATION RIG 2B. 4A8 93N PSX |
ID | FETCH-LOGICAL-c293t-2cc2657e71b8c42a9ac2cc9a712f3b5c857cba4af5c32a6ae94176e63cdd78a23 |
IEDL.DBID | RIE |
ISSN | 1673-5447 |
IngestDate | Thu May 29 03:54:26 EDT 2025 Tue Jul 01 04:27:12 EDT 2025 Thu Apr 24 23:07:10 EDT 2025 Wed Aug 27 02:07:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | near-field codebook design beam training extremely large-scale RIS |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-2cc2657e71b8c42a9ac2cc9a712f3b5c857cba4af5c32a6ae94176e63cdd78a23 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9810144 crossref_citationtrail_10_23919_JCC_2022_06_015 wanfang_journals_zgtx202206016 crossref_primary_10_23919_JCC_2022_06_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | China communications |
PublicationTitleAbbrev | ChinaComm |
PublicationTitle_FL | China Communications |
PublicationYear | 2022 |
Publisher | China Institute of Communications Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China |
Publisher_xml | – name: China Institute of Communications – name: Beijing National Research Center for Information Science and Technology(BNRist)as well as the Department of Electronic Engineering,Tsinghua University,Beijing 100084,China%ZTE Corporation,Shenzhen 518038,China |
SSID | ssj0000866362 |
Score | 2.546054 |
Snippet | Reconfigurable intelligent surface (RIS) is more likely to develop into extremely large-scale RIS (XL-RIS) to efficiently boost the system capacity for future... Reconfigurable intelligent surface(RIS)is more likely to develop into extremely large-scale RIS(XL-RIS)to efficiently boost the system capacity for future 6G... |
SourceID | wanfang crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 193 |
SubjectTerms | Antenna arrays Array signal processing beam training Channel estimation Channel models extremely large-scale RIS near-field codebook design Signal to noise ratio Symmetric matrices Training |
Title | Codebook design and beam training for extremely large-scale RIS: Far-field or near-field? |
URI | https://ieeexplore.ieee.org/document/9810144 https://d.wanfangdata.com.cn/periodical/zgtx202206016 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF3qBAkUsLcgHLkhkl_i56aWqVqwACQ48JHqK7InDgSWL2KxE-fUdO8kKVQhxi6Ox5HjszOubGYADrclMLpFuGpKlI8uhTmzhVMK9puMjfKZUSBS-uNSnt_L8Tt0twdEiF8Z7H8Fnvh8eYyy_mOI8uMoGWahGJeUyLJPh1uRqLfwppJprEfuHptqEeL80TVSSiyzNBuejERmDnMdinaEH7hspFNuqxKSdqrTV_Rv5Ml6Hi25lDazkoT-vXR9f_yva-Nmlf4W1VtFkv5uTsQFLvtqE1S4PebYFf0bTIoZKWRFRHMxWBXPePrKubQQjhZbRzzu4ECd_2SSAxpMZMdWzq7Prn2xsn5OIgGNEV_lu9Osb3I5PbkanSdtoIUGS9nXCEblWxpvUDVFym1mkV5k1KS-FUzhUBp2VtlQouNXWZzI1mriJRWGGlottWKmmld8BhqRSYJmWBpWTx57saxLC3JUFCiOsFT0YdBufY1uFPHzVJCdrJLIqJ1blgVV5QNylqgeHixlPTQWOD2i3wtYv6Npd78F-y9u8vaGz_PW-fgkzYz2a3ffnfYcvgaRBhv2Alfp57vdIB6ndfjx8_wDXk9ca |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqAXaEurLlDqQy-Vmt3Gzw0XVK26WijLgYdET5E9cTh0ySI2KwG_nrGTrFBVVb3F0VhyPHbm9c0MwGetyUwukW4akqUjy6FObOFUwr2m4yN8plRIFJ6e6smlPL5SV2vwdZUL472P4DPfD48xll_McRlcZYMsVKOS8gW8JLmv0iZba-VRIeVci9hBNNUmRPylaeKSXGRpNjgejcgc5DyW6wxdcJ_JodhYJabtVKWtrp9JmPEWTLu1NcCS3_1l7fr4-EfZxv9d_GvYbFVN9r05G29gzVdvYaPLRF5sw6_RvIjBUlZEHAezVcGctzesaxzBSKVl9PsOTsTZA5sF2HiyILZ6dnZ0fsDG9i6JGDhGdJXvRofv4HL842I0SdpWCwmSvK8Tjsi1Mt6kboiS28wivcqsSXkpnMKhMuistKVCwa22PpOp0cRPLAoztFy8h_VqXvkPwJCUCizT0qBy8psnC5vEMHdlgcIIa0UPBt3G59jWIQ9fNcvJHomsyolVeWBVHjB3qerBl9WM26YGxz9ot8PWr-jaXe_BfsvbvL2ji_zxur4PM2NFmp2_z_sEG5OL6Ul-cnT6cxdeBfIGJ7YH6_Xd0n8kjaR2-_EgPgE6kNpj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Codebook+design+and+beam+training+for+extremely+large-scale+RIS%3A+Far-field+or+near-field%3F&rft.jtitle=China+communications&rft.au=Wei%2C+Xiuhong&rft.au=Dai%2C+Linglong&rft.au=Zhao%2C+Yajun&rft.au=Yu%2C+Guanghui&rft.date=2022-06-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=19&rft.issue=6&rft.spage=193&rft.epage=204&rft_id=info:doi/10.23919%2FJCC.2022.06.015&rft.externalDocID=9810144 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg |