Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model
Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances...
Saved in:
Published in | Mathematics (Basel) Vol. 12; no. 18; p. 2812 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index. |
---|---|
AbstractList | Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index. |
Audience | Academic |
Author | Liu, Boyu Nadia, Nedjah Mu, Shengdong Gu, Jijian Lien, Chaolung |
Author_xml | – sequence: 1 givenname: Shengdong orcidid: 0000-0002-2735-3565 surname: Mu fullname: Mu, Shengdong – sequence: 2 givenname: Boyu surname: Liu fullname: Liu, Boyu – sequence: 3 givenname: Jijian surname: Gu fullname: Gu, Jijian – sequence: 4 givenname: Chaolung surname: Lien fullname: Lien, Chaolung – sequence: 5 givenname: Nedjah orcidid: 0000-0002-1656-6397 surname: Nadia fullname: Nadia, Nedjah |
BookMark | eNpNUV1rGzEQFMWBpEne8gMO-lq70ur0cY-uaVqDQ0OcPAtZWsVy7ZOrUyD591V6pVh62GV2Zlh2PpJJn3ok5IbRGecd_XKwZcuAadAMPpALAFBTVQeTk_6cXA_DjtbXMa7b7oI8PeCANrttk_pmXZL71Sx7j6_NfUYfXYkV_moH9O_zssVmfbQVLHg4pmz3zbwU7EdWXK0f75q75HF_Rc6C3Q94_a9ekqfbb4-LH9PVz-_LxXw1ddDxMgUnOiE31FKnOiVa0TLFaKulYkp5BSA1SPRy44OQgQXJsXVSceCwoW0tl2Q5-vpkd-aY48HmN5NsNH-BlJ-NzSW6PZrQOSmkrucB10LgG-YFB2TohBIguur1afQ65vT7BYdidukl93V9wxmjQtcj6sqajaxnW01jH1LJ1tXv8RBdTSTEis91VWjVAq2Cz6PA5TQMGcP_NRk178GZ0-D4H3b_iQw |
Cites_doi | 10.1007/s12597-016-0289-y 10.1016/j.ejor.2017.11.054 10.61187/mi.v1i1.6 10.1109/TSMC.2022.3192635 10.1145/3465055 10.1007/s10694-023-01427-2 10.1109/TNNLS.2023.3242473 10.1111/jcpp.13405 10.4236/jcc.2024.124007 10.1142/S0219467823500419 10.1088/1742-6596/2504/1/012011 10.1142/S021946782450013X 10.1109/ICCICT50803.2021.9510147 10.1109/EMBC.2017.8037579 10.1016/j.eswa.2019.03.029 10.1007/s00500-022-07716-2 10.1109/TNNLS.2023.3260349 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math12182812 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_f9c65688282c42f3b1d532e1ec575259 A811087420 10_3390_math12182812 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c293t-2c5956b0a0c797545417104867177d7226826ed6bdf56f1f63e4c673232b04323 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:13:14 EDT 2024 Thu Nov 07 19:01:45 EST 2024 Tue Oct 15 04:48:12 EDT 2024 Wed Sep 18 12:53:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-2c5956b0a0c797545417104867177d7226826ed6bdf56f1f63e4c673232b04323 |
ORCID | 0000-0002-2735-3565 0000-0002-1656-6397 |
OpenAccessLink | https://www.proquest.com/docview/3110582278?pq-origsite=%requestingapplication% |
PQID | 3110582278 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f9c65688282c42f3b1d532e1ec575259 proquest_journals_3110582278 gale_infotracacademiconefile_A811087420 crossref_primary_10_3390_math12182812 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Rather (ref_3) 2017; 54 Zhang (ref_10) 2024; 12 Devi (ref_2) 2011; 34 Zulqarnain (ref_5) 2020; 12 Huang (ref_14) 2023; 2504 Hoseinzade (ref_4) 2019; 129 Padmavathi (ref_13) 2023; 23 Wen (ref_16) 2022; 53 Deng (ref_18) 2023; 35 ref_12 Chaudhari (ref_9) 2021; 12 Hu (ref_20) 2023; 1 Li (ref_15) 2023; 59 Rao (ref_19) 2024; 24 Fischer (ref_7) 2018; 270 Wu (ref_1) 2023; 27 ref_8 Wen (ref_17) 2023; 35 Shih (ref_11) 2021; 62 ref_6 |
References_xml | – volume: 54 start-page: 558 year: 2017 ident: ref_3 article-title: Stock market prediction and Portfolio selection models: A survey publication-title: Opsearch doi: 10.1007/s12597-016-0289-y contributor: fullname: Rather – volume: 270 start-page: 654 year: 2018 ident: ref_7 article-title: Deep learning with long short-term memory networks for financial market predictions publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.11.054 contributor: fullname: Fischer – volume: 1 start-page: 1 year: 2023 ident: ref_20 article-title: An overview of behavioral finance research in China and abroad—Bibliometric analysis based on Gephi and Cite Space publication-title: Manag. Innov. doi: 10.61187/mi.v1i1.6 contributor: fullname: Hu – volume: 53 start-page: 1136 year: 2022 ident: ref_16 article-title: A survey on incomplete multiview clustering publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3192635 contributor: fullname: Wen – ident: ref_12 – volume: 12 start-page: 1 year: 2021 ident: ref_9 article-title: An attentive survey of attention models publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/3465055 contributor: fullname: Chaudhari – volume: 59 start-page: 2683 year: 2023 ident: ref_15 article-title: Predicting the Wildland Fire Spread Using a Mixed-Input CNN Model with Both Channel and Spatial Attention Mechanisms publication-title: Fire Technol. doi: 10.1007/s10694-023-01427-2 contributor: fullname: Li – volume: 35 start-page: 10539 year: 2023 ident: ref_18 article-title: Projective incomplete multi-view clustering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3242473 contributor: fullname: Deng – volume: 62 start-page: 1228 year: 2021 ident: ref_11 article-title: Joint engagement is a potential mechanism leading to increased initiations of joint attention and downstream effects on language: JASPER early intervention for children with ASD publication-title: J. Child Psychol. Psychiatry doi: 10.1111/jcpp.13405 contributor: fullname: Shih – volume: 12 start-page: 72 year: 2024 ident: ref_10 article-title: Stock Price Prediction Based on the Bi-GRU-Attention Model publication-title: J. Comput. Commun. doi: 10.4236/jcc.2024.124007 contributor: fullname: Zhang – volume: 34 start-page: 19 year: 2011 ident: ref_2 article-title: A study on stock market analysis for stock selection- naive investors’ perspective using Data mining Technique publication-title: Int. J. Comput. Appl. contributor: fullname: Devi – volume: 23 start-page: 2350041 year: 2023 ident: ref_13 article-title: Wireless Capsule Endoscopy Infected Images Detection and Classification Using MobileNetV2-BiLSTM Model publication-title: Int. J. Image Graph. doi: 10.1142/S0219467823500419 contributor: fullname: Padmavathi – volume: 2504 start-page: 012011 year: 2023 ident: ref_14 article-title: Research on Att-NFM Recommendation Algorithm Based on Attention Mechanism publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2504/1/012011 contributor: fullname: Huang – volume: 24 start-page: 2450013 year: 2024 ident: ref_19 article-title: Hm-smf: An efficient strategy optimization using a hybrid machine learning model for stock market prediction publication-title: Int. J. Image Graph. doi: 10.1142/S021946782450013X contributor: fullname: Rao – ident: ref_8 doi: 10.1109/ICCICT50803.2021.9510147 – ident: ref_6 doi: 10.1109/EMBC.2017.8037579 – volume: 129 start-page: 273 year: 2019 ident: ref_4 article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.029 contributor: fullname: Hoseinzade – volume: 12 start-page: 21 year: 2020 ident: ref_5 article-title: Predicting financial prices of stock market using recurrent convolutional neural networks publication-title: Int. J. Intell. Syst. Appl. (IJISA) contributor: fullname: Zulqarnain – volume: 27 start-page: 8209 year: 2023 ident: ref_1 article-title: A prediction model of stock market trading actions using generative adversarial network and piecewise linear representation approaches publication-title: Soft Comput. doi: 10.1007/s00500-022-07716-2 contributor: fullname: Wu – volume: 35 start-page: 11396 year: 2023 ident: ref_17 article-title: Deep double incomplete multi-view multi-label learning with incomplete labels and missing views publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3260349 contributor: fullname: Wen |
SSID | ssj0000913849 |
Score | 2.3137007 |
Snippet | Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2812 |
SubjectTerms | Accuracy bidirectional long short-term memory network (BiLSTM) Data structures Forecasts and trends graph attention network Machine learning Neural networks Nodes Noise prediction Securities markets spatiotemporal attention Spatiotemporal data Stock exchanges stock index prediction Stock price indexes Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdWp-SgeCprmjRJj5soU5wI22C3kKQNCrLJVv9_32u7MQ_ixWt_Ed5r3vu89uUbQq6998wWiYolMFEsci3ivJAilhzVyCChB4ffO0YvcjgVT7NstrXVF_aENfLAjeF6IfeAHMCBOvUiDdyxIuNpyUoPoAHsXkffJN8qpuoYnDOuRd50unOo63vAf28M5co1S3_koFqq_7eAXGeZhwOy3-Ih7TfDOiQ75fyI7I022qqrYzJdN8vRxZyOK4hn9BElD-nrEn-6oKHpAHJTgefhPjqum6ZbDSp4dlU1LY508P48nowobof2cUKmD_eTu2Hcbo4Qe8jQVZz6DEobl9jEq1wBBwkGsID6eUypQgFVQeFQFtIVIZOBBclL4aXiQFAOZfj4KenMF_PyjFAVgtWZy6zVXHAnrdBOCKtD4kRm0yIiN2tzmc9GA8NA7YBmNdtmjcgAbbm5BpWr6wPgT9P60_zlz4jcoicMzq9qab1tlwnAUFGpyvQ1LlyAgj6JSHftLNNOvJXhcDbTuL73_D9Gc0F2U6CYpqmsSzrV8qu8BAqp3FX9wn0DEqvWIw priority: 102 providerName: Directory of Open Access Journals |
Title | Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model |
URI | https://www.proquest.com/docview/3110582278 https://doaj.org/article/f9c65688282c42f3b1d532e1ec575259 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcCkHBKUV4RH50IrTit211-s9IYJIATUINUTiZvmxbpFQAsny_5nZddL2QK_70mpsz3zfePwNwFfnXGZ8WiYSMVEiKiWSykuRSE5qZBjQg6V8x_hWXk3FzUPxEBNuy1hWufKJraP2c0c58lOOcapQdHDz7Pkloa5RtLsaW2hswGaOTCHtwebw8vbu5zrLQqqXSlRdxTtHfn-KOPB3RrLlKsv_iUWtZP97jrmNNqMd2I4wkZ1347oLH-rZJ9garzVWl3swXRXNsfmMTRr0a-yapA_Z3YI2X8jgbIgxytN9fI9N2uLpqEWF326artSRDR9_TO7HjNqiPX2G6ejy_uIqiU0SEoeRuklyVyDFsalJXVmViIdEhqCBdPSysvQloiskELWX1odChixIXgsnS45IypIcH_8Cvdl8Vu8DK0MwqrCFMYoLbqURygphVEitKEzu-_BtZS793GlhaOQQZFb9t1n7MCRbrp8hBev2wnzxS8cFoUPlEEoivle5E3ngNvMFz-usdgggkZP14YRGQtM6axbGmXhcAH-VFKv0uaIDDEjs0z4crQZLxwW41H-my8H_bx_CxxxxSlc2dgS9ZvFaHyPOaOwANtTo-yBOqUHL1t8ALkXRtg |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N9gA8TNsArRvb_MDEU0QSO47zNNFpXRktQmor8Wb5R8wmTW1ps_9_d4lb4IG9xnEUne2778533wGcOucy49MykYiJElEpkVReikRyYiNDgx4sxTvG13I4Ez9vi9sYcFvHtMqNTmwVtV84ipGfc7RThaLCza_L-4S6RtHtamyhsQMvBUdbTZXigx_bGAtxXipRdfnuHL37c0SBvzIiLVdZ_sQStYT9z6nl1tYMXsOrCBLZRbeqb-BFPX8LB-Mtw-r6EGablDm2mLNJg1qNXRLxIbtZ0dULiZv10UJ5Gsd5bNKmTkcmKvx203SJjqz_ezSZjhk1RftzBLPB9-m3YRJbJCQO7XST5K5AB8emJnVlVSIaEhlCBmLRy8rSl4it0H2ovbQ-FDJkQfJaOFlyxFGWyPj4MezOF_P6HbAyBKMKWxijuOBWGqGsEEaF1IrC5L4HXzbi0suOCUOjB0Fi1Y_F2oM-yXL7DvFXtw8Wqzsdj4MOlUMgiehe5U7kgdvMFzyvs9ohfESPrAdntBKaTlmzMs7EYgH8VeKr0heKyhfQrU97cLJZLB2P31o_bJb3_x_-DHvD6XikR5fXVx9gP0fE0iWQncBus_pbf0TE0dhP7bb6B8bU0WY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BkapyQDxaEdqCDyBOq-yuvV7vCTWF0EISRUoi9Wb5sS5IKCnJ8v87s-uk7aFc96XVeDzzjf35G4CPzrnM-LRMJGKiRFRKJJWXIpGc1MgwoQdL6x3jibxYiB9XxVXkP20irXIbE9tA7VeO1sj7HPNUoejgZj9EWsT06_DLzd-EOkjRTmtsp_EUnmFWlOThavh9t95C-pdKVB33nWOl30dE-CsjAXOV5Q-yUive_1iIbvPO8CW8iICRnXUj_Aqe1MvX8Hy8U1vdvIHFlj7HVks2azDCsUsSQWTTNW3DkOnZALOVp_v4Hpu1NOqoSoXfbpqO9MgGv0ez-ZhRg7Q_h7AYfpufXySxXULiMGc3Se4KLHZsalJXViUiI5EhfCBFvawsfYk4C0uJ2kvrQyFDFiSvhZMlR0xlSZiPH8HecrWs3wIrQzCqsIUxigtupRHKCmFUSK0oTO578GlrLn3TqWJorCbIrPq-WXswIFvuniEt6_bCan2t49TQoXIIKhHpq9yJPHCb-YLndVY7hJJYnfXgM42EphnXrI0z8eAA_ippV-kzRUcZsMRPe3CyHSwdp-JG3znOu__f_gD76FF6dDn5eQwHOYKXjkt2AnvN-l99iuCjse9br7oFqSzVpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Stock+Index+Prediction+Based+on+the+Spatiotemporal+Attention+BiLSTM+Model&rft.jtitle=Mathematics+%28Basel%29&rft.au=Mu%2C+Shengdong&rft.au=Liu%2C+Boyu&rft.au=Gu%2C+Jijian&rft.au=Lien%2C+Chaolung&rft.date=2024-09-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=18&rft.spage=2812&rft_id=info:doi/10.3390%2Fmath12182812&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12182812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |