Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model

Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 12; no. 18; p. 2812
Main Authors Mu, Shengdong, Liu, Boyu, Gu, Jijian, Lien, Chaolung, Nadia, Nedjah
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index.
AbstractList Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index.
Audience Academic
Author Liu, Boyu
Nadia, Nedjah
Mu, Shengdong
Gu, Jijian
Lien, Chaolung
Author_xml – sequence: 1
  givenname: Shengdong
  orcidid: 0000-0002-2735-3565
  surname: Mu
  fullname: Mu, Shengdong
– sequence: 2
  givenname: Boyu
  surname: Liu
  fullname: Liu, Boyu
– sequence: 3
  givenname: Jijian
  surname: Gu
  fullname: Gu, Jijian
– sequence: 4
  givenname: Chaolung
  surname: Lien
  fullname: Lien, Chaolung
– sequence: 5
  givenname: Nedjah
  orcidid: 0000-0002-1656-6397
  surname: Nadia
  fullname: Nadia, Nedjah
BookMark eNpNUV1rGzEQFMWBpEne8gMO-lq70ur0cY-uaVqDQ0OcPAtZWsVy7ZOrUyD591V6pVh62GV2Zlh2PpJJn3ok5IbRGecd_XKwZcuAadAMPpALAFBTVQeTk_6cXA_DjtbXMa7b7oI8PeCANrttk_pmXZL71Sx7j6_NfUYfXYkV_moH9O_zssVmfbQVLHg4pmz3zbwU7EdWXK0f75q75HF_Rc6C3Q94_a9ekqfbb4-LH9PVz-_LxXw1ddDxMgUnOiE31FKnOiVa0TLFaKulYkp5BSA1SPRy44OQgQXJsXVSceCwoW0tl2Q5-vpkd-aY48HmN5NsNH-BlJ-NzSW6PZrQOSmkrucB10LgG-YFB2TohBIguur1afQ65vT7BYdidukl93V9wxmjQtcj6sqajaxnW01jH1LJ1tXv8RBdTSTEis91VWjVAq2Cz6PA5TQMGcP_NRk178GZ0-D4H3b_iQw
Cites_doi 10.1007/s12597-016-0289-y
10.1016/j.ejor.2017.11.054
10.61187/mi.v1i1.6
10.1109/TSMC.2022.3192635
10.1145/3465055
10.1007/s10694-023-01427-2
10.1109/TNNLS.2023.3242473
10.1111/jcpp.13405
10.4236/jcc.2024.124007
10.1142/S0219467823500419
10.1088/1742-6596/2504/1/012011
10.1142/S021946782450013X
10.1109/ICCICT50803.2021.9510147
10.1109/EMBC.2017.8037579
10.1016/j.eswa.2019.03.029
10.1007/s00500-022-07716-2
10.1109/TNNLS.2023.3260349
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12182812
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_f9c65688282c42f3b1d532e1ec575259
A811087420
10_3390_math12182812
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
3V.
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABJNI
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M0N
M7S
MODMG
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNS
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c293t-2c5956b0a0c797545417104867177d7226826ed6bdf56f1f63e4c673232b04323
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Tue Oct 22 15:13:14 EDT 2024
Thu Nov 07 19:01:45 EST 2024
Tue Oct 15 04:48:12 EDT 2024
Wed Sep 18 12:53:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2c5956b0a0c797545417104867177d7226826ed6bdf56f1f63e4c673232b04323
ORCID 0000-0002-2735-3565
0000-0002-1656-6397
OpenAccessLink https://www.proquest.com/docview/3110582278?pq-origsite=%requestingapplication%
PQID 3110582278
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_f9c65688282c42f3b1d532e1ec575259
proquest_journals_3110582278
gale_infotracacademiconefile_A811087420
crossref_primary_10_3390_math12182812
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rather (ref_3) 2017; 54
Zhang (ref_10) 2024; 12
Devi (ref_2) 2011; 34
Zulqarnain (ref_5) 2020; 12
Huang (ref_14) 2023; 2504
Hoseinzade (ref_4) 2019; 129
Padmavathi (ref_13) 2023; 23
Wen (ref_16) 2022; 53
Deng (ref_18) 2023; 35
ref_12
Chaudhari (ref_9) 2021; 12
Hu (ref_20) 2023; 1
Li (ref_15) 2023; 59
Rao (ref_19) 2024; 24
Fischer (ref_7) 2018; 270
Wu (ref_1) 2023; 27
ref_8
Wen (ref_17) 2023; 35
Shih (ref_11) 2021; 62
ref_6
References_xml – volume: 54
  start-page: 558
  year: 2017
  ident: ref_3
  article-title: Stock market prediction and Portfolio selection models: A survey
  publication-title: Opsearch
  doi: 10.1007/s12597-016-0289-y
  contributor:
    fullname: Rather
– volume: 270
  start-page: 654
  year: 2018
  ident: ref_7
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
  contributor:
    fullname: Fischer
– volume: 1
  start-page: 1
  year: 2023
  ident: ref_20
  article-title: An overview of behavioral finance research in China and abroad—Bibliometric analysis based on Gephi and Cite Space
  publication-title: Manag. Innov.
  doi: 10.61187/mi.v1i1.6
  contributor:
    fullname: Hu
– volume: 53
  start-page: 1136
  year: 2022
  ident: ref_16
  article-title: A survey on incomplete multiview clustering
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3192635
  contributor:
    fullname: Wen
– ident: ref_12
– volume: 12
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: An attentive survey of attention models
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3465055
  contributor:
    fullname: Chaudhari
– volume: 59
  start-page: 2683
  year: 2023
  ident: ref_15
  article-title: Predicting the Wildland Fire Spread Using a Mixed-Input CNN Model with Both Channel and Spatial Attention Mechanisms
  publication-title: Fire Technol.
  doi: 10.1007/s10694-023-01427-2
  contributor:
    fullname: Li
– volume: 35
  start-page: 10539
  year: 2023
  ident: ref_18
  article-title: Projective incomplete multi-view clustering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3242473
  contributor:
    fullname: Deng
– volume: 62
  start-page: 1228
  year: 2021
  ident: ref_11
  article-title: Joint engagement is a potential mechanism leading to increased initiations of joint attention and downstream effects on language: JASPER early intervention for children with ASD
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/jcpp.13405
  contributor:
    fullname: Shih
– volume: 12
  start-page: 72
  year: 2024
  ident: ref_10
  article-title: Stock Price Prediction Based on the Bi-GRU-Attention Model
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2024.124007
  contributor:
    fullname: Zhang
– volume: 34
  start-page: 19
  year: 2011
  ident: ref_2
  article-title: A study on stock market analysis for stock selection- naive investors’ perspective using Data mining Technique
  publication-title: Int. J. Comput. Appl.
  contributor:
    fullname: Devi
– volume: 23
  start-page: 2350041
  year: 2023
  ident: ref_13
  article-title: Wireless Capsule Endoscopy Infected Images Detection and Classification Using MobileNetV2-BiLSTM Model
  publication-title: Int. J. Image Graph.
  doi: 10.1142/S0219467823500419
  contributor:
    fullname: Padmavathi
– volume: 2504
  start-page: 012011
  year: 2023
  ident: ref_14
  article-title: Research on Att-NFM Recommendation Algorithm Based on Attention Mechanism
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2504/1/012011
  contributor:
    fullname: Huang
– volume: 24
  start-page: 2450013
  year: 2024
  ident: ref_19
  article-title: Hm-smf: An efficient strategy optimization using a hybrid machine learning model for stock market prediction
  publication-title: Int. J. Image Graph.
  doi: 10.1142/S021946782450013X
  contributor:
    fullname: Rao
– ident: ref_8
  doi: 10.1109/ICCICT50803.2021.9510147
– ident: ref_6
  doi: 10.1109/EMBC.2017.8037579
– volume: 129
  start-page: 273
  year: 2019
  ident: ref_4
  article-title: CNNpred: CNN-based stock market prediction using a diverse set of variables
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.029
  contributor:
    fullname: Hoseinzade
– volume: 12
  start-page: 21
  year: 2020
  ident: ref_5
  article-title: Predicting financial prices of stock market using recurrent convolutional neural networks
  publication-title: Int. J. Intell. Syst. Appl. (IJISA)
  contributor:
    fullname: Zulqarnain
– volume: 27
  start-page: 8209
  year: 2023
  ident: ref_1
  article-title: A prediction model of stock market trading actions using generative adversarial network and piecewise linear representation approaches
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07716-2
  contributor:
    fullname: Wu
– volume: 35
  start-page: 11396
  year: 2023
  ident: ref_17
  article-title: Deep double incomplete multi-view multi-label learning with incomplete labels and missing views
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3260349
  contributor:
    fullname: Wen
SSID ssj0000913849
Score 2.3137007
Snippet Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 2812
SubjectTerms Accuracy
bidirectional long short-term memory network (BiLSTM)
Data structures
Forecasts and trends
graph attention network
Machine learning
Neural networks
Nodes
Noise prediction
Securities markets
spatiotemporal attention
Spatiotemporal data
Stock exchanges
stock index prediction
Stock price indexes
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdWp-SgeCprmjRJj5soU5wI22C3kKQNCrLJVv9_32u7MQ_ixWt_Ed5r3vu89uUbQq6998wWiYolMFEsci3ivJAilhzVyCChB4ffO0YvcjgVT7NstrXVF_aENfLAjeF6IfeAHMCBOvUiDdyxIuNpyUoPoAHsXkffJN8qpuoYnDOuRd50unOo63vAf28M5co1S3_koFqq_7eAXGeZhwOy3-Ih7TfDOiQ75fyI7I022qqrYzJdN8vRxZyOK4hn9BElD-nrEn-6oKHpAHJTgefhPjqum6ZbDSp4dlU1LY508P48nowobof2cUKmD_eTu2Hcbo4Qe8jQVZz6DEobl9jEq1wBBwkGsID6eUypQgFVQeFQFtIVIZOBBclL4aXiQFAOZfj4KenMF_PyjFAVgtWZy6zVXHAnrdBOCKtD4kRm0yIiN2tzmc9GA8NA7YBmNdtmjcgAbbm5BpWr6wPgT9P60_zlz4jcoicMzq9qab1tlwnAUFGpyvQ1LlyAgj6JSHftLNNOvJXhcDbTuL73_D9Gc0F2U6CYpqmsSzrV8qu8BAqp3FX9wn0DEqvWIw
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model
URI https://www.proquest.com/docview/3110582278
https://doaj.org/article/f9c65688282c42f3b1d532e1ec575259
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcCkHBKUV4RH50IrTit211-s9IYJIATUINUTiZvmxbpFQAsny_5nZddL2QK_70mpsz3zfePwNwFfnXGZ8WiYSMVEiKiWSykuRSE5qZBjQg6V8x_hWXk3FzUPxEBNuy1hWufKJraP2c0c58lOOcapQdHDz7Pkloa5RtLsaW2hswGaOTCHtwebw8vbu5zrLQqqXSlRdxTtHfn-KOPB3RrLlKsv_iUWtZP97jrmNNqMd2I4wkZ1347oLH-rZJ9garzVWl3swXRXNsfmMTRr0a-yapA_Z3YI2X8jgbIgxytN9fI9N2uLpqEWF326artSRDR9_TO7HjNqiPX2G6ejy_uIqiU0SEoeRuklyVyDFsalJXVmViIdEhqCBdPSysvQloiskELWX1odChixIXgsnS45IypIcH_8Cvdl8Vu8DK0MwqrCFMYoLbqURygphVEitKEzu-_BtZS793GlhaOQQZFb9t1n7MCRbrp8hBev2wnzxS8cFoUPlEEoivle5E3ngNvMFz-usdgggkZP14YRGQtM6axbGmXhcAH-VFKv0uaIDDEjs0z4crQZLxwW41H-my8H_bx_CxxxxSlc2dgS9ZvFaHyPOaOwANtTo-yBOqUHL1t8ALkXRtg
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N9gA8TNsArRvb_MDEU0QSO47zNNFpXRktQmor8Wb5R8wmTW1ps_9_d4lb4IG9xnEUne2778533wGcOucy49MykYiJElEpkVReikRyYiNDgx4sxTvG13I4Ez9vi9sYcFvHtMqNTmwVtV84ipGfc7RThaLCza_L-4S6RtHtamyhsQMvBUdbTZXigx_bGAtxXipRdfnuHL37c0SBvzIiLVdZ_sQStYT9z6nl1tYMXsOrCBLZRbeqb-BFPX8LB-Mtw-r6EGablDm2mLNJg1qNXRLxIbtZ0dULiZv10UJ5Gsd5bNKmTkcmKvx203SJjqz_ezSZjhk1RftzBLPB9-m3YRJbJCQO7XST5K5AB8emJnVlVSIaEhlCBmLRy8rSl4it0H2ovbQ-FDJkQfJaOFlyxFGWyPj4MezOF_P6HbAyBKMKWxijuOBWGqGsEEaF1IrC5L4HXzbi0suOCUOjB0Fi1Y_F2oM-yXL7DvFXtw8Wqzsdj4MOlUMgiehe5U7kgdvMFzyvs9ohfESPrAdntBKaTlmzMs7EYgH8VeKr0heKyhfQrU97cLJZLB2P31o_bJb3_x_-DHvD6XikR5fXVx9gP0fE0iWQncBus_pbf0TE0dhP7bb6B8bU0WY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BkapyQDxaEdqCDyBOq-yuvV7vCTWF0EISRUoi9Wb5sS5IKCnJ8v87s-uk7aFc96XVeDzzjf35G4CPzrnM-LRMJGKiRFRKJJWXIpGc1MgwoQdL6x3jibxYiB9XxVXkP20irXIbE9tA7VeO1sj7HPNUoejgZj9EWsT06_DLzd-EOkjRTmtsp_EUnmFWlOThavh9t95C-pdKVB33nWOl30dE-CsjAXOV5Q-yUive_1iIbvPO8CW8iICRnXUj_Aqe1MvX8Hy8U1vdvIHFlj7HVks2azDCsUsSQWTTNW3DkOnZALOVp_v4Hpu1NOqoSoXfbpqO9MgGv0ez-ZhRg7Q_h7AYfpufXySxXULiMGc3Se4KLHZsalJXViUiI5EhfCBFvawsfYk4C0uJ2kvrQyFDFiSvhZMlR0xlSZiPH8HecrWs3wIrQzCqsIUxigtupRHKCmFUSK0oTO578GlrLn3TqWJorCbIrPq-WXswIFvuniEt6_bCan2t49TQoXIIKhHpq9yJPHCb-YLndVY7hJJYnfXgM42EphnXrI0z8eAA_ippV-kzRUcZsMRPe3CyHSwdp-JG3znOu__f_gD76FF6dDn5eQwHOYKXjkt2AnvN-l99iuCjse9br7oFqSzVpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Stock+Index+Prediction+Based+on+the+Spatiotemporal+Attention+BiLSTM+Model&rft.jtitle=Mathematics+%28Basel%29&rft.au=Mu%2C+Shengdong&rft.au=Liu%2C+Boyu&rft.au=Gu%2C+Jijian&rft.au=Lien%2C+Chaolung&rft.date=2024-09-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=12&rft.issue=18&rft.spage=2812&rft_id=info:doi/10.3390%2Fmath12182812&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math12182812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon