Fast-Convergent Federated Learning With Adaptive Weighting
Federated learning (FL) enables resource-constrained edge nodes to collaboratively learn a global model under the orchestration of a central server while keeping privacy-sensitive data locally. The non-independent-and-identically-distributed (non-IID) data samples across participating nodes slow mod...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 7; no. 4; pp. 1078 - 1088 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7731 2332-7731 |
DOI | 10.1109/TCCN.2021.3084406 |
Cover
Loading…
Abstract | Federated learning (FL) enables resource-constrained edge nodes to collaboratively learn a global model under the orchestration of a central server while keeping privacy-sensitive data locally. The non-independent-and-identically-distributed (non-IID) data samples across participating nodes slow model training and impose additional communication rounds for FL to converge. In this paper, we propose Fed erated Ad a p tive Weighting ( FedAdp ) algorithm that aims to accelerate model convergence under the presence of nodes with non-IID dataset. We observe the implicit connection between the node contribution to the global model aggregation and data distribution on the local node through theoretical and empirical analysis. We then propose to assign different weights for updating the global model based on node contribution adaptively through each training round. The contribution of participating nodes is first measured by the angle between the local gradient vector and the global gradient vector, and then, weight is quantified by a designed non-linear mapping function subsequently. The simple yet effective strategy can reinforce positive (suppress negative) node contribution dynamically, resulting in communication round reduction drastically. Its superiority over the commonly adopted Federated Averaging ( FedAvg ) is verified both theoretically and experimentally. With extensive experiments performed in Pytorch and PySyft, we show that FL training with FedAdp can reduce the number of communication rounds by up to 54.1% on MNIST dataset and up to 45.4% on FashionMNIST dataset, as compared to FedAvg algorithm. |
---|---|
AbstractList | Federated learning (FL) enables resource-constrained edge nodes to collaboratively learn a global model under the orchestration of a central server while keeping privacy-sensitive data locally. The non-independent-and-identically-distributed (non-IID) data samples across participating nodes slow model training and impose additional communication rounds for FL to converge. In this paper, we propose Fed erated Ad a p tive Weighting ( FedAdp ) algorithm that aims to accelerate model convergence under the presence of nodes with non-IID dataset. We observe the implicit connection between the node contribution to the global model aggregation and data distribution on the local node through theoretical and empirical analysis. We then propose to assign different weights for updating the global model based on node contribution adaptively through each training round. The contribution of participating nodes is first measured by the angle between the local gradient vector and the global gradient vector, and then, weight is quantified by a designed non-linear mapping function subsequently. The simple yet effective strategy can reinforce positive (suppress negative) node contribution dynamically, resulting in communication round reduction drastically. Its superiority over the commonly adopted Federated Averaging ( FedAvg ) is verified both theoretically and experimentally. With extensive experiments performed in Pytorch and PySyft, we show that FL training with FedAdp can reduce the number of communication rounds by up to 54.1% on MNIST dataset and up to 45.4% on FashionMNIST dataset, as compared to FedAvg algorithm. |
Author | Wu, Hongda Wang, Ping |
Author_xml | – sequence: 1 givenname: Hongda surname: Wu fullname: Wu, Hongda email: hwu1226@eecs.yorku.ca organization: Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada – sequence: 2 givenname: Ping orcidid: 0000-0002-1599-5480 surname: Wang fullname: Wang, Ping email: pingw@yorku.ca organization: Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada |
BookMark | eNp9kE1LAzEQhoNUsNb-APGy4HlrvjbJeiuLVaHopdJjSDeTNqVmazYt-O-7pUXEg6cZZt5nBp5r1AtNAIRuCR4RgsuHWVW9jSimZMSw4hyLC9SnjNFcSkZ6v_orNGzbNcaYCCqE4n30ODFtyqsm7CEuIaRsAhaiSWCzKZgYfFhmc59W2diabfJ7yObgl6vUzW_QpTObFobnOkAfk6dZ9ZJP359fq_E0r2nJUk6NYsI66wSrXY3L0kgHpiiZIIZZRQq7oAIvlDTUUcmBKWwtl7Lo9rIsKBug-9PdbWy-dtAmvW52MXQvdQdKJQXBqkvJU6qOTdtGcLr2ySTfhBSN32iC9dGVPrrSR1f67KojyR9yG_2nid__MncnxgPAT77knCrC2QGIp3TS |
CODEN | ITCCG7 |
CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102164 crossref_primary_10_1145_3678182 crossref_primary_10_1109_TNSE_2025_3528982 crossref_primary_10_1109_TSP_2025_3536023 crossref_primary_10_1109_OJCOMS_2024_3513816 crossref_primary_10_1109_TMC_2024_3402080 crossref_primary_10_1109_JSYST_2023_3236995 crossref_primary_10_1109_TCCN_2024_3394889 crossref_primary_10_1109_ACCESS_2022_3141913 crossref_primary_10_3390_s25051441 crossref_primary_10_1016_j_compbiomed_2024_108905 crossref_primary_10_1109_TVT_2023_3298787 crossref_primary_10_1016_j_future_2024_01_007 crossref_primary_10_1109_TNET_2024_3377655 crossref_primary_10_1145_3600225 crossref_primary_10_1088_1361_6501_acf77d crossref_primary_10_1016_j_comcom_2025_108104 crossref_primary_10_1109_ACCESS_2024_3413069 crossref_primary_10_1109_TNSE_2022_3146399 crossref_primary_10_1109_OJCOMS_2024_3391731 crossref_primary_10_1145_3706419 crossref_primary_10_1145_3669903 crossref_primary_10_1016_j_ijepes_2023_109285 crossref_primary_10_1109_TVT_2021_3135332 crossref_primary_10_1016_j_knosys_2024_112484 crossref_primary_10_1002_int_23056 crossref_primary_10_1016_j_future_2023_09_008 crossref_primary_10_1109_TNET_2023_3323023 crossref_primary_10_1109_TSC_2023_3332102 crossref_primary_10_1109_TNSE_2024_3447904 crossref_primary_10_1109_TNSM_2023_3288738 crossref_primary_10_1109_JIOT_2023_3292797 crossref_primary_10_1016_j_comnet_2023_109712 crossref_primary_10_1145_3594779 crossref_primary_10_3390_math11194123 crossref_primary_10_1109_JSAC_2024_3431526 crossref_primary_10_1109_TMC_2023_3331906 crossref_primary_10_1109_TPDS_2023_3267897 crossref_primary_10_1049_cmu2_12379 crossref_primary_10_1109_TMC_2024_3365951 crossref_primary_10_1016_j_compag_2024_109720 crossref_primary_10_1109_JIOT_2024_3399259 crossref_primary_10_1016_j_future_2024_06_030 crossref_primary_10_1007_s13042_022_01647_y crossref_primary_10_1109_TITS_2023_3265416 crossref_primary_10_3390_e26121099 crossref_primary_10_1016_j_knosys_2024_112937 crossref_primary_10_1016_j_jnca_2024_104086 crossref_primary_10_1109_JIOT_2024_3376548 crossref_primary_10_3390_electronics12143054 crossref_primary_10_1049_cmu2_12333 crossref_primary_10_1145_3697836 crossref_primary_10_1109_TAI_2023_3307664 crossref_primary_10_1016_j_knosys_2022_109960 crossref_primary_10_3390_app14072720 crossref_primary_10_1109_ACCESS_2023_3284976 crossref_primary_10_1007_s00530_024_01386_w crossref_primary_10_1109_TAI_2024_3419757 crossref_primary_10_1016_j_cose_2023_103278 crossref_primary_10_1007_s10791_024_09478_x crossref_primary_10_1016_j_cose_2023_103319 crossref_primary_10_1145_3701035 crossref_primary_10_1016_j_compeleceng_2024_109329 crossref_primary_10_1109_JBHI_2023_3319516 crossref_primary_10_1007_s11227_024_06514_x crossref_primary_10_3390_math12060920 crossref_primary_10_1109_TCE_2024_3357530 crossref_primary_10_1016_j_comcom_2024_107964 crossref_primary_10_1109_TWC_2023_3301611 crossref_primary_10_1007_s10586_024_04837_1 crossref_primary_10_1016_j_hcc_2022_100068 crossref_primary_10_3390_s23229226 crossref_primary_10_1186_s13634_024_01192_6 |
Cites_doi | 10.1109/INFOCOM41043.2020.9155494 10.1109/ICC.2019.8761315 10.1214/aoms/1177705673 10.1109/ICDCS.2019.00099 10.1109/JSAC.2020.3036952 10.1109/SOSE.2015.17 10.1109/COMST.2020.2970550 10.1109/INFOCOM.2019.8737464 10.1038/nature14539 10.1109/COMST.2020.2986024 10.1109/JSAC.2019.2904348 10.1109/TNNLS.2019.2953131 10.1109/MCOM.2011.6069707 10.1109/MCOM.2018.1701095 10.1109/JIOT.2016.2584538 10.1109/72.883477 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCCN.2021.3084406 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2332-7731 |
EndPage | 1088 |
ExternalDocumentID | 10_1109_TCCN_2021_3084406 9442814 |
Genre | orig-research |
GrantInformation_xml | – fundername: Canada NSERC Discovery grantid: RGPIN-2019-06375 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-2a836dfdf63cfc099a7fea59361a3d815db260b87a2f274e380dd477561a79523 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Mon Jun 30 05:38:20 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Aug 27 05:11:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-2a836dfdf63cfc099a7fea59361a3d815db260b87a2f274e380dd477561a79523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1599-5480 |
PQID | 2607876108 |
PQPubID | 4437218 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2607876108 crossref_primary_10_1109_TCCN_2021_3084406 ieee_primary_9442814 crossref_citationtrail_10_1109_TCCN_2021_3084406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | kone?n? (ref9) 2016 ref12 mcmahan (ref8) 2017 ref23 ref15 dinh (ref22) 2019 ref14 li (ref13) 2018 ref10 ref21 ref17 lecun (ref2) 2015; 521 ref16 lueth (ref1) 2019 ref19 ref18 ref7 chai (ref20) 2020 ref4 ref3 ref6 ref5 zhao (ref11) 2018 |
References_xml | – year: 2016 ident: ref9 publication-title: Federated learning Strategies for improving communication efficiency – year: 2018 ident: ref11 publication-title: Federated learning with non-IID data – year: 2019 ident: ref22 publication-title: Federated learning over wireless networks Convergence analysis and resource allocation – ident: ref12 doi: 10.1109/INFOCOM41043.2020.9155494 – ident: ref16 doi: 10.1109/ICC.2019.8761315 – ident: ref23 doi: 10.1214/aoms/1177705673 – year: 2018 ident: ref13 publication-title: Federated optimization for heterogeneous networks – ident: ref18 doi: 10.1109/ICDCS.2019.00099 – ident: ref17 doi: 10.1109/JSAC.2020.3036952 – ident: ref3 doi: 10.1109/SOSE.2015.17 – ident: ref7 doi: 10.1109/COMST.2020.2970550 – ident: ref15 doi: 10.1109/INFOCOM.2019.8737464 – year: 2020 ident: ref20 publication-title: FedAT A communication-efficient federated learning method with asynchronous tiers under non-IID data – volume: 521 start-page: 436 year: 2015 ident: ref2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref10 doi: 10.1109/COMST.2020.2986024 – ident: ref14 doi: 10.1109/JSAC.2019.2904348 – ident: ref19 doi: 10.1109/TNNLS.2019.2953131 – ident: ref4 doi: 10.1109/MCOM.2011.6069707 – ident: ref6 doi: 10.1109/MCOM.2018.1701095 – ident: ref5 doi: 10.1109/JIOT.2016.2584538 – year: 2019 ident: ref1 publication-title: State of the IoT 2018 Number of IoT devices now at 7B market accelerating – start-page: 1273 year: 2017 ident: ref8 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc Artif Intell Statist Conf (AISTATS) – ident: ref21 doi: 10.1109/72.883477 |
SSID | ssj0001626684 |
Score | 2.5770216 |
Snippet | Federated learning (FL) enables resource-constrained edge nodes to collaboratively learn a global model under the orchestration of a central server while... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1078 |
SubjectTerms | Adaptation models Algorithms Collaborative work Communication communication efficiency Convergence Data models Datasets Distributed databases Empirical analysis Federated learning Internet of Things mobile edge computing Nodes Servers Training Weighting |
Title | Fast-Convergent Federated Learning With Adaptive Weighting |
URI | https://ieeexplore.ieee.org/document/9442814 https://www.proquest.com/docview/2607876108 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6Qkx78hUYUzQ6ejJvb2m2tN7JIiAmcIHBburVTowEi4-Jf73tdQaLGeFuatun62r7vvb5-j5BrUAt5FCnpclZKdN0oV6iydGGPg4YVQlFDmT8Yxv0xe5xG0wa53byF0Vqb4DPt4ae5y1fzYoWusjvBACxj1uodMNzqt1pf_hRA5jFn9uIy8MXdKE2HYACGgUd9zhjmNNpSPSaXyo8D2GiV3gEZrMdTB5O8eqsq94qPb1SN_x3wIdm38NLp1uvhiDT07JjsbZEOtsh9Ty4rN8Voc3x4WTk95JMAyKkcS7b65Exeqmenq-QCD0NnYtynUH5Cxr2HUdp3bQYFtwA1Xrmh5DRWpSpjWpQFgEGZlFpiEr9AUsWDSOVgz-Q8kWEJ5qmm3FeKJQmAKpkIsFFPSXM2n-kz4mgw7LhPFY0lsvRRAaovCaETGbEkZqJN_PXkZoWlF8csF2-ZMTN8kaE8MpRHZuXRJjebJouaW-Ovyi2c301FO7Vt0llLMLO7b5nBP8E5BMCQn__e6oLsYt91WEqHNKv3lb4EcFHlV2ZVfQKtZ8m_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPagHX2hEUXvwZCyU7rbd9UaIBBU4QeDWbLtbNRogUi7-emfagkSN8dY0u33s7O58MzvzDcAVqoXI87SyBU8UuW60LXWS2LjGUcNKqVlGmd_r-50hfxh74xLcrHJhjDFZ8Jmp0WV2lq-n8YJcZXXJESxT1epNj5Jx82ytL48KYnNf8OLosuHI-qDV6qMJ6DZqzBGcU1WjNeWTVVP5sQVneqW9B73lF-XhJK-1RRrV4o9vZI3__eR92C0AptXMZ8QBlMzkEHbWaAfLcNtW89RuUbw5pV6mVpsYJRB0aqugW32yRi_ps9XUakbboTXKHKh4_wiG7btBq2MXNRTsGBV5artKMF8nOvFZnMQIB1WQGEVl_BqKadHwdIQWTSQC5SZooBomHK15ECCsUoFEK_UYNibTiTkBy6BpJxymma-Ip49JVH6Biw9RHg98LivgLAc3jAuCcapz8RZmhoYjQ5JHSPIIC3lU4HrVZZaza_zVuEzju2pYDG0FqksJhsX6m4f4T7gTITQUp7_3uoStzqDXDbv3_ccz2Kb35EEqVdhI3xfmHKFGGl1kM-wTYI_NBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast-Convergent+Federated+Learning+With+Adaptive+Weighting&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Wu%2C+Hongda&rft.au=Wang%2C+Ping&rft.date=2021-12-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=7&rft.issue=4&rft.spage=1078&rft.epage=1088&rft_id=info:doi/10.1109%2FTCCN.2021.3084406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2021_3084406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |