Defense Against Machine Learning Based Attacks in Multi-UAV Networks: A Network Coding Based Approach
Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely control and monitor UAVs, mission-related data such as location and trajectory information are transmitted over wireless channels. However, UAV...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 9; no. 4; pp. 2562 - 2578 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely control and monitor UAVs, mission-related data such as location and trajectory information are transmitted over wireless channels. However, UAV networks are vulnerable to eavesdropping attacks due to: 1) the broadcasting nature of wireless channels; 2) the broad coverage in aerial environments. In this paper, we investigate the potential security threats in UAV networks with passive attackers who aim to eavesdrop and decode encrypted locations by using machine learning techniques. We show that a neural network of two hidden layers is able to decode the encrypted locations if using the existing location protection methods. To defend against such machine learning based attacks, we suggest a location protection approach based on the random linear network coding with encryption keys being randomly permuted. We prove that our proposed approach allows for a low attacker's success probability and provides untraceability property. Our simulation results indicate that our approach significantly outperforms the existing location protection methods in terms of attacker's bit error rate, even with a small number of UAVs. |
---|---|
AbstractList | Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely control and monitor UAVs, mission-related data such as location and trajectory information are transmitted over wireless channels. However, UAV networks are vulnerable to eavesdropping attacks due to: 1) the broadcasting nature of wireless channels; 2) the broad coverage in aerial environments. In this paper, we investigate the potential security threats in UAV networks with passive attackers who aim to eavesdrop and decode encrypted locations by using machine learning techniques. We show that a neural network of two hidden layers is able to decode the encrypted locations if using the existing location protection methods. To defend against such machine learning based attacks, we suggest a location protection approach based on the random linear network coding with encryption keys being randomly permuted. We prove that our proposed approach allows for a low attacker's success probability and provides untraceability property. Our simulation results indicate that our approach significantly outperforms the existing location protection methods in terms of attacker's bit error rate, even with a small number of UAVs. |
Author | Pan, Miao Chen, Xiao-Chun Chen, Yu-Jia |
Author_xml | – sequence: 1 givenname: Yu-Jia orcidid: 0000-0001-7563-4073 surname: Chen fullname: Chen, Yu-Jia email: yjchen@ce.ncu.edu.tw organization: National Central University, Chung-Li, Taiwan – sequence: 2 givenname: Xiao-Chun surname: Chen fullname: Chen, Xiao-Chun email: j70333@gmail.com organization: National Central University, Chung-Li, Taiwan – sequence: 3 givenname: Miao surname: Pan fullname: Pan, Miao email: mpan2@central.uh.edu organization: Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA |
BookMark | eNp9kEtLAzEUhYMoWB8_QNwEXE_NY5JM3I31CbUufOBuyGTu1NSaqUmK-O-dUhVx4eqeC-c7B84O2vSdB4QOKBlSSvTx_eTufMgIY0NOpdCKbqAB4zzPONNPmyvNVJZLrbbRfowzQghlheScDxCcQQs-Ai6nxvmY8I2xz84DHoMJ3vkpPjURGlymZOxLxM7jm-U8ueyhfMQTSO9deIknuPzWeNQ1v6jFInR94B7aas08wv7X3UUPF-f3o6tsfHt5PSrHmWWap4wVeQECdE2sbi2wWuRSqqKxTd6_XJiW5co0rSxk0RSNMLqWmpiGQy1VbS3fRUfr3L72bQkxVbNuGXxfWTFZUC2EUKJ30bXLhi7GAG21CO7VhI-Kkmo1aLUatFoNWn0N2jPqD2NdMsl1PgXj5v-Sh2vSAcBPk1YiZ1zwT-a1hRc |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1109_TVT_2023_3326195 crossref_primary_10_1109_OJVT_2025_3525781 crossref_primary_10_3390_s23198077 crossref_primary_10_1007_s10922_024_09866_0 |
Cites_doi | 10.1109/COMST.2017.2771522 10.1109/ACCESS.2020.2971772 10.1109/TCOMM.2017.2657621 10.1109/TENCON.2019.8929236 10.1145/3324921.3328791 10.1109/LCOMM.2019.2909880 10.1109/COMST.2019.2902862 10.1109/GLOCOM.2018.8647458 10.1109/ACCESS.2020.2968935 10.1109/MCOM.2018.1700434 10.1109/JIOT.2018.2890213 10.1109/TNSM.2018.2877790 10.1109/JSAC.2019.2933962 10.1109/CNS.2019.8802666 10.1109/ACCESS.2017.2749422 10.1109/ISCC47284.2019.8969672 10.1109/TIFS.2018.2850770 10.1109/TCOMM.2019.2947921 10.1109/PIMRC48278.2020.9217325 10.1109/PIMRC.2018.8580972 10.1109/JIOT.2018.2875065 10.1109/ACCESS.2018.2800907 10.1109/TVT.2015.2498551 10.1109/VTCFall.2019.8891199 10.1109/DSC.2019.00015 10.1109/TNSM.2019.2916205 10.1109/WOCC48579.2020.9114916 10.1109/TNSE.2018.2888848 10.1145/1859995.1860015 10.1109/ICDCS.2015.12 10.1109/LCOMM.2016.2611498 10.1109/COMST.2019.2916180 10.1109/IWCMC.2018.8450446 10.1109/MWC.2016.1600073WC 10.1109/ACCESS.2019.2900982 10.1109/ISIT.2017.8006956 10.1109/MWC.001.1900028 10.1109/TPDS.2013.161 10.1109/JIOT.2019.2893172 10.1109/COMST.2017.2664421 10.1109/TMC.2019.2927478 10.1109/EIT.2018.8500313 10.1109/TMC.2019.2903048 10.1109/JIOT.2019.2919743 10.1109/MWC.2019.1800298 10.1109/GLOBECOM38437.2019.9013432 10.1109/ICC.2008.336 10.1109/SP.2011.18 10.1109/JIOT.2018.2842470 10.1109/NETCOD.2009.5191397 10.1109/ICC.2019.8761415 10.1109/COMST.2019.2906228 10.1109/COMST.2019.2933899 10.1109/JSEN.2019.2893912 10.1109/MCOM.2017.1700390 10.1109/ICC42927.2021.9500614 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2022.3165971 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 2578 |
ExternalDocumentID | 10_1109_TNSE_2022_3165971 9754235 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology Taiwan grantid: MOST 110-2222-E-008-004 funderid: 10.13039/501100004663 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-2848e5e9b0c9fce2b546678dcd4fce35af247adf6868d8d5a9b690ad3eb67bcc3 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 09:44:30 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Tue Jul 01 03:10:45 EDT 2025 Wed Aug 27 02:23:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-2848e5e9b0c9fce2b546678dcd4fce35af247adf6868d8d5a9b690ad3eb67bcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7563-4073 |
PQID | 2681955575 |
PQPubID | 2040409 |
PageCount | 17 |
ParticipantIDs | ieee_primary_9754235 crossref_primary_10_1109_TNSE_2022_3165971 crossref_citationtrail_10_1109_TNSE_2022_3165971 proquest_journals_2681955575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 Bergstra (ref47) 2012; 13 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Lagerhjelm (ref49) 2018 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref6 ref5 ref40 Ahmad (ref58) 2019; 21 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 (ref4) 2019 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 (ref3) 2018 ref60 |
References_xml | – ident: ref6 doi: 10.1109/COMST.2017.2771522 – ident: ref27 doi: 10.1109/ACCESS.2020.2971772 – ident: ref46 doi: 10.1109/TCOMM.2017.2657621 – ident: ref26 doi: 10.1109/TENCON.2019.8929236 – year: 2018 ident: ref3 article-title: Remote identification of unmanned aerial system – ident: ref15 doi: 10.1145/3324921.3328791 – ident: ref56 doi: 10.1109/LCOMM.2019.2909880 – ident: ref1 doi: 10.1109/COMST.2019.2902862 – ident: ref45 doi: 10.1109/GLOCOM.2018.8647458 – ident: ref60 doi: 10.1109/ACCESS.2020.2968935 – ident: ref38 doi: 10.1109/MCOM.2018.1700434 – ident: ref44 doi: 10.1109/JIOT.2018.2890213 – ident: ref20 doi: 10.1109/TNSM.2018.2877790 – ident: ref50 doi: 10.1109/JSAC.2019.2933962 – ident: ref8 doi: 10.1109/CNS.2019.8802666 – volume: 13 start-page: 281 issue: 2 year: 2012 ident: ref47 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – ident: ref9 doi: 10.1109/ACCESS.2017.2749422 – ident: ref57 doi: 10.1109/ISCC47284.2019.8969672 – ident: ref16 doi: 10.1109/TIFS.2018.2850770 – ident: ref39 doi: 10.1109/TCOMM.2019.2947921 – ident: ref43 doi: 10.1109/PIMRC48278.2020.9217325 – ident: ref30 doi: 10.1109/PIMRC.2018.8580972 – ident: ref10 doi: 10.1109/JIOT.2018.2875065 – ident: ref21 doi: 10.1109/ACCESS.2018.2800907 – ident: ref40 doi: 10.1109/TVT.2015.2498551 – ident: ref19 doi: 10.1109/VTCFall.2019.8891199 – ident: ref31 doi: 10.1109/DSC.2019.00015 – ident: ref22 doi: 10.1109/TNSM.2019.2916205 – ident: ref54 doi: 10.1109/WOCC48579.2020.9114916 – year: 2018 ident: ref49 article-title: Extracting information from encrypted data using deep neural networks – ident: ref34 doi: 10.1109/TNSE.2018.2888848 – ident: ref28 doi: 10.1145/1859995.1860015 – ident: ref12 doi: 10.1109/ICDCS.2015.12 – ident: ref52 doi: 10.1109/LCOMM.2016.2611498 – volume: 21 start-page: 3682 issue: 4 year: 2019 ident: ref58 article-title: Security for 5G and beyond publication-title: IEEE Commun. Surv. Tut. doi: 10.1109/COMST.2019.2916180 – ident: ref35 doi: 10.1109/IWCMC.2018.8450446 – ident: ref17 doi: 10.1109/MWC.2016.1600073WC – ident: ref33 doi: 10.1109/ACCESS.2019.2900982 – ident: ref48 doi: 10.1109/ISIT.2017.8006956 – ident: ref24 doi: 10.1109/MWC.001.1900028 – ident: ref32 doi: 10.1109/TPDS.2013.161 – ident: ref7 doi: 10.1109/JIOT.2019.2893172 – ident: ref42 doi: 10.1109/COMST.2017.2664421 – ident: ref51 doi: 10.1109/TMC.2019.2927478 – ident: ref36 doi: 10.1109/EIT.2018.8500313 – ident: ref23 doi: 10.1109/TMC.2019.2903048 – ident: ref53 doi: 10.1109/JIOT.2019.2919743 – ident: ref29 doi: 10.1109/MWC.2019.1800298 – ident: ref2 doi: 10.1109/GLOBECOM38437.2019.9013432 – ident: ref13 doi: 10.1109/ICC.2008.336 – year: 2019 ident: ref4 article-title: Unmanned aerial system (UAS) support in 3GPP – ident: ref11 doi: 10.1109/SP.2011.18 – ident: ref14 doi: 10.1109/JIOT.2018.2842470 – ident: ref41 doi: 10.1109/NETCOD.2009.5191397 – ident: ref25 doi: 10.1109/ICC.2019.8761415 – ident: ref18 doi: 10.1109/COMST.2019.2906228 – ident: ref59 doi: 10.1109/COMST.2019.2933899 – ident: ref37 doi: 10.1109/JSEN.2019.2893912 – ident: ref5 doi: 10.1109/MCOM.2017.1700390 – ident: ref55 doi: 10.1109/ICC42927.2021.9500614 |
SSID | ssj0001286333 |
Score | 2.2626247 |
Snippet | Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2562 |
SubjectTerms | Autonomous aerial vehicles Bit error rate Channels Coding deep learning Eavesdropping eavesdropping attacks Encryption location privacy Machine learning Military operations Network coding Neural networks Perturbation methods Remote control Remote monitoring Task analysis Trajectory Unmanned aerial vehicles Unmanned aerial vehicles (UAVs) Wireless communication Wireless networks |
Title | Defense Against Machine Learning Based Attacks in Multi-UAV Networks: A Network Coding Based Approach |
URI | https://ieeexplore.ieee.org/document/9754235 https://www.proquest.com/docview/2681955575 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oJz24i-NGDp7Ejm2ztPVWN0SYueiIt5LlVUSZEe1c_PUmaWYYF8RbCnkl8KX93v4ADrlgGTMijlwUMGJ1QiOZsDrSCXJkOkP0ruxeX1wP2M0Df5iD42ktDCL65DPsuqWP5ZuRHjtX2UnhxrVSPg_z1nBra7Vm_Cm5oJSGwGUSFyd3_dtLawCmqbVLhdWbky_U42ep_PgBe1a5WoHe5DxtMslzd9yorv741qrxvwdeheWgXpKyvQ9rMIfDdViaaTq4AXiBtbVdkZSP8skqh6Tn8ymRhFarj-TMMpshZdO4-nvyNCS-SjcalPek32aNv5-ScrIm5yMzIxV6lG_C4Ory7vw6CsMWIm0Zv4ksTeUWnkLFuqg1poozYYnMaMPsI-WyTlkmTS1ykZvccFkoa1hLQ1GJTGlNt2BhOBriNpA0FoXMFMW0Ria1zAU3mRImprkSItYdiCc4VDp0IncDMV4qb5HEReWgqxx0VYCuA0dTkde2DcdfmzccFNONAYUO7E3ArsKH-l6lwgUSuVVad36X2oVF9-42Q3cPFpq3Me5bPaRRB_4CfgIUB9qv |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPRQO0BYQ4dHuoaeqDrb3YZuboaBASS5NEDdrH2OEQAkC58KvZ3e9idKCUG9raUde6Vv7m_cAfOeCZcyIOHJRwIjVCY1kwupIJ8iR6QzRu7L7A9EbsYtrfr0EP-e1MIjok8-w65Y-lm8meupcZYeFG9dK-TJ8sLzPk7Zaa8GjkgtKaQhdJnFxOBz8ObUmYJpay1RYzTn5i3z8NJVXv2DPK2cb0J-dqE0nuetOG9XVz_80a_zfI3-C9aBgkrK9EZ9hCcdfYG2h7eAm4C-srfWKpLyRt1Y9JH2fUYkkNFu9IceW2wwpm8ZV4JPbMfF1utGovCKDNm_86YiUszU5mZgFqdClfAtGZ6fDk14Uxi1E2nJ-E1miyi1AhYp1UWtMFWfCUpnRhtlHymWdskyaWuQiN7nhslDWtJaGohKZ0ppuw8p4MsYdIGksCpkpimmNTGqZC24yJUxMcyVErDsQz3CodOhF7kZi3FfeJomLykFXOeiqAF0HfsxFHtpGHO9t3nRQzDcGFDqwPwO7Cp_qU5UKF0rkVm3dfVvqG3zsDfuX1eX54PcerLr3tPm6-7DSPE7xwGoljfrqL-MLo0_d-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defense+Against+Machine+Learning+Based+Attacks+in+Multi-UAV+Networks%3A+A+Network+Coding+Based+Approach&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Chen%2C+Yu-Jia&rft.au=Chen%2C+Xiao-Chun&rft.au=Pan%2C+Miao&rft.date=2022-07-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=9&rft.issue=4&rft.spage=2562&rft.epage=2578&rft_id=info:doi/10.1109%2FTNSE.2022.3165971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2022_3165971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |