Defense Against Machine Learning Based Attacks in Multi-UAV Networks: A Network Coding Based Approach

Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely control and monitor UAVs, mission-related data such as location and trajectory information are transmitted over wireless channels. However, UAV...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 9; no. 4; pp. 2562 - 2578
Main Authors Chen, Yu-Jia, Chen, Xiao-Chun, Pan, Miao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely control and monitor UAVs, mission-related data such as location and trajectory information are transmitted over wireless channels. However, UAV networks are vulnerable to eavesdropping attacks due to: 1) the broadcasting nature of wireless channels; 2) the broad coverage in aerial environments. In this paper, we investigate the potential security threats in UAV networks with passive attackers who aim to eavesdrop and decode encrypted locations by using machine learning techniques. We show that a neural network of two hidden layers is able to decode the encrypted locations if using the existing location protection methods. To defend against such machine learning based attacks, we suggest a location protection approach based on the random linear network coding with encryption keys being randomly permuted. We prove that our proposed approach allows for a low attacker's success probability and provides untraceability property. Our simulation results indicate that our approach significantly outperforms the existing location protection methods in terms of attacker's bit error rate, even with a small number of UAVs.
AbstractList Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely control and monitor UAVs, mission-related data such as location and trajectory information are transmitted over wireless channels. However, UAV networks are vulnerable to eavesdropping attacks due to: 1) the broadcasting nature of wireless channels; 2) the broad coverage in aerial environments. In this paper, we investigate the potential security threats in UAV networks with passive attackers who aim to eavesdrop and decode encrypted locations by using machine learning techniques. We show that a neural network of two hidden layers is able to decode the encrypted locations if using the existing location protection methods. To defend against such machine learning based attacks, we suggest a location protection approach based on the random linear network coding with encryption keys being randomly permuted. We prove that our proposed approach allows for a low attacker's success probability and provides untraceability property. Our simulation results indicate that our approach significantly outperforms the existing location protection methods in terms of attacker's bit error rate, even with a small number of UAVs.
Author Pan, Miao
Chen, Xiao-Chun
Chen, Yu-Jia
Author_xml – sequence: 1
  givenname: Yu-Jia
  orcidid: 0000-0001-7563-4073
  surname: Chen
  fullname: Chen, Yu-Jia
  email: yjchen@ce.ncu.edu.tw
  organization: National Central University, Chung-Li, Taiwan
– sequence: 2
  givenname: Xiao-Chun
  surname: Chen
  fullname: Chen, Xiao-Chun
  email: j70333@gmail.com
  organization: National Central University, Chung-Li, Taiwan
– sequence: 3
  givenname: Miao
  surname: Pan
  fullname: Pan, Miao
  email: mpan2@central.uh.edu
  organization: Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
BookMark eNp9kEtLAzEUhYMoWB8_QNwEXE_NY5JM3I31CbUufOBuyGTu1NSaqUmK-O-dUhVx4eqeC-c7B84O2vSdB4QOKBlSSvTx_eTufMgIY0NOpdCKbqAB4zzPONNPmyvNVJZLrbbRfowzQghlheScDxCcQQs-Ai6nxvmY8I2xz84DHoMJ3vkpPjURGlymZOxLxM7jm-U8ueyhfMQTSO9deIknuPzWeNQ1v6jFInR94B7aas08wv7X3UUPF-f3o6tsfHt5PSrHmWWap4wVeQECdE2sbi2wWuRSqqKxTd6_XJiW5co0rSxk0RSNMLqWmpiGQy1VbS3fRUfr3L72bQkxVbNuGXxfWTFZUC2EUKJ30bXLhi7GAG21CO7VhI-Kkmo1aLUatFoNWn0N2jPqD2NdMsl1PgXj5v-Sh2vSAcBPk1YiZ1zwT-a1hRc
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_TVT_2023_3326195
crossref_primary_10_1109_OJVT_2025_3525781
crossref_primary_10_3390_s23198077
crossref_primary_10_1007_s10922_024_09866_0
Cites_doi 10.1109/COMST.2017.2771522
10.1109/ACCESS.2020.2971772
10.1109/TCOMM.2017.2657621
10.1109/TENCON.2019.8929236
10.1145/3324921.3328791
10.1109/LCOMM.2019.2909880
10.1109/COMST.2019.2902862
10.1109/GLOCOM.2018.8647458
10.1109/ACCESS.2020.2968935
10.1109/MCOM.2018.1700434
10.1109/JIOT.2018.2890213
10.1109/TNSM.2018.2877790
10.1109/JSAC.2019.2933962
10.1109/CNS.2019.8802666
10.1109/ACCESS.2017.2749422
10.1109/ISCC47284.2019.8969672
10.1109/TIFS.2018.2850770
10.1109/TCOMM.2019.2947921
10.1109/PIMRC48278.2020.9217325
10.1109/PIMRC.2018.8580972
10.1109/JIOT.2018.2875065
10.1109/ACCESS.2018.2800907
10.1109/TVT.2015.2498551
10.1109/VTCFall.2019.8891199
10.1109/DSC.2019.00015
10.1109/TNSM.2019.2916205
10.1109/WOCC48579.2020.9114916
10.1109/TNSE.2018.2888848
10.1145/1859995.1860015
10.1109/ICDCS.2015.12
10.1109/LCOMM.2016.2611498
10.1109/COMST.2019.2916180
10.1109/IWCMC.2018.8450446
10.1109/MWC.2016.1600073WC
10.1109/ACCESS.2019.2900982
10.1109/ISIT.2017.8006956
10.1109/MWC.001.1900028
10.1109/TPDS.2013.161
10.1109/JIOT.2019.2893172
10.1109/COMST.2017.2664421
10.1109/TMC.2019.2927478
10.1109/EIT.2018.8500313
10.1109/TMC.2019.2903048
10.1109/JIOT.2019.2919743
10.1109/MWC.2019.1800298
10.1109/GLOBECOM38437.2019.9013432
10.1109/ICC.2008.336
10.1109/SP.2011.18
10.1109/JIOT.2018.2842470
10.1109/NETCOD.2009.5191397
10.1109/ICC.2019.8761415
10.1109/COMST.2019.2906228
10.1109/COMST.2019.2933899
10.1109/JSEN.2019.2893912
10.1109/MCOM.2017.1700390
10.1109/ICC42927.2021.9500614
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2022.3165971
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 2578
ExternalDocumentID 10_1109_TNSE_2022_3165971
9754235
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology Taiwan
  grantid: MOST 110-2222-E-008-004
  funderid: 10.13039/501100004663
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-2848e5e9b0c9fce2b546678dcd4fce35af247adf6868d8d5a9b690ad3eb67bcc3
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 09:44:30 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Tue Jul 01 03:10:45 EDT 2025
Wed Aug 27 02:23:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-2848e5e9b0c9fce2b546678dcd4fce35af247adf6868d8d5a9b690ad3eb67bcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7563-4073
PQID 2681955575
PQPubID 2040409
PageCount 17
ParticipantIDs ieee_primary_9754235
crossref_primary_10_1109_TNSE_2022_3165971
crossref_citationtrail_10_1109_TNSE_2022_3165971
proquest_journals_2681955575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Bergstra (ref47) 2012; 13
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Lagerhjelm (ref49) 2018
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref6
ref5
ref40
Ahmad (ref58) 2019; 21
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
(ref4) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref3) 2018
ref60
References_xml – ident: ref6
  doi: 10.1109/COMST.2017.2771522
– ident: ref27
  doi: 10.1109/ACCESS.2020.2971772
– ident: ref46
  doi: 10.1109/TCOMM.2017.2657621
– ident: ref26
  doi: 10.1109/TENCON.2019.8929236
– year: 2018
  ident: ref3
  article-title: Remote identification of unmanned aerial system
– ident: ref15
  doi: 10.1145/3324921.3328791
– ident: ref56
  doi: 10.1109/LCOMM.2019.2909880
– ident: ref1
  doi: 10.1109/COMST.2019.2902862
– ident: ref45
  doi: 10.1109/GLOCOM.2018.8647458
– ident: ref60
  doi: 10.1109/ACCESS.2020.2968935
– ident: ref38
  doi: 10.1109/MCOM.2018.1700434
– ident: ref44
  doi: 10.1109/JIOT.2018.2890213
– ident: ref20
  doi: 10.1109/TNSM.2018.2877790
– ident: ref50
  doi: 10.1109/JSAC.2019.2933962
– ident: ref8
  doi: 10.1109/CNS.2019.8802666
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: ref47
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref9
  doi: 10.1109/ACCESS.2017.2749422
– ident: ref57
  doi: 10.1109/ISCC47284.2019.8969672
– ident: ref16
  doi: 10.1109/TIFS.2018.2850770
– ident: ref39
  doi: 10.1109/TCOMM.2019.2947921
– ident: ref43
  doi: 10.1109/PIMRC48278.2020.9217325
– ident: ref30
  doi: 10.1109/PIMRC.2018.8580972
– ident: ref10
  doi: 10.1109/JIOT.2018.2875065
– ident: ref21
  doi: 10.1109/ACCESS.2018.2800907
– ident: ref40
  doi: 10.1109/TVT.2015.2498551
– ident: ref19
  doi: 10.1109/VTCFall.2019.8891199
– ident: ref31
  doi: 10.1109/DSC.2019.00015
– ident: ref22
  doi: 10.1109/TNSM.2019.2916205
– ident: ref54
  doi: 10.1109/WOCC48579.2020.9114916
– year: 2018
  ident: ref49
  article-title: Extracting information from encrypted data using deep neural networks
– ident: ref34
  doi: 10.1109/TNSE.2018.2888848
– ident: ref28
  doi: 10.1145/1859995.1860015
– ident: ref12
  doi: 10.1109/ICDCS.2015.12
– ident: ref52
  doi: 10.1109/LCOMM.2016.2611498
– volume: 21
  start-page: 3682
  issue: 4
  year: 2019
  ident: ref58
  article-title: Security for 5G and beyond
  publication-title: IEEE Commun. Surv. Tut.
  doi: 10.1109/COMST.2019.2916180
– ident: ref35
  doi: 10.1109/IWCMC.2018.8450446
– ident: ref17
  doi: 10.1109/MWC.2016.1600073WC
– ident: ref33
  doi: 10.1109/ACCESS.2019.2900982
– ident: ref48
  doi: 10.1109/ISIT.2017.8006956
– ident: ref24
  doi: 10.1109/MWC.001.1900028
– ident: ref32
  doi: 10.1109/TPDS.2013.161
– ident: ref7
  doi: 10.1109/JIOT.2019.2893172
– ident: ref42
  doi: 10.1109/COMST.2017.2664421
– ident: ref51
  doi: 10.1109/TMC.2019.2927478
– ident: ref36
  doi: 10.1109/EIT.2018.8500313
– ident: ref23
  doi: 10.1109/TMC.2019.2903048
– ident: ref53
  doi: 10.1109/JIOT.2019.2919743
– ident: ref29
  doi: 10.1109/MWC.2019.1800298
– ident: ref2
  doi: 10.1109/GLOBECOM38437.2019.9013432
– ident: ref13
  doi: 10.1109/ICC.2008.336
– year: 2019
  ident: ref4
  article-title: Unmanned aerial system (UAS) support in 3GPP
– ident: ref11
  doi: 10.1109/SP.2011.18
– ident: ref14
  doi: 10.1109/JIOT.2018.2842470
– ident: ref41
  doi: 10.1109/NETCOD.2009.5191397
– ident: ref25
  doi: 10.1109/ICC.2019.8761415
– ident: ref18
  doi: 10.1109/COMST.2019.2906228
– ident: ref59
  doi: 10.1109/COMST.2019.2933899
– ident: ref37
  doi: 10.1109/JSEN.2019.2893912
– ident: ref5
  doi: 10.1109/MCOM.2017.1700390
– ident: ref55
  doi: 10.1109/ICC42927.2021.9500614
SSID ssj0001286333
Score 2.2626247
Snippet Thanks to the agility and mobility features, unmanned aerial vehicles (UAVs) have been applied for a wide range of civil and military missions. To remotely...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2562
SubjectTerms Autonomous aerial vehicles
Bit error rate
Channels
Coding
deep learning
Eavesdropping
eavesdropping attacks
Encryption
location privacy
Machine learning
Military operations
Network coding
Neural networks
Perturbation methods
Remote control
Remote monitoring
Task analysis
Trajectory
Unmanned aerial vehicles
Unmanned aerial vehicles (UAVs)
Wireless communication
Wireless networks
Title Defense Against Machine Learning Based Attacks in Multi-UAV Networks: A Network Coding Based Approach
URI https://ieeexplore.ieee.org/document/9754235
https://www.proquest.com/docview/2681955575
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFH6oJz24i-NGDp7Ejm2ztPVWN0SYueiIt5LlVUSZEe1c_PUmaWYYF8RbCnkl8KX93v4ADrlgGTMijlwUMGJ1QiOZsDrSCXJkOkP0ruxeX1wP2M0Df5iD42ktDCL65DPsuqWP5ZuRHjtX2UnhxrVSPg_z1nBra7Vm_Cm5oJSGwGUSFyd3_dtLawCmqbVLhdWbky_U42ep_PgBe1a5WoHe5DxtMslzd9yorv741qrxvwdeheWgXpKyvQ9rMIfDdViaaTq4AXiBtbVdkZSP8skqh6Tn8ymRhFarj-TMMpshZdO4-nvyNCS-SjcalPek32aNv5-ScrIm5yMzIxV6lG_C4Ory7vw6CsMWIm0Zv4ksTeUWnkLFuqg1poozYYnMaMPsI-WyTlkmTS1ykZvccFkoa1hLQ1GJTGlNt2BhOBriNpA0FoXMFMW0Ria1zAU3mRImprkSItYdiCc4VDp0IncDMV4qb5HEReWgqxx0VYCuA0dTkde2DcdfmzccFNONAYUO7E3ArsKH-l6lwgUSuVVad36X2oVF9-42Q3cPFpq3Me5bPaRRB_4CfgIUB9qv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BPRQO0BYQ4dHuoaeqDrb3YZuboaBASS5NEDdrH2OEQAkC58KvZ3e9idKCUG9raUde6Vv7m_cAfOeCZcyIOHJRwIjVCY1kwupIJ8iR6QzRu7L7A9EbsYtrfr0EP-e1MIjok8-w65Y-lm8meupcZYeFG9dK-TJ8sLzPk7Zaa8GjkgtKaQhdJnFxOBz8ObUmYJpay1RYzTn5i3z8NJVXv2DPK2cb0J-dqE0nuetOG9XVz_80a_zfI3-C9aBgkrK9EZ9hCcdfYG2h7eAm4C-srfWKpLyRt1Y9JH2fUYkkNFu9IceW2wwpm8ZV4JPbMfF1utGovCKDNm_86YiUszU5mZgFqdClfAtGZ6fDk14Uxi1E2nJ-E1miyi1AhYp1UWtMFWfCUpnRhtlHymWdskyaWuQiN7nhslDWtJaGohKZ0ppuw8p4MsYdIGksCpkpimmNTGqZC24yJUxMcyVErDsQz3CodOhF7kZi3FfeJomLykFXOeiqAF0HfsxFHtpGHO9t3nRQzDcGFDqwPwO7Cp_qU5UKF0rkVm3dfVvqG3zsDfuX1eX54PcerLr3tPm6-7DSPE7xwGoljfrqL-MLo0_d-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defense+Against+Machine+Learning+Based+Attacks+in+Multi-UAV+Networks%3A+A+Network+Coding+Based+Approach&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Chen%2C+Yu-Jia&rft.au=Chen%2C+Xiao-Chun&rft.au=Pan%2C+Miao&rft.date=2022-07-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=9&rft.issue=4&rft.spage=2562&rft.epage=2578&rft_id=info:doi/10.1109%2FTNSE.2022.3165971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2022_3165971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon