A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject-Specific Tasks
This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from electroencephalography (EEG) signals. First, the multiscale principal component analysis was utilized to obtain clean EEG signals. Second, denoised da...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 14; no. 2; pp. 375 - 387 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from electroencephalography (EEG) signals. First, the multiscale principal component analysis was utilized to obtain clean EEG signals. Second, denoised data were sequentially arranged to form a square matrix of different orders (e.g.,10, 13, 16, and 20) and determinant was computed for each order matrix. Finally, the extracted matrix determinant features were provided to several machine learning and neural network classification models for classification. All experiments were carried out using a 10-fold cross-validation approach on three publicly accessible data sets: 1) data set IV-a; 2) data set IV-b; and 3) data set V of BCI competition III. Also, this study designs a computerized automatic detection of motor and mental imagery graphical user interface that can assist physicians/experts to efficiently analyses motor and mental imagery data. The experimental results reveal that the highest average classification accuracy of 99.55% (for data set IV-a), 99.52% (for data set IV-b), and 91.80% (for data set V) was obtained for motor and mental imagery, respectively, with 20-order matrix determinant using a feedforward neural network classifier. The experimental results suggest that the proposed framework provides a robust biomarker with the least computational complexity for the development of automated brain-computer interfaces. |
---|---|
AbstractList | This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from electroencephalography (EEG) signals. First, the multiscale principal component analysis was utilized to obtain clean EEG signals. Second, denoised data were sequentially arranged to form a square matrix of different orders (e.g.,10, 13, 16, and 20) and determinant was computed for each order matrix. Finally, the extracted matrix determinant features were provided to several machine learning and neural network classification models for classification. All experiments were carried out using a 10-fold cross-validation approach on three publicly accessible data sets: 1) data set IV-a; 2) data set IV-b; and 3) data set V of BCI competition III. Also, this study designs a computerized automatic detection of motor and mental imagery graphical user interface that can assist physicians/experts to efficiently analyses motor and mental imagery data. The experimental results reveal that the highest average classification accuracy of 99.55% (for data set IV-a), 99.52% (for data set IV-b), and 91.80% (for data set V) was obtained for motor and mental imagery, respectively, with 20-order matrix determinant using a feedforward neural network classifier. The experimental results suggest that the proposed framework provides a robust biomarker with the least computational complexity for the development of automated brain–computer interfaces. |
Author | Siuly, Siuly Aziz, Muhammad Zulkifal Yu, Xiaojun Yuan, Zhaohui Ding, Weiping Sadiq, Muhammad Tariq |
Author_xml | – sequence: 1 givenname: Muhammad Tariq orcidid: 0000-0002-7410-5951 surname: Sadiq fullname: Sadiq, Muhammad Tariq email: tariq.sadiq@mail.nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Xiaojun orcidid: 0000-0001-7361-0780 surname: Yu fullname: Yu, Xiaojun email: xjyu@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Zhaohui orcidid: 0000-0002-2040-7815 surname: Yuan fullname: Yuan, Zhaohui email: yuanzhh@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Muhammad Zulkifal orcidid: 0000-0002-3829-6287 surname: Aziz fullname: Aziz, Muhammad Zulkifal email: zulkifalaziz@mail.nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Siuly orcidid: 0000-0003-2491-0546 surname: Siuly fullname: Siuly, Siuly email: siuly.siuly@vu.edu.au organization: Institute for Sustainable Industries and Liveable Cities, Victoria University at Melbourne, Melbourne, VIC, Australia – sequence: 6 givenname: Weiping orcidid: 0000-0002-3180-7347 surname: Ding fullname: Ding, Weiping email: dwp9988@163.com organization: School of Information and Technology, Nantong University, Nantong, China |
BookMark | eNp9kE1PAjEQhhuDiYj-AOOliefF6Qft9kj40gTiATxvSpnFInSxWxL59y6BePDgaWaS552Z970lrVAFJOSBQZcxMM-LwXDe5cChK0CCFPkVaXOhTZYbYVq_PYcbcl_XGwBgSuhc6jZJfTqzKfpvOsSEceeDDYmO0aZDRDr6TtG65KtA-_t9rKz7oGUVG9ZVKx_WdFalZrRhRWcYkt3S151dYzzS0WhCfaDzw3KDLmXzPTpfekcXtv6s78h1abc13l9qh7yPR4vBSzZ9m7wO-tPMcSNSxjWgUCYHzS1yyyRwyYxUS7RMOCN7zK1UKZ0W3C1BqZwrVXIn8pJZ7SSIDnk6721e_zpgnYpNdYihOVlwpXsgJRd5Q-kz5WJV1xHLwvlkT6Yb835bMChOKRenlItTysUl5UbJ_ij30e9sPP6reTxrPCL-8qbxqoCJH_cqiIY |
CODEN | ITCDA4 |
CitedBy_id | crossref_primary_10_1109_TSC_2023_3262839 crossref_primary_10_1007_s13755_021_00139_7 crossref_primary_10_3390_s24196466 crossref_primary_10_1109_TIM_2022_3193407 crossref_primary_10_1088_1361_6641_ac31e3 crossref_primary_10_1109_TETCI_2022_3147030 crossref_primary_10_1007_s42044_021_00087_1 crossref_primary_10_1038_s41597_025_04826_y crossref_primary_10_32604_cmc_2022_022717 crossref_primary_10_1088_2057_1976_ad3cde crossref_primary_10_3390_sym14122677 crossref_primary_10_1109_TAI_2021_3097307 crossref_primary_10_1109_JBHI_2022_3151570 crossref_primary_10_1016_j_compbiomed_2021_104922 crossref_primary_10_1016_j_compbiomed_2025_109944 crossref_primary_10_1109_ACCESS_2021_3060096 crossref_primary_10_1109_TCDS_2023_3338460 crossref_primary_10_1109_TCDS_2023_3314351 crossref_primary_10_1007_s11760_023_02986_1 crossref_primary_10_1088_1741_2552_acb102 crossref_primary_10_1109_TFUZZ_2023_3336673 crossref_primary_10_1109_ACCESS_2023_3317241 crossref_primary_10_1016_j_jneumeth_2024_110182 crossref_primary_10_1007_s13755_023_00227_w crossref_primary_10_1109_TAI_2021_3105493 crossref_primary_10_1109_ACCESS_2022_3190967 crossref_primary_10_1109_TIM_2021_3069026 |
Cites_doi | 10.1007/978-3-319-68155-9_12 10.1016/j.jneumeth.2011.07.002 10.1016/j.patcog.2007.10.023 10.1109/ICINFA.2009.5205138 10.1088/1741-2552/aba7cd 10.1016/j.brainresbull.2008.01.007 10.1016/j.patrec.2007.06.018 10.1109/86.712230 10.1371/journal.pone.0125039 10.3390/s19050987 10.1016/j.neunet.2019.07.008 10.1155/2011/156869 10.1109/ICSAI.2017.8248513 10.1145/1143844.1143952 10.1109/TBME.2010.2082540 10.1016/j.cmpb.2010.11.014 10.1007/s10994-005-0466-3 10.1016/j.bspc.2016.09.007 10.1016/j.neucom.2008.02.017 10.1007/978-981-10-5828-8_8 10.2140/pjm.1993.158.1 10.1109/TBME.2008.919125 10.1109/TCYB.2018.2841847 10.1049/iet-gtd.2011.0110 10.1016/j.hm.2010.06.003 10.1016/j.asej.2017.12.003 10.1007/s00521-018-3735-3 10.1016/j.amc.2006.09.022 10.1007/s11517-006-0107-4 10.1109/ICASSP.2008.4517635 10.1371/journal.pone.0074433 10.1016/j.cmpb.2020.105325 10.1109/TCDS.2020.3007453 10.1109/TCDS.2017.2787040 10.4015/S1016237214500409 10.3390/rs12030587 10.1016/j.jneumeth.2003.10.009 10.1109/ACCESS.2019.2939623 10.1109/TCDS.2017.2716973 10.1109/TBME.2010.2082539 10.1016/j.neunet.2018.02.011 10.1016/j.measurement.2017.10.067 10.1088/1741-2552/abc902 10.1109/TNSRE.2012.2184838 10.1109/ACCESS.2019.2956018 10.1007/s10916-012-9893-4 10.1109/TSMC.2019.2917599 10.1109/CONIELECOMP.2016.7438573 10.1109/TCDS.2016.2632130 10.1016/j.eswa.2019.03.021 10.1155/2020/1981728 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCDS.2020.3040438 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 387 |
ExternalDocumentID | 10_1109_TCDS_2020_3040438 9270601 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: G2018KY0308 funderid: 10.13039/501100012226 – fundername: China Postdoctoral Science Foundation grantid: 2018 M641013 funderid: 10.13039/501100002858 – fundername: Postdoctoral Science Foundation of Shaanxi Province grantid: 2018BSHYDZZ05 funderid: 10.13039/501100009996 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-270e3698072ae2a140241946bea13c9451cd6f4c732cb0668266f2c38f1a7c403 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Mon Jun 30 06:53:04 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 01:08:11 EDT 2025 Wed Aug 27 02:24:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-270e3698072ae2a140241946bea13c9451cd6f4c732cb0668266f2c38f1a7c403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2491-0546 0000-0002-3180-7347 0000-0002-2040-7815 0000-0002-7410-5951 0000-0002-3829-6287 0000-0001-7361-0780 |
PQID | 2675044238 |
PQPubID | 85513 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2675044238 crossref_citationtrail_10_1109_TCDS_2020_3040438 ieee_primary_9270601 crossref_primary_10_1109_TCDS_2020_3040438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 Gu (ref30) 2014; 34 ref17 ref16 ref19 ref18 Too (ref26) 2020 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref29 Jones (ref27) 2017 |
References_xml | – ident: ref43 doi: 10.1007/978-3-319-68155-9_12 – ident: ref23 doi: 10.1016/j.jneumeth.2011.07.002 – ident: ref46 doi: 10.1016/j.patcog.2007.10.023 – ident: ref31 doi: 10.1109/ICINFA.2009.5205138 – ident: ref52 doi: 10.1088/1741-2552/aba7cd – ident: ref4 doi: 10.1016/j.brainresbull.2008.01.007 – ident: ref47 doi: 10.1016/j.patrec.2007.06.018 – ident: ref12 doi: 10.1109/86.712230 – ident: ref54 doi: 10.1371/journal.pone.0125039 – ident: ref6 doi: 10.3390/s19050987 – ident: ref49 doi: 10.1016/j.neunet.2019.07.008 – ident: ref25 doi: 10.1155/2011/156869 – ident: ref15 doi: 10.1109/ICSAI.2017.8248513 – ident: ref40 doi: 10.1145/1143844.1143952 – ident: ref10 doi: 10.1109/TBME.2010.2082540 – ident: ref39 doi: 10.1016/j.cmpb.2010.11.014 – ident: ref32 doi: 10.1007/s10994-005-0466-3 – ident: ref36 doi: 10.1016/j.bspc.2016.09.007 – ident: ref45 doi: 10.1016/j.neucom.2008.02.017 – ident: ref14 doi: 10.1007/978-981-10-5828-8_8 – ident: ref28 doi: 10.2140/pjm.1993.158.1 – ident: ref35 doi: 10.1109/TBME.2008.919125 – ident: ref37 doi: 10.1109/TCYB.2018.2841847 – ident: ref20 doi: 10.1049/iet-gtd.2011.0110 – ident: ref29 doi: 10.1016/j.hm.2010.06.003 – ident: ref33 doi: 10.1016/j.asej.2017.12.003 – ident: ref38 doi: 10.1007/s00521-018-3735-3 – ident: ref7 doi: 10.1016/j.amc.2006.09.022 – ident: ref44 doi: 10.1007/s11517-006-0107-4 – ident: ref42 doi: 10.1109/ICASSP.2008.4517635 – ident: ref41 doi: 10.1371/journal.pone.0074433 – ident: ref16 doi: 10.1016/j.cmpb.2020.105325 – ident: ref3 doi: 10.1109/TCDS.2020.3007453 – ident: ref1 doi: 10.1109/TCDS.2017.2787040 – ident: ref34 doi: 10.4015/S1016237214500409 – ident: ref51 doi: 10.3390/rs12030587 – ident: ref24 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref18 doi: 10.1109/ACCESS.2019.2939623 – ident: ref2 doi: 10.1109/TCDS.2017.2716973 – ident: ref9 doi: 10.1109/TBME.2010.2082539 – ident: ref48 doi: 10.1016/j.neunet.2018.02.011 – ident: ref17 doi: 10.1016/j.measurement.2017.10.067 – ident: ref50 doi: 10.1088/1741-2552/abc902 – ident: ref5 doi: 10.1109/TNSRE.2012.2184838 – ident: ref19 doi: 10.1109/ACCESS.2019.2956018 – ident: ref11 doi: 10.1007/s10916-012-9893-4 – ident: ref8 doi: 10.1109/TSMC.2019.2917599 – volume-title: Simple Neural Networks With K-Fold Cross-Validation Manner year: 2020 ident: ref26 – volume-title: The Determinant of a Square Matrix year: 2017 ident: ref27 – ident: ref21 doi: 10.1109/CONIELECOMP.2016.7438573 – volume: 34 start-page: 705 issue: 7 year: 2014 ident: ref30 article-title: Research on support vector machine based on particle swarm optimization publication-title: Trans. Beijing Inst. Technol. – ident: ref13 doi: 10.1109/TCDS.2016.2632130 – ident: ref22 doi: 10.1016/j.eswa.2019.03.021 – ident: ref53 doi: 10.1155/2020/1981728 |
SSID | ssj0001637847 |
Score | 2.4429765 |
Snippet | This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 375 |
SubjectTerms | Artificial neural networks Biomarkers Biomedical imaging Brain–computer interface (BCI) Classification Datasets Electroencephalography electroencephalography (EEG) Feature extraction Graphical user interface Graphical user interfaces Machine learning matrix determinant mental imagery motor imagery (MI) multiscale principal component analysis (MSPCA) Neural networks Physicians Principal component analysis Principal components analysis Real-time systems Task analysis |
Title | A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject-Specific Tasks |
URI | https://ieeexplore.ieee.org/document/9270601 https://www.proquest.com/docview/2675044238 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExe2giib5oA4INKmduLYx6oLi1QuFIlb5DiOVJWmqE0l4OsZO2kRixC3HMaSpXE8741n3hByzkOapSLNPIFo3wtkmnqJodLTiJ2jSJpQu3axwT2_eQzunsKnNXK16oUxxrjiM9Own-4tP53qhU2VNSW1Wi_IddaRuJW9Wp_5FM4i4eaJURZJT0i6fMRs-bI57HQfkAxS5Ki-1ZMRX8KQm6vy4zJ2Eaa_TQbLvZWFJePGokga-v2bbON_N79DtiqoCe3ybOySNZPvkVo7R5o9eYMLcMWfLqteI0UbBlas_xW6n_UxYPHhYmag91rMygYIaFca5IBgF2311MY-GEyRuoPKUyg1geB2YrUx3qDXu4ZRDng92XyP56bdZyMNQzUfz_fJY7837Nx41UAGdJ1khe1dM4xL4UdUGaqQm2H8lwFPjGoxLYOwpVOeBTpiVCeIZZC68IxqJrKWinTgswOykU9zc0iAMZ2KhPpMGcQ0RighQ53RhBupEDL4deIv_RPrSq3cDs14jh1r8WVsXRpbl8aVS-vkcrXkpZTq-Mu4Zl20Mqy8Uycny0MQVz_zPKbcauAj7hRHv686JpvUdkW45MwJ2ShmC3OKWKVIztwh_QByluMl |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoBLeQRESgt7AA5ITu1dP3YPPURNSkKbXppKvZn1eiyhtnaVOGrDb-Gv8N-YXTupeIhbJW62tLbl9eedb2ZnvgF4F0e8yGVeeJLYvheqPPcy5MozxJ2TRGFkXLnY5CQenYWfz6PzDfi-roVBRJd8hj176Pby88osbKhsT3Gr9RK0KZRHuLwhB22-Px7Q13zP-eFwejDy2h4C9DQlaltuhSJW0k-4Rq7JnSCTpcI4Qx0Io8IoMHlchCYR3GRkfoltxwU3QhaBTkzoC7rvA3hIPCPiTXXYXQQnFol0Hcy4SJQnFV9tmwa-2pseDE7J_eTkFftWwUb-YvhcJ5c_ln9n0w6fwI_VbDSpLBe9RZ31zLffhCL_1-l6ClstmWb9Bv3PYAPL59Dpl7qurpbsA3PprW7foAN1n01sO4JbNrjLAGKWAS9myIa39awp8WD9VmWdEZ2nsaay1p1NqppOdZmzRvWIja-s-seSDYef2NeS0QJsI1re6TW6LEc21fOL-Qs4u5f3fwmbZVXiK2BCmFxm3BcaibWh1FJFpuBZjEoTKfK74K_wkJpWj922BblMnV_mq9RCKLUQSlsIdeHj-pLrRozkX4M7FhLrgS0aurCzAl3aLlfzlMdW5Z-Ytdz--1Vv4dFoOjlOj8cnR6_hMbc1IC4UtQOb9WyBu8TM6uyN-0EYfLlviP0EjtA9Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Matrix+Determinant+Feature+Extraction+Approach+for+Decoding+Motor+and+Mental+Imagery+EEG+in+Subject-Specific+Tasks&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Sadiq%2C+Muhammad+Tariq&rft.au=Yu%2C+Xiaojun&rft.au=Yuan%2C+Zhaohui&rft.au=Aziz%2C+Muhammad+Zulkifal&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=14&rft.issue=2&rft.spage=375&rft.epage=387&rft_id=info:doi/10.1109%2FTCDS.2020.3040438&rft.externalDocID=9270601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |