A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject-Specific Tasks

This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from electroencephalography (EEG) signals. First, the multiscale principal component analysis was utilized to obtain clean EEG signals. Second, denoised da...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 14; no. 2; pp. 375 - 387
Main Authors Sadiq, Muhammad Tariq, Yu, Xiaojun, Yuan, Zhaohui, Aziz, Muhammad Zulkifal, Siuly, Siuly, Ding, Weiping
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from electroencephalography (EEG) signals. First, the multiscale principal component analysis was utilized to obtain clean EEG signals. Second, denoised data were sequentially arranged to form a square matrix of different orders (e.g.,10, 13, 16, and 20) and determinant was computed for each order matrix. Finally, the extracted matrix determinant features were provided to several machine learning and neural network classification models for classification. All experiments were carried out using a 10-fold cross-validation approach on three publicly accessible data sets: 1) data set IV-a; 2) data set IV-b; and 3) data set V of BCI competition III. Also, this study designs a computerized automatic detection of motor and mental imagery graphical user interface that can assist physicians/experts to efficiently analyses motor and mental imagery data. The experimental results reveal that the highest average classification accuracy of 99.55% (for data set IV-a), 99.52% (for data set IV-b), and 91.80% (for data set V) was obtained for motor and mental imagery, respectively, with 20-order matrix determinant using a feedforward neural network classifier. The experimental results suggest that the proposed framework provides a robust biomarker with the least computational complexity for the development of automated brain-computer interfaces.
AbstractList This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from electroencephalography (EEG) signals. First, the multiscale principal component analysis was utilized to obtain clean EEG signals. Second, denoised data were sequentially arranged to form a square matrix of different orders (e.g.,10, 13, 16, and 20) and determinant was computed for each order matrix. Finally, the extracted matrix determinant features were provided to several machine learning and neural network classification models for classification. All experiments were carried out using a 10-fold cross-validation approach on three publicly accessible data sets: 1) data set IV-a; 2) data set IV-b; and 3) data set V of BCI competition III. Also, this study designs a computerized automatic detection of motor and mental imagery graphical user interface that can assist physicians/experts to efficiently analyses motor and mental imagery data. The experimental results reveal that the highest average classification accuracy of 99.55% (for data set IV-a), 99.52% (for data set IV-b), and 91.80% (for data set V) was obtained for motor and mental imagery, respectively, with 20-order matrix determinant using a feedforward neural network classifier. The experimental results suggest that the proposed framework provides a robust biomarker with the least computational complexity for the development of automated brain–computer interfaces.
Author Siuly, Siuly
Aziz, Muhammad Zulkifal
Yu, Xiaojun
Yuan, Zhaohui
Ding, Weiping
Sadiq, Muhammad Tariq
Author_xml – sequence: 1
  givenname: Muhammad Tariq
  orcidid: 0000-0002-7410-5951
  surname: Sadiq
  fullname: Sadiq, Muhammad Tariq
  email: tariq.sadiq@mail.nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Xiaojun
  orcidid: 0000-0001-7361-0780
  surname: Yu
  fullname: Yu, Xiaojun
  email: xjyu@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Zhaohui
  orcidid: 0000-0002-2040-7815
  surname: Yuan
  fullname: Yuan, Zhaohui
  email: yuanzhh@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Muhammad Zulkifal
  orcidid: 0000-0002-3829-6287
  surname: Aziz
  fullname: Aziz, Muhammad Zulkifal
  email: zulkifalaziz@mail.nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Siuly
  orcidid: 0000-0003-2491-0546
  surname: Siuly
  fullname: Siuly, Siuly
  email: siuly.siuly@vu.edu.au
  organization: Institute for Sustainable Industries and Liveable Cities, Victoria University at Melbourne, Melbourne, VIC, Australia
– sequence: 6
  givenname: Weiping
  orcidid: 0000-0002-3180-7347
  surname: Ding
  fullname: Ding, Weiping
  email: dwp9988@163.com
  organization: School of Information and Technology, Nantong University, Nantong, China
BookMark eNp9kE1PAjEQhhuDiYj-AOOliefF6Qft9kj40gTiATxvSpnFInSxWxL59y6BePDgaWaS552Z970lrVAFJOSBQZcxMM-LwXDe5cChK0CCFPkVaXOhTZYbYVq_PYcbcl_XGwBgSuhc6jZJfTqzKfpvOsSEceeDDYmO0aZDRDr6TtG65KtA-_t9rKz7oGUVG9ZVKx_WdFalZrRhRWcYkt3S151dYzzS0WhCfaDzw3KDLmXzPTpfekcXtv6s78h1abc13l9qh7yPR4vBSzZ9m7wO-tPMcSNSxjWgUCYHzS1yyyRwyYxUS7RMOCN7zK1UKZ0W3C1BqZwrVXIn8pJZ7SSIDnk6721e_zpgnYpNdYihOVlwpXsgJRd5Q-kz5WJV1xHLwvlkT6Yb835bMChOKRenlItTysUl5UbJ_ij30e9sPP6reTxrPCL-8qbxqoCJH_cqiIY
CODEN ITCDA4
CitedBy_id crossref_primary_10_1109_TSC_2023_3262839
crossref_primary_10_1007_s13755_021_00139_7
crossref_primary_10_3390_s24196466
crossref_primary_10_1109_TIM_2022_3193407
crossref_primary_10_1088_1361_6641_ac31e3
crossref_primary_10_1109_TETCI_2022_3147030
crossref_primary_10_1007_s42044_021_00087_1
crossref_primary_10_1038_s41597_025_04826_y
crossref_primary_10_32604_cmc_2022_022717
crossref_primary_10_1088_2057_1976_ad3cde
crossref_primary_10_3390_sym14122677
crossref_primary_10_1109_TAI_2021_3097307
crossref_primary_10_1109_JBHI_2022_3151570
crossref_primary_10_1016_j_compbiomed_2021_104922
crossref_primary_10_1016_j_compbiomed_2025_109944
crossref_primary_10_1109_ACCESS_2021_3060096
crossref_primary_10_1109_TCDS_2023_3338460
crossref_primary_10_1109_TCDS_2023_3314351
crossref_primary_10_1007_s11760_023_02986_1
crossref_primary_10_1088_1741_2552_acb102
crossref_primary_10_1109_TFUZZ_2023_3336673
crossref_primary_10_1109_ACCESS_2023_3317241
crossref_primary_10_1016_j_jneumeth_2024_110182
crossref_primary_10_1007_s13755_023_00227_w
crossref_primary_10_1109_TAI_2021_3105493
crossref_primary_10_1109_ACCESS_2022_3190967
crossref_primary_10_1109_TIM_2021_3069026
Cites_doi 10.1007/978-3-319-68155-9_12
10.1016/j.jneumeth.2011.07.002
10.1016/j.patcog.2007.10.023
10.1109/ICINFA.2009.5205138
10.1088/1741-2552/aba7cd
10.1016/j.brainresbull.2008.01.007
10.1016/j.patrec.2007.06.018
10.1109/86.712230
10.1371/journal.pone.0125039
10.3390/s19050987
10.1016/j.neunet.2019.07.008
10.1155/2011/156869
10.1109/ICSAI.2017.8248513
10.1145/1143844.1143952
10.1109/TBME.2010.2082540
10.1016/j.cmpb.2010.11.014
10.1007/s10994-005-0466-3
10.1016/j.bspc.2016.09.007
10.1016/j.neucom.2008.02.017
10.1007/978-981-10-5828-8_8
10.2140/pjm.1993.158.1
10.1109/TBME.2008.919125
10.1109/TCYB.2018.2841847
10.1049/iet-gtd.2011.0110
10.1016/j.hm.2010.06.003
10.1016/j.asej.2017.12.003
10.1007/s00521-018-3735-3
10.1016/j.amc.2006.09.022
10.1007/s11517-006-0107-4
10.1109/ICASSP.2008.4517635
10.1371/journal.pone.0074433
10.1016/j.cmpb.2020.105325
10.1109/TCDS.2020.3007453
10.1109/TCDS.2017.2787040
10.4015/S1016237214500409
10.3390/rs12030587
10.1016/j.jneumeth.2003.10.009
10.1109/ACCESS.2019.2939623
10.1109/TCDS.2017.2716973
10.1109/TBME.2010.2082539
10.1016/j.neunet.2018.02.011
10.1016/j.measurement.2017.10.067
10.1088/1741-2552/abc902
10.1109/TNSRE.2012.2184838
10.1109/ACCESS.2019.2956018
10.1007/s10916-012-9893-4
10.1109/TSMC.2019.2917599
10.1109/CONIELECOMP.2016.7438573
10.1109/TCDS.2016.2632130
10.1016/j.eswa.2019.03.021
10.1155/2020/1981728
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2020.3040438
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 387
ExternalDocumentID 10_1109_TCDS_2020_3040438
9270601
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: G2018KY0308
  funderid: 10.13039/501100012226
– fundername: China Postdoctoral Science Foundation
  grantid: 2018 M641013
  funderid: 10.13039/501100002858
– fundername: Postdoctoral Science Foundation of Shaanxi Province
  grantid: 2018BSHYDZZ05
  funderid: 10.13039/501100009996
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-270e3698072ae2a140241946bea13c9451cd6f4c732cb0668266f2c38f1a7c403
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 06:53:04 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 01:08:11 EDT 2025
Wed Aug 27 02:24:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-270e3698072ae2a140241946bea13c9451cd6f4c732cb0668266f2c38f1a7c403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2491-0546
0000-0002-3180-7347
0000-0002-2040-7815
0000-0002-7410-5951
0000-0002-3829-6287
0000-0001-7361-0780
PQID 2675044238
PQPubID 85513
PageCount 13
ParticipantIDs proquest_journals_2675044238
crossref_citationtrail_10_1109_TCDS_2020_3040438
ieee_primary_9270601
crossref_primary_10_1109_TCDS_2020_3040438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
Gu (ref30) 2014; 34
ref17
ref16
ref19
ref18
Too (ref26) 2020
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref29
Jones (ref27) 2017
References_xml – ident: ref43
  doi: 10.1007/978-3-319-68155-9_12
– ident: ref23
  doi: 10.1016/j.jneumeth.2011.07.002
– ident: ref46
  doi: 10.1016/j.patcog.2007.10.023
– ident: ref31
  doi: 10.1109/ICINFA.2009.5205138
– ident: ref52
  doi: 10.1088/1741-2552/aba7cd
– ident: ref4
  doi: 10.1016/j.brainresbull.2008.01.007
– ident: ref47
  doi: 10.1016/j.patrec.2007.06.018
– ident: ref12
  doi: 10.1109/86.712230
– ident: ref54
  doi: 10.1371/journal.pone.0125039
– ident: ref6
  doi: 10.3390/s19050987
– ident: ref49
  doi: 10.1016/j.neunet.2019.07.008
– ident: ref25
  doi: 10.1155/2011/156869
– ident: ref15
  doi: 10.1109/ICSAI.2017.8248513
– ident: ref40
  doi: 10.1145/1143844.1143952
– ident: ref10
  doi: 10.1109/TBME.2010.2082540
– ident: ref39
  doi: 10.1016/j.cmpb.2010.11.014
– ident: ref32
  doi: 10.1007/s10994-005-0466-3
– ident: ref36
  doi: 10.1016/j.bspc.2016.09.007
– ident: ref45
  doi: 10.1016/j.neucom.2008.02.017
– ident: ref14
  doi: 10.1007/978-981-10-5828-8_8
– ident: ref28
  doi: 10.2140/pjm.1993.158.1
– ident: ref35
  doi: 10.1109/TBME.2008.919125
– ident: ref37
  doi: 10.1109/TCYB.2018.2841847
– ident: ref20
  doi: 10.1049/iet-gtd.2011.0110
– ident: ref29
  doi: 10.1016/j.hm.2010.06.003
– ident: ref33
  doi: 10.1016/j.asej.2017.12.003
– ident: ref38
  doi: 10.1007/s00521-018-3735-3
– ident: ref7
  doi: 10.1016/j.amc.2006.09.022
– ident: ref44
  doi: 10.1007/s11517-006-0107-4
– ident: ref42
  doi: 10.1109/ICASSP.2008.4517635
– ident: ref41
  doi: 10.1371/journal.pone.0074433
– ident: ref16
  doi: 10.1016/j.cmpb.2020.105325
– ident: ref3
  doi: 10.1109/TCDS.2020.3007453
– ident: ref1
  doi: 10.1109/TCDS.2017.2787040
– ident: ref34
  doi: 10.4015/S1016237214500409
– ident: ref51
  doi: 10.3390/rs12030587
– ident: ref24
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref18
  doi: 10.1109/ACCESS.2019.2939623
– ident: ref2
  doi: 10.1109/TCDS.2017.2716973
– ident: ref9
  doi: 10.1109/TBME.2010.2082539
– ident: ref48
  doi: 10.1016/j.neunet.2018.02.011
– ident: ref17
  doi: 10.1016/j.measurement.2017.10.067
– ident: ref50
  doi: 10.1088/1741-2552/abc902
– ident: ref5
  doi: 10.1109/TNSRE.2012.2184838
– ident: ref19
  doi: 10.1109/ACCESS.2019.2956018
– ident: ref11
  doi: 10.1007/s10916-012-9893-4
– ident: ref8
  doi: 10.1109/TSMC.2019.2917599
– volume-title: Simple Neural Networks With K-Fold Cross-Validation Manner
  year: 2020
  ident: ref26
– volume-title: The Determinant of a Square Matrix
  year: 2017
  ident: ref27
– ident: ref21
  doi: 10.1109/CONIELECOMP.2016.7438573
– volume: 34
  start-page: 705
  issue: 7
  year: 2014
  ident: ref30
  article-title: Research on support vector machine based on particle swarm optimization
  publication-title: Trans. Beijing Inst. Technol.
– ident: ref13
  doi: 10.1109/TCDS.2016.2632130
– ident: ref22
  doi: 10.1016/j.eswa.2019.03.021
– ident: ref53
  doi: 10.1155/2020/1981728
SSID ssj0001637847
Score 2.4429765
Snippet This study introduces a novel matrix determinant feature extraction approach for efficient classification of motor and mental imagery activities from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms Artificial neural networks
Biomarkers
Biomedical imaging
Brain–computer interface (BCI)
Classification
Datasets
Electroencephalography
electroencephalography (EEG)
Feature extraction
Graphical user interface
Graphical user interfaces
Machine learning
matrix determinant
mental imagery
motor imagery (MI)
multiscale principal component analysis (MSPCA)
Neural networks
Physicians
Principal component analysis
Principal components analysis
Real-time systems
Task analysis
Title A Matrix Determinant Feature Extraction Approach for Decoding Motor and Mental Imagery EEG in Subject-Specific Tasks
URI https://ieeexplore.ieee.org/document/9270601
https://www.proquest.com/docview/2675044238
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExe2giib5oA4INKmduLYx6oLi1QuFIlb5DiOVJWmqE0l4OsZO2kRixC3HMaSpXE8741n3hByzkOapSLNPIFo3wtkmnqJodLTiJ2jSJpQu3axwT2_eQzunsKnNXK16oUxxrjiM9Own-4tP53qhU2VNSW1Wi_IddaRuJW9Wp_5FM4i4eaJURZJT0i6fMRs-bI57HQfkAxS5Ki-1ZMRX8KQm6vy4zJ2Eaa_TQbLvZWFJePGokga-v2bbON_N79DtiqoCe3ybOySNZPvkVo7R5o9eYMLcMWfLqteI0UbBlas_xW6n_UxYPHhYmag91rMygYIaFca5IBgF2311MY-GEyRuoPKUyg1geB2YrUx3qDXu4ZRDng92XyP56bdZyMNQzUfz_fJY7837Nx41UAGdJ1khe1dM4xL4UdUGaqQm2H8lwFPjGoxLYOwpVOeBTpiVCeIZZC68IxqJrKWinTgswOykU9zc0iAMZ2KhPpMGcQ0RighQ53RhBupEDL4deIv_RPrSq3cDs14jh1r8WVsXRpbl8aVS-vkcrXkpZTq-Mu4Zl20Mqy8Uycny0MQVz_zPKbcauAj7hRHv686JpvUdkW45MwJ2ShmC3OKWKVIztwh_QByluMl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcoBLeQRESgt7AA5ITu1dP3YPPURNSkKbXppKvZn1eiyhtnaVOGrDb-Gv8N-YXTupeIhbJW62tLbl9eedb2ZnvgF4F0e8yGVeeJLYvheqPPcy5MozxJ2TRGFkXLnY5CQenYWfz6PzDfi-roVBRJd8hj176Pby88osbKhsT3Gr9RK0KZRHuLwhB22-Px7Q13zP-eFwejDy2h4C9DQlaltuhSJW0k-4Rq7JnSCTpcI4Qx0Io8IoMHlchCYR3GRkfoltxwU3QhaBTkzoC7rvA3hIPCPiTXXYXQQnFol0Hcy4SJQnFV9tmwa-2pseDE7J_eTkFftWwUb-YvhcJ5c_ln9n0w6fwI_VbDSpLBe9RZ31zLffhCL_1-l6ClstmWb9Bv3PYAPL59Dpl7qurpbsA3PprW7foAN1n01sO4JbNrjLAGKWAS9myIa39awp8WD9VmWdEZ2nsaay1p1NqppOdZmzRvWIja-s-seSDYef2NeS0QJsI1re6TW6LEc21fOL-Qs4u5f3fwmbZVXiK2BCmFxm3BcaibWh1FJFpuBZjEoTKfK74K_wkJpWj922BblMnV_mq9RCKLUQSlsIdeHj-pLrRozkX4M7FhLrgS0aurCzAl3aLlfzlMdW5Z-Ytdz--1Vv4dFoOjlOj8cnR6_hMbc1IC4UtQOb9WyBu8TM6uyN-0EYfLlviP0EjtA9Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Matrix+Determinant+Feature+Extraction+Approach+for+Decoding+Motor+and+Mental+Imagery+EEG+in+Subject-Specific+Tasks&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Sadiq%2C+Muhammad+Tariq&rft.au=Yu%2C+Xiaojun&rft.au=Yuan%2C+Zhaohui&rft.au=Aziz%2C+Muhammad+Zulkifal&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=14&rft.issue=2&rft.spage=375&rft.epage=387&rft_id=info:doi/10.1109%2FTCDS.2020.3040438&rft.externalDocID=9270601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon