Skill Learning Strategy Based on Dynamic Motion Primitives for Human-Robot Cooperative Manipulation

This article presents a skill learning-based hierarchical control strategy for human-robot cooperative manipulation, which constitutes a novel learning-control system. The high-level learning strategy aims to learn the motor skills from human demonstrations by fusion with dynamic motion primitives (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 13; no. 1; pp. 105 - 117
Main Authors Li, Junjun, Li, Zhijun, Li, Xinde, Feng, Ying, Hu, Yingbai, Xu, Bugong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2020.3021762

Cover

Loading…
Abstract This article presents a skill learning-based hierarchical control strategy for human-robot cooperative manipulation, which constitutes a novel learning-control system. The high-level learning strategy aims to learn the motor skills from human demonstrations by fusion with dynamic motion primitives (DMPs) and the Gaussian mixture model (GMM). The lower level control strategy guarantees the compliance of the robot movement under human interaction using admittance control and integral barrier Lyapunov function (IBLF)-based adaptive neural controller. First, the robot learns the motor skills from observing the successful execution of tasks by a demonstrator through DMP-GMM methods. Then, the robot reproduces the complex skills and executes the interactive task by demonstrations. Finally, the effectiveness of the proposed learning-control strategy is demonstrated with experimental results. The results show that the developed hierarchical strategy has good performance in cooperation by learning and control that reacts compliantly to robot interaction with human subjects.
AbstractList This article presents a skill learning-based hierarchical control strategy for human–robot cooperative manipulation, which constitutes a novel learning-control system. The high-level learning strategy aims to learn the motor skills from human demonstrations by fusion with dynamic motion primitives (DMPs) and the Gaussian mixture model (GMM). The lower level control strategy guarantees the compliance of the robot movement under human interaction using admittance control and integral barrier Lyapunov function (IBLF)-based adaptive neural controller. First, the robot learns the motor skills from observing the successful execution of tasks by a demonstrator through DMP-GMM methods. Then, the robot reproduces the complex skills and executes the interactive task by demonstrations. Finally, the effectiveness of the proposed learning-control strategy is demonstrated with experimental results. The results show that the developed hierarchical strategy has good performance in cooperation by learning and control that reacts compliantly to robot interaction with human subjects.
Author Li, Zhijun
Hu, Yingbai
Li, Junjun
Xu, Bugong
Li, Xinde
Feng, Ying
Author_xml – sequence: 1
  givenname: Junjun
  orcidid: 0000-0001-5543-4349
  surname: Li
  fullname: Li, Junjun
  email: lijunjunyanyan@163.com
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhijun
  orcidid: 0000-0002-3909-488X
  surname: Li
  fullname: Li, Zhijun
  email: zjli@ieee.org
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Xinde
  orcidid: 0000-0002-1529-4537
  surname: Li
  fullname: Li, Xinde
  email: xindeli@seu.edu.cn
  organization: Key Laboratory of Measurement and Control of CSE, School of Automation and the School of Cyber Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Ying
  orcidid: 0000-0002-1860-5679
  surname: Feng
  fullname: Feng, Ying
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Yingbai
  orcidid: 0000-0003-2452-3570
  surname: Hu
  fullname: Hu, Yingbai
  email: yingbai.hu@tum.de
  organization: Department of Informatics, Technical University of Munich, Munich, Germany
– sequence: 6
  givenname: Bugong
  orcidid: 0000-0002-7241-8639
  surname: Xu
  fullname: Xu, Bugong
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kE1PwzAMhiMEEjD2AxCXSJw7nGRLmiOUT2kIxMa58loXBbpkpC3S_j0dQztw4ORYeZ_YeY7Zvg-eGDsVMBIC7MU8u56NJEgYKZDCaLnHjqQyNkmtsvu7s4RDNmyadwAQWpl0bI5YMftwdc2nhNE7_8ZnbcSW3tb8ChsqefD8eu1x6Qr-GFrXt8_RLV3rvqjhVYj8vluiT17CIrQ8C2FFPd5f8kf0btXVuGFO2EGFdUPD3zpgr7c38-w-mT7dPWSX06SQVrWJ1DAxFs0CyOixTAG1wrKsSqyURg0CK6EnJBeklTBYoZbjSpEigNQakGrAzrfvrmL47Khp8_fQRd-PzOUEhBJWWuhTZpsqYmiaSFVeuPZnz_7rrs4F5Bup-UZqvpGa_0rtSfGHXPUyMK7_Zc62jCOiXd6KVGuh1DeXKIRG
CODEN ITCDA4
CitedBy_id crossref_primary_10_3390_en14041006
crossref_primary_10_1109_TCDS_2023_3241632
crossref_primary_10_1109_TASE_2023_3345919
crossref_primary_10_1109_TIE_2021_3073310
crossref_primary_10_1016_j_isatra_2024_02_034
crossref_primary_10_1142_S0218127422502108
crossref_primary_10_1142_S2301385024410115
crossref_primary_10_3390_admsci14060127
crossref_primary_10_1109_TCYB_2021_3113709
crossref_primary_10_1109_TCYB_2024_3390947
crossref_primary_10_1007_s11063_023_11176_6
crossref_primary_10_1177_02783649231201196
crossref_primary_10_1109_TCDS_2023_3275217
crossref_primary_10_1109_TASE_2024_3415650
crossref_primary_10_3390_e24070889
crossref_primary_10_3390_en15010267
crossref_primary_10_1016_j_mechatronics_2022_102821
crossref_primary_10_3390_math9212752
crossref_primary_10_1016_j_neucom_2022_08_036
crossref_primary_10_1109_JAS_2023_124140
crossref_primary_10_1109_TASE_2023_3249228
crossref_primary_10_1007_s11424_024_3414_7
crossref_primary_10_1007_s10489_024_06147_w
crossref_primary_10_1109_TCDS_2020_3045574
crossref_primary_10_1016_j_neucom_2025_129428
crossref_primary_10_1109_ACCESS_2024_3400604
crossref_primary_10_1109_TII_2023_3240749
crossref_primary_10_3390_mca27040054
crossref_primary_10_1109_TCDS_2023_3296166
crossref_primary_10_1016_j_engappai_2023_106583
crossref_primary_10_3389_fncom_2024_1349408
crossref_primary_10_1109_TII_2023_3280320
crossref_primary_10_1109_TCDS_2021_3097251
Cites_doi 10.1007/s11370-017-0235-8
10.1109/TIE.2018.2884220
10.1109/ROBOT.2009.5152423
10.1109/TCST.2004.825135
10.1109/TNNLS.2016.2538779
10.1109/TNNLS.2018.2852711
10.1109/TCYB.2016.2536149
10.1109/ROBOT.2009.5152385
10.1016/j.neucom.2019.04.100
10.1109/TSMCB.2006.886952
10.1016/j.automatica.2008.11.017
10.1109/TRO.2017.2765334
10.1109/IROS.2015.7353706
10.1109/TNSRE.2016.2584003
10.1016/j.mechatronics.2008.01.001
10.2200/S00568ED1V01Y201402AIM028
10.1007/4-431-31381-8_23
10.1109/TAC.2012.2223353
10.1109/TASE.2019.2947071
10.1109/ACCESS.2019.2891606
10.1109/34.990138
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TSMC.2018.2885481
10.1109/JAS.2017.7510604
10.1109/TCST.2008.917870
10.1109/TCYB.2018.2864784
10.1109/TIE.2013.2288200
10.1109/ROBOT.2010.5509861
10.1017/9781316661239
10.1007/978-3-540-30301-5_60
10.1109/TCSII.2019.2901283
10.1177/027836498700600303
10.1109/JBHI.2013.2286455
10.1109/3516.974858
10.1109/TRO.2012.2210294
10.1016/j.neucom.2017.12.013
10.1109/TMECH.2019.2912404
10.1186/1743-0003-9-43
10.1109/TASE.2020.2964807
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2020.3021762
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 117
ExternalDocumentID 10_1109_TCDS_2020_3021762
9186613
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61625303; 61751310; U1913601
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102900; 2018YFC2001600; 2018YFC2001602
– fundername: Anhui Science and Technology Major Program
  grantid: 17030901029
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-260579a7b0e764280a63addfdaf36a601af165e2be6317afa624f3e3e00897023
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Sun Jun 29 16:42:19 EDT 2025
Tue Jul 01 01:08:11 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:48:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-260579a7b0e764280a63addfdaf36a601af165e2be6317afa624f3e3e00897023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5543-4349
0000-0002-1529-4537
0000-0002-1860-5679
0000-0002-3909-488X
0000-0002-7241-8639
0000-0003-2452-3570
PQID 2501319290
PQPubID 85513
PageCount 13
ParticipantIDs proquest_journals_2501319290
crossref_primary_10_1109_TCDS_2020_3021762
crossref_citationtrail_10_1109_TCDS_2020_3021762
ieee_primary_9186613
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
yu (ref21) 2013
ref36
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref18
liu (ref44) 2019
ref46
ref24
hoga (ref19) 1985; 107
ref26
yu (ref20) 2011
ref25
ref42
ref41
ref22
wu (ref45) 2019
ref43
dempster (ref35) 1977; 39
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
lynch (ref23) 2017
buerger (ref38) 2005
ref40
kuli? (ref11) 2011; 31
References_xml – year: 2019
  ident: ref45
  article-title: Locomotion mode identification and gait phase estimation for exoskeletons during continuous multi-locomotion tasks
  publication-title: IEEE Trans Cogn Develop Syst
– ident: ref32
  doi: 10.1007/s11370-017-0235-8
– ident: ref5
  doi: 10.1109/TIE.2018.2884220
– ident: ref37
  doi: 10.1109/ROBOT.2009.5152423
– ident: ref40
  doi: 10.1109/TCST.2004.825135
– ident: ref30
  doi: 10.1109/TNNLS.2016.2538779
– ident: ref16
  doi: 10.1109/TNNLS.2018.2852711
– ident: ref31
  doi: 10.1109/TCYB.2016.2536149
– ident: ref9
  doi: 10.1109/ROBOT.2009.5152385
– ident: ref17
  doi: 10.1016/j.neucom.2019.04.100
– ident: ref34
  doi: 10.1109/TSMCB.2006.886952
– ident: ref24
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref6
  doi: 10.1109/TRO.2017.2765334
– ident: ref12
  doi: 10.1109/IROS.2015.7353706
– ident: ref2
  doi: 10.1109/TNSRE.2016.2584003
– ident: ref39
  doi: 10.1016/j.mechatronics.2008.01.001
– ident: ref8
  doi: 10.2200/S00568ED1V01Y201402AIM028
– start-page: 1124
  year: 2011
  ident: ref20
  article-title: PID admittance control for an upper limb exoskeleton
  publication-title: Proc Amer Control Conf
– ident: ref10
  doi: 10.1007/4-431-31381-8_23
– volume: 31
  start-page: 330
  year: 2011
  ident: ref11
  article-title: Incremental learning of full body motion primitives and their sequencing through human motion observation
  publication-title: Int J Robot Res
– ident: ref25
  doi: 10.1109/TAC.2012.2223353
– ident: ref42
  doi: 10.1109/TASE.2019.2947071
– ident: ref3
  doi: 10.1109/ACCESS.2019.2891606
– ident: ref33
  doi: 10.1109/34.990138
– volume: 39
  start-page: 1
  year: 1977
  ident: ref35
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Stat Soc B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref4
  doi: 10.1109/TSMC.2018.2885481
– year: 2019
  ident: ref44
  article-title: Vision-assisted autonomous lower-limb exoskeleton robot
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref28
  doi: 10.1109/JAS.2017.7510604
– ident: ref15
  doi: 10.1109/TCST.2008.917870
– ident: ref13
  doi: 10.1109/TCYB.2018.2864784
– start-page: 4970
  year: 2013
  ident: ref21
  article-title: Neural PID admittance control of a robot
  publication-title: Proc Amer Control Conf
– ident: ref26
  doi: 10.1109/TIE.2013.2288200
– volume: 107
  start-page: 304
  year: 1985
  ident: ref19
  article-title: Impedance control: An approach to manipulation
  publication-title: J Dyn Syst
– ident: ref22
  doi: 10.1109/ROBOT.2010.5509861
– year: 2017
  ident: ref23
  publication-title: Modern Robotics Mechanics Planning and Control
  doi: 10.1017/9781316661239
– ident: ref36
  doi: 10.1007/978-3-540-30301-5_60
– ident: ref27
  doi: 10.1109/TCSII.2019.2901283
– year: 2005
  ident: ref38
  article-title: Stable, high-force, low-impedance robotic actuators for human-interactive machines
– ident: ref18
  doi: 10.1177/027836498700600303
– ident: ref7
  doi: 10.1109/JBHI.2013.2286455
– ident: ref41
  doi: 10.1109/3516.974858
– ident: ref14
  doi: 10.1109/TRO.2012.2210294
– ident: ref29
  doi: 10.1016/j.neucom.2017.12.013
– ident: ref43
  doi: 10.1109/TMECH.2019.2912404
– ident: ref1
  doi: 10.1186/1743-0003-9-43
– ident: ref46
  doi: 10.1109/TASE.2020.2964807
SSID ssj0001637847
Score 2.3935835
Snippet This article presents a skill learning-based hierarchical control strategy for human-robot cooperative manipulation, which constitutes a novel learning-control...
This article presents a skill learning-based hierarchical control strategy for human–robot cooperative manipulation, which constitutes a novel learning-control...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms Adaptive control
Admittance
Admittance control
Aerospace electronics
dynamic motion primitives (DMPs)
Electrical impedance
exoskeleton robot
Exoskeletons
Gaussian mixture model (GMM)
Human motion
human–robot cooperative manipulation
integral barrier Lyapunov function (IBLF)
Interactive control
Learning
Liapunov functions
Motor ability
Probabilistic models
Robot control
Robot dynamics
Robot motion
Robots
Skills
Strategy
Task analysis
Trajectory
Title Skill Learning Strategy Based on Dynamic Motion Primitives for Human-Robot Cooperative Manipulation
URI https://ieeexplore.ieee.org/document/9186613
https://www.proquest.com/docview/2501319290
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwELWAExc-tqAtCysfVhzQuqROYtdHKCCEVISASr1FTjJeoZak2qYH-PXMOEnRLmi1txycyNI4M-_Z4_cY-xEpl8Y5xCJwxolo4GKBZUQLMLHUcuAiyOmC8-hWXY-jm0k8WWM_V3dhAMA3n0GPHv1Zfl5mS9oqOzWkzkYWtetI3Oq7Wu_7KSrUA-8nJkNtxMDI9hCzH5jTx-HFA5JBiRyVQLiSf5Qh76vyIRn7CnO1zUbt3OrGkmlvWaW97PUv2cb_nfwO22qgJj-r18YuW4PiC-ucFUizn1_4MffNn35XvcOyh-nTbMYbtdVfvBGtfeHnWOVyXhb8orau5yNv-8PvyA6MUuWCI-zl_ixA3JdpWfFhWc6hFhTnI1s8tQ5he2x8dfk4vBaN_4LIEARUgqiONlanAWiiKYFVIaZDl1sXKotMzrq-ikGmoBCFWGeVjFwIISCuMBrBwD7bKMoCvjJOMnskXJ_ZjL6UGZki8DP9XFsjQcouC9pwJFkjTk4eGbPEk5TAJBTBhCKYNBHsspPVK_NameNfgzsUkdXAJhhddtjGPGn-3UWCoLCPiUma4ODzt76xTUmdLb4T7ZBtVL-XcITQpEq_-zX5Bk6-3oI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAXKCyIpQV8QBwQ3madxF4fy5ZqgaZCdCv1FjnJuKq6JBXNHsqvZ8ZJFvEhxC0HJ7I0zsx79vg9gFeJ9kVaYSojb71MZj6VVEaMRJsqo2Y-wYovOGcnenGWfDxPz7fg7eYuDCKG5jOc8GM4y6-acs1bZfuW1dnYovYO1f3Edre1fu6o6NjMgqOYio2VM6uGY8xpZPeX88NTooOKWCrDcK1-KUTBWeWPdBxqzNEDyIbZda0lV5N1W0zK778JN_7v9Hfgfg82xUG3Oh7CFtaPYHRQE9H-eitei9D-GfbVR1CeXl2uVqLXW70QvWztrXhHda4STS0OO_N6kQXjH_GZDcE4Wd4IAr4inAbIL03RtGLeNNfYSYqLzNWXg0fYYzg7er-cL2TvwCBLggGtZLJjrDNFhIaJSuR0TAnRV87H2hGXc36qU1QFasIhzjutEh9jjIQsrCE48AS266bGpyBYaI-l60tX8pdKqwqCfnZaGWcVKjWGaAhHXvby5OySscoDTYlszhHMOYJ5H8ExvNm8ct1pc_xr8IgjshnYB2MMe0PM8_7vvckJFk4pNSkbPfv7Wy_h7mKZHefHH04-7cI9xX0uoS9tD7bbb2t8TkClLV6E9fkDJuLh0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skill+Learning+Strategy+Based+on+Dynamic+Motion+Primitives+for+Human%E2%80%93Robot+Cooperative+Manipulation&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Li%2C+Junjun&rft.au=Li%2C+Zhijun&rft.au=Li%2C+Xinde&rft.au=Feng%2C+Ying&rft.date=2021-03-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=13&rft.issue=1&rft.spage=105&rft.epage=117&rft_id=info:doi/10.1109%2FTCDS.2020.3021762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2020_3021762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon