Skill Learning Strategy Based on Dynamic Motion Primitives for Human-Robot Cooperative Manipulation
This article presents a skill learning-based hierarchical control strategy for human-robot cooperative manipulation, which constitutes a novel learning-control system. The high-level learning strategy aims to learn the motor skills from human demonstrations by fusion with dynamic motion primitives (...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 13; no. 1; pp. 105 - 117 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2379-8920 2379-8939 |
DOI | 10.1109/TCDS.2020.3021762 |
Cover
Loading…
Abstract | This article presents a skill learning-based hierarchical control strategy for human-robot cooperative manipulation, which constitutes a novel learning-control system. The high-level learning strategy aims to learn the motor skills from human demonstrations by fusion with dynamic motion primitives (DMPs) and the Gaussian mixture model (GMM). The lower level control strategy guarantees the compliance of the robot movement under human interaction using admittance control and integral barrier Lyapunov function (IBLF)-based adaptive neural controller. First, the robot learns the motor skills from observing the successful execution of tasks by a demonstrator through DMP-GMM methods. Then, the robot reproduces the complex skills and executes the interactive task by demonstrations. Finally, the effectiveness of the proposed learning-control strategy is demonstrated with experimental results. The results show that the developed hierarchical strategy has good performance in cooperation by learning and control that reacts compliantly to robot interaction with human subjects. |
---|---|
AbstractList | This article presents a skill learning-based hierarchical control strategy for human–robot cooperative manipulation, which constitutes a novel learning-control system. The high-level learning strategy aims to learn the motor skills from human demonstrations by fusion with dynamic motion primitives (DMPs) and the Gaussian mixture model (GMM). The lower level control strategy guarantees the compliance of the robot movement under human interaction using admittance control and integral barrier Lyapunov function (IBLF)-based adaptive neural controller. First, the robot learns the motor skills from observing the successful execution of tasks by a demonstrator through DMP-GMM methods. Then, the robot reproduces the complex skills and executes the interactive task by demonstrations. Finally, the effectiveness of the proposed learning-control strategy is demonstrated with experimental results. The results show that the developed hierarchical strategy has good performance in cooperation by learning and control that reacts compliantly to robot interaction with human subjects. |
Author | Li, Zhijun Hu, Yingbai Li, Junjun Xu, Bugong Li, Xinde Feng, Ying |
Author_xml | – sequence: 1 givenname: Junjun orcidid: 0000-0001-5543-4349 surname: Li fullname: Li, Junjun email: lijunjunyanyan@163.com organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zhijun orcidid: 0000-0002-3909-488X surname: Li fullname: Li, Zhijun email: zjli@ieee.org organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Xinde orcidid: 0000-0002-1529-4537 surname: Li fullname: Li, Xinde email: xindeli@seu.edu.cn organization: Key Laboratory of Measurement and Control of CSE, School of Automation and the School of Cyber Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Ying orcidid: 0000-0002-1860-5679 surname: Feng fullname: Feng, Ying organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Yingbai orcidid: 0000-0003-2452-3570 surname: Hu fullname: Hu, Yingbai email: yingbai.hu@tum.de organization: Department of Informatics, Technical University of Munich, Munich, Germany – sequence: 6 givenname: Bugong orcidid: 0000-0002-7241-8639 surname: Xu fullname: Xu, Bugong organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNp9kE1PwzAMhiMEEjD2AxCXSJw7nGRLmiOUT2kIxMa58loXBbpkpC3S_j0dQztw4ORYeZ_YeY7Zvg-eGDsVMBIC7MU8u56NJEgYKZDCaLnHjqQyNkmtsvu7s4RDNmyadwAQWpl0bI5YMftwdc2nhNE7_8ZnbcSW3tb8ChsqefD8eu1x6Qr-GFrXt8_RLV3rvqjhVYj8vluiT17CIrQ8C2FFPd5f8kf0btXVuGFO2EGFdUPD3zpgr7c38-w-mT7dPWSX06SQVrWJ1DAxFs0CyOixTAG1wrKsSqyURg0CK6EnJBeklTBYoZbjSpEigNQakGrAzrfvrmL47Khp8_fQRd-PzOUEhBJWWuhTZpsqYmiaSFVeuPZnz_7rrs4F5Bup-UZqvpGa_0rtSfGHXPUyMK7_Zc62jCOiXd6KVGuh1DeXKIRG |
CODEN | ITCDA4 |
CitedBy_id | crossref_primary_10_3390_en14041006 crossref_primary_10_1109_TCDS_2023_3241632 crossref_primary_10_1109_TASE_2023_3345919 crossref_primary_10_1109_TIE_2021_3073310 crossref_primary_10_1016_j_isatra_2024_02_034 crossref_primary_10_1142_S0218127422502108 crossref_primary_10_1142_S2301385024410115 crossref_primary_10_3390_admsci14060127 crossref_primary_10_1109_TCYB_2021_3113709 crossref_primary_10_1109_TCYB_2024_3390947 crossref_primary_10_1007_s11063_023_11176_6 crossref_primary_10_1177_02783649231201196 crossref_primary_10_1109_TCDS_2023_3275217 crossref_primary_10_1109_TASE_2024_3415650 crossref_primary_10_3390_e24070889 crossref_primary_10_3390_en15010267 crossref_primary_10_1016_j_mechatronics_2022_102821 crossref_primary_10_3390_math9212752 crossref_primary_10_1016_j_neucom_2022_08_036 crossref_primary_10_1109_JAS_2023_124140 crossref_primary_10_1109_TASE_2023_3249228 crossref_primary_10_1007_s11424_024_3414_7 crossref_primary_10_1007_s10489_024_06147_w crossref_primary_10_1109_TCDS_2020_3045574 crossref_primary_10_1016_j_neucom_2025_129428 crossref_primary_10_1109_ACCESS_2024_3400604 crossref_primary_10_1109_TII_2023_3240749 crossref_primary_10_3390_mca27040054 crossref_primary_10_1109_TCDS_2023_3296166 crossref_primary_10_1016_j_engappai_2023_106583 crossref_primary_10_3389_fncom_2024_1349408 crossref_primary_10_1109_TII_2023_3280320 crossref_primary_10_1109_TCDS_2021_3097251 |
Cites_doi | 10.1007/s11370-017-0235-8 10.1109/TIE.2018.2884220 10.1109/ROBOT.2009.5152423 10.1109/TCST.2004.825135 10.1109/TNNLS.2016.2538779 10.1109/TNNLS.2018.2852711 10.1109/TCYB.2016.2536149 10.1109/ROBOT.2009.5152385 10.1016/j.neucom.2019.04.100 10.1109/TSMCB.2006.886952 10.1016/j.automatica.2008.11.017 10.1109/TRO.2017.2765334 10.1109/IROS.2015.7353706 10.1109/TNSRE.2016.2584003 10.1016/j.mechatronics.2008.01.001 10.2200/S00568ED1V01Y201402AIM028 10.1007/4-431-31381-8_23 10.1109/TAC.2012.2223353 10.1109/TASE.2019.2947071 10.1109/ACCESS.2019.2891606 10.1109/34.990138 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TSMC.2018.2885481 10.1109/JAS.2017.7510604 10.1109/TCST.2008.917870 10.1109/TCYB.2018.2864784 10.1109/TIE.2013.2288200 10.1109/ROBOT.2010.5509861 10.1017/9781316661239 10.1007/978-3-540-30301-5_60 10.1109/TCSII.2019.2901283 10.1177/027836498700600303 10.1109/JBHI.2013.2286455 10.1109/3516.974858 10.1109/TRO.2012.2210294 10.1016/j.neucom.2017.12.013 10.1109/TMECH.2019.2912404 10.1186/1743-0003-9-43 10.1109/TASE.2020.2964807 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCDS.2020.3021762 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 117 |
ExternalDocumentID | 10_1109_TCDS_2020_3021762 9186613 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61625303; 61751310; U1913601 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018AAA0102900; 2018YFC2001600; 2018YFC2001602 – fundername: Anhui Science and Technology Major Program grantid: 17030901029 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-260579a7b0e764280a63addfdaf36a601af165e2be6317afa624f3e3e00897023 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Sun Jun 29 16:42:19 EDT 2025 Tue Jul 01 01:08:11 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Wed Aug 27 02:48:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-260579a7b0e764280a63addfdaf36a601af165e2be6317afa624f3e3e00897023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5543-4349 0000-0002-1529-4537 0000-0002-1860-5679 0000-0002-3909-488X 0000-0002-7241-8639 0000-0003-2452-3570 |
PQID | 2501319290 |
PQPubID | 85513 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2501319290 crossref_primary_10_1109_TCDS_2020_3021762 crossref_citationtrail_10_1109_TCDS_2020_3021762 ieee_primary_9186613 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 yu (ref21) 2013 ref36 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref18 liu (ref44) 2019 ref46 ref24 hoga (ref19) 1985; 107 ref26 yu (ref20) 2011 ref25 ref42 ref41 ref22 wu (ref45) 2019 ref43 dempster (ref35) 1977; 39 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 lynch (ref23) 2017 buerger (ref38) 2005 ref40 kuli? (ref11) 2011; 31 |
References_xml | – year: 2019 ident: ref45 article-title: Locomotion mode identification and gait phase estimation for exoskeletons during continuous multi-locomotion tasks publication-title: IEEE Trans Cogn Develop Syst – ident: ref32 doi: 10.1007/s11370-017-0235-8 – ident: ref5 doi: 10.1109/TIE.2018.2884220 – ident: ref37 doi: 10.1109/ROBOT.2009.5152423 – ident: ref40 doi: 10.1109/TCST.2004.825135 – ident: ref30 doi: 10.1109/TNNLS.2016.2538779 – ident: ref16 doi: 10.1109/TNNLS.2018.2852711 – ident: ref31 doi: 10.1109/TCYB.2016.2536149 – ident: ref9 doi: 10.1109/ROBOT.2009.5152385 – ident: ref17 doi: 10.1016/j.neucom.2019.04.100 – ident: ref34 doi: 10.1109/TSMCB.2006.886952 – ident: ref24 doi: 10.1016/j.automatica.2008.11.017 – ident: ref6 doi: 10.1109/TRO.2017.2765334 – ident: ref12 doi: 10.1109/IROS.2015.7353706 – ident: ref2 doi: 10.1109/TNSRE.2016.2584003 – ident: ref39 doi: 10.1016/j.mechatronics.2008.01.001 – ident: ref8 doi: 10.2200/S00568ED1V01Y201402AIM028 – start-page: 1124 year: 2011 ident: ref20 article-title: PID admittance control for an upper limb exoskeleton publication-title: Proc Amer Control Conf – ident: ref10 doi: 10.1007/4-431-31381-8_23 – volume: 31 start-page: 330 year: 2011 ident: ref11 article-title: Incremental learning of full body motion primitives and their sequencing through human motion observation publication-title: Int J Robot Res – ident: ref25 doi: 10.1109/TAC.2012.2223353 – ident: ref42 doi: 10.1109/TASE.2019.2947071 – ident: ref3 doi: 10.1109/ACCESS.2019.2891606 – ident: ref33 doi: 10.1109/34.990138 – volume: 39 start-page: 1 year: 1977 ident: ref35 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Stat Soc B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref4 doi: 10.1109/TSMC.2018.2885481 – year: 2019 ident: ref44 article-title: Vision-assisted autonomous lower-limb exoskeleton robot publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref28 doi: 10.1109/JAS.2017.7510604 – ident: ref15 doi: 10.1109/TCST.2008.917870 – ident: ref13 doi: 10.1109/TCYB.2018.2864784 – start-page: 4970 year: 2013 ident: ref21 article-title: Neural PID admittance control of a robot publication-title: Proc Amer Control Conf – ident: ref26 doi: 10.1109/TIE.2013.2288200 – volume: 107 start-page: 304 year: 1985 ident: ref19 article-title: Impedance control: An approach to manipulation publication-title: J Dyn Syst – ident: ref22 doi: 10.1109/ROBOT.2010.5509861 – year: 2017 ident: ref23 publication-title: Modern Robotics Mechanics Planning and Control doi: 10.1017/9781316661239 – ident: ref36 doi: 10.1007/978-3-540-30301-5_60 – ident: ref27 doi: 10.1109/TCSII.2019.2901283 – year: 2005 ident: ref38 article-title: Stable, high-force, low-impedance robotic actuators for human-interactive machines – ident: ref18 doi: 10.1177/027836498700600303 – ident: ref7 doi: 10.1109/JBHI.2013.2286455 – ident: ref41 doi: 10.1109/3516.974858 – ident: ref14 doi: 10.1109/TRO.2012.2210294 – ident: ref29 doi: 10.1016/j.neucom.2017.12.013 – ident: ref43 doi: 10.1109/TMECH.2019.2912404 – ident: ref1 doi: 10.1186/1743-0003-9-43 – ident: ref46 doi: 10.1109/TASE.2020.2964807 |
SSID | ssj0001637847 |
Score | 2.3935835 |
Snippet | This article presents a skill learning-based hierarchical control strategy for human-robot cooperative manipulation, which constitutes a novel learning-control... This article presents a skill learning-based hierarchical control strategy for human–robot cooperative manipulation, which constitutes a novel learning-control... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105 |
SubjectTerms | Adaptive control Admittance Admittance control Aerospace electronics dynamic motion primitives (DMPs) Electrical impedance exoskeleton robot Exoskeletons Gaussian mixture model (GMM) Human motion human–robot cooperative manipulation integral barrier Lyapunov function (IBLF) Interactive control Learning Liapunov functions Motor ability Probabilistic models Robot control Robot dynamics Robot motion Robots Skills Strategy Task analysis Trajectory |
Title | Skill Learning Strategy Based on Dynamic Motion Primitives for Human-Robot Cooperative Manipulation |
URI | https://ieeexplore.ieee.org/document/9186613 https://www.proquest.com/docview/2501319290 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwELWAExc-tqAtCysfVhzQuqROYtdHKCCEVISASr1FTjJeoZak2qYH-PXMOEnRLmi1txycyNI4M-_Z4_cY-xEpl8Y5xCJwxolo4GKBZUQLMLHUcuAiyOmC8-hWXY-jm0k8WWM_V3dhAMA3n0GPHv1Zfl5mS9oqOzWkzkYWtetI3Oq7Wu_7KSrUA-8nJkNtxMDI9hCzH5jTx-HFA5JBiRyVQLiSf5Qh76vyIRn7CnO1zUbt3OrGkmlvWaW97PUv2cb_nfwO22qgJj-r18YuW4PiC-ucFUizn1_4MffNn35XvcOyh-nTbMYbtdVfvBGtfeHnWOVyXhb8orau5yNv-8PvyA6MUuWCI-zl_ixA3JdpWfFhWc6hFhTnI1s8tQ5he2x8dfk4vBaN_4LIEARUgqiONlanAWiiKYFVIaZDl1sXKotMzrq-ikGmoBCFWGeVjFwIISCuMBrBwD7bKMoCvjJOMnskXJ_ZjL6UGZki8DP9XFsjQcouC9pwJFkjTk4eGbPEk5TAJBTBhCKYNBHsspPVK_NameNfgzsUkdXAJhhddtjGPGn-3UWCoLCPiUma4ODzt76xTUmdLb4T7ZBtVL-XcITQpEq_-zX5Bk6-3oI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QAXKCyIpQV8QBwQ3madxF4fy5ZqgaZCdCv1FjnJuKq6JBXNHsqvZ8ZJFvEhxC0HJ7I0zsx79vg9gFeJ9kVaYSojb71MZj6VVEaMRJsqo2Y-wYovOGcnenGWfDxPz7fg7eYuDCKG5jOc8GM4y6-acs1bZfuW1dnYovYO1f3Edre1fu6o6NjMgqOYio2VM6uGY8xpZPeX88NTooOKWCrDcK1-KUTBWeWPdBxqzNEDyIbZda0lV5N1W0zK778JN_7v9Hfgfg82xUG3Oh7CFtaPYHRQE9H-eitei9D-GfbVR1CeXl2uVqLXW70QvWztrXhHda4STS0OO_N6kQXjH_GZDcE4Wd4IAr4inAbIL03RtGLeNNfYSYqLzNWXg0fYYzg7er-cL2TvwCBLggGtZLJjrDNFhIaJSuR0TAnRV87H2hGXc36qU1QFasIhzjutEh9jjIQsrCE48AS266bGpyBYaI-l60tX8pdKqwqCfnZaGWcVKjWGaAhHXvby5OySscoDTYlszhHMOYJ5H8ExvNm8ct1pc_xr8IgjshnYB2MMe0PM8_7vvckJFk4pNSkbPfv7Wy_h7mKZHefHH04-7cI9xX0uoS9tD7bbb2t8TkClLV6E9fkDJuLh0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skill+Learning+Strategy+Based+on+Dynamic+Motion+Primitives+for+Human%E2%80%93Robot+Cooperative+Manipulation&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Li%2C+Junjun&rft.au=Li%2C+Zhijun&rft.au=Li%2C+Xinde&rft.au=Feng%2C+Ying&rft.date=2021-03-01&rft.issn=2379-8920&rft.eissn=2379-8939&rft.volume=13&rft.issue=1&rft.spage=105&rft.epage=117&rft_id=info:doi/10.1109%2FTCDS.2020.3021762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCDS_2020_3021762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |