Model Predictive Active Power Control for Optimal Structural Load Equalization in Waked Wind Farms
In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the A...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 30; no. 1; pp. 30 - 44 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2021.3053776 |
Cover
Abstract | In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the APC problem, that is, distributing a WF power reference among the operating WTs, does not have a unique solution; this fact can be exploited for structural load alleviation of the individual WTs. Therefore, we formulated a constrained optimization problem to simultaneously minimize the WF power reference tracking errors and the structural load deviations of the WTs from their mean value. The wind power plant is represented by a dynamic 3-D large-eddy simulation model, whereas the predictive controller employs a simplified, computationally inexpensive model to predict the dynamic power and load responses of the turbines that experience turbulent WF flows and wakes. An adjoint approach is an efficient tool used to iteratively compute the gradient of the formulated parameter-varying optimal control problem over a finite prediction horizon. We have discussed the applicability, key features, and computational complexity of the controller by using a WF example consisting of <inline-formula> <tex-math notation="LaTeX">3\times 4 </tex-math></inline-formula> turbines with different wake interactions for each row. The performance of the proposed adjoint-based model predictive control for APC was evaluated by measuring power reference tracking errors and the corresponding damage equivalent fatigue loads of the WT towers; we compared our proposed control design with recently published proportional-integral-based APC approaches. |
---|---|
AbstractList | In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the APC problem, that is, distributing a WF power reference among the operating WTs, does not have a unique solution; this fact can be exploited for structural load alleviation of the individual WTs. Therefore, we formulated a constrained optimization problem to simultaneously minimize the WF power reference tracking errors and the structural load deviations of the WTs from their mean value. The wind power plant is represented by a dynamic 3-D large-eddy simulation model, whereas the predictive controller employs a simplified, computationally inexpensive model to predict the dynamic power and load responses of the turbines that experience turbulent WF flows and wakes. An adjoint approach is an efficient tool used to iteratively compute the gradient of the formulated parameter-varying optimal control problem over a finite prediction horizon. We have discussed the applicability, key features, and computational complexity of the controller by using a WF example consisting of [Formula Omitted] turbines with different wake interactions for each row. The performance of the proposed adjoint-based model predictive control for APC was evaluated by measuring power reference tracking errors and the corresponding damage equivalent fatigue loads of the WT towers; we compared our proposed control design with recently published proportional–integral-based APC approaches. In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the APC problem, that is, distributing a WF power reference among the operating WTs, does not have a unique solution; this fact can be exploited for structural load alleviation of the individual WTs. Therefore, we formulated a constrained optimization problem to simultaneously minimize the WF power reference tracking errors and the structural load deviations of the WTs from their mean value. The wind power plant is represented by a dynamic 3-D large-eddy simulation model, whereas the predictive controller employs a simplified, computationally inexpensive model to predict the dynamic power and load responses of the turbines that experience turbulent WF flows and wakes. An adjoint approach is an efficient tool used to iteratively compute the gradient of the formulated parameter-varying optimal control problem over a finite prediction horizon. We have discussed the applicability, key features, and computational complexity of the controller by using a WF example consisting of <inline-formula> <tex-math notation="LaTeX">3\times 4 </tex-math></inline-formula> turbines with different wake interactions for each row. The performance of the proposed adjoint-based model predictive control for APC was evaluated by measuring power reference tracking errors and the corresponding damage equivalent fatigue loads of the WT towers; we compared our proposed control design with recently published proportional-integral-based APC approaches. |
Author | Vali, Mehdi Pao, Lucy Y. Petrovic, Vlaho Kuhn, Martin |
Author_xml | – sequence: 1 givenname: Mehdi orcidid: 0000-0002-7179-3357 surname: Vali fullname: Vali, Mehdi email: mehdi.vali@uol.de organization: ForWind–Center for Wind Energy Research, Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany – sequence: 2 givenname: Vlaho orcidid: 0000-0001-6838-618X surname: Petrovic fullname: Petrovic, Vlaho email: vlaho.petrovic@uol.de organization: ForWind–Center for Wind Energy Research, Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany – sequence: 3 givenname: Lucy Y. orcidid: 0000-0001-9450-8902 surname: Pao fullname: Pao, Lucy Y. email: pao@colorado.edu organization: Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA – sequence: 4 givenname: Martin surname: Kuhn fullname: Kuhn, Martin email: martin.kuehn@uol.de organization: ForWind–Center for Wind Energy Research, Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany |
BookMark | eNp9UM1OAjEYbAwmAvoAxksTz4v92bbbIyGgJhhIwHDclLabFJctdLsafXoXl3jw4GnmMPPNNzMAvcpXFoBbjEYYI_mwnqzWI4IIHlHEqBD8AvQxY1mCMs56LUecJpxRfgUGdb1DCKeMiD7YvnhjS7gM1jgd3buF4w6W_sMGOPFVDL6EhQ9wcYhur0q4iqHRsQktnXtl4PTYqNJ9qeh8BV0FN-rNGrhxlYEzFfb1NbgsVFnbmzMOwetsup48JfPF4_NkPE80kTQmJM0Maz-kvLCKkCLlVhAqt6YgCnMmttakAuuMUqqMphpJZiQWQmpZpKmVdAjuu7uH4I-NrWO-802o2siccIxwRrGgrQp3Kh18XQdb5IfQ1gqfOUb5acr8NGV-mjI_T9l6xB-PdvGnbwzKlf867zqns9b-JkmaMiEJ_QY4ioL3 |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1016_j_ijepes_2023_109728 crossref_primary_10_1049_rpg2_12865 crossref_primary_10_1109_TPWRS_2022_3149904 crossref_primary_10_1016_j_apenergy_2022_120414 crossref_primary_10_1109_TASE_2024_3367030 crossref_primary_10_1016_j_ijepes_2024_110282 crossref_primary_10_1016_j_oceaneng_2023_114070 crossref_primary_10_1109_MCS_2024_3433208 crossref_primary_10_1109_TCST_2023_3315547 crossref_primary_10_1109_TSTE_2024_3407775 crossref_primary_10_3390_en15145273 crossref_primary_10_5194_wes_8_1071_2023 crossref_primary_10_1016_j_oceaneng_2024_118508 crossref_primary_10_3390_en15072706 crossref_primary_10_1109_TSTE_2024_3497013 crossref_primary_10_1371_journal_pone_0273257 crossref_primary_10_1016_j_adapen_2024_100177 crossref_primary_10_1016_j_renene_2024_121048 crossref_primary_10_1109_MCS_2023_3291638 crossref_primary_10_1002_adc2_80 crossref_primary_10_1088_1742_6596_2767_4_042038 crossref_primary_10_1109_TCST_2024_3362518 crossref_primary_10_1016_j_apenergy_2024_124612 crossref_primary_10_1063_5_0134878 crossref_primary_10_1002_we_2972 crossref_primary_10_1088_1742_6596_2265_2_022056 crossref_primary_10_5194_wes_7_2271_2022 crossref_primary_10_1016_j_epsr_2023_109793 |
Cites_doi | 10.1016/0167-6105(88)90039-6 10.1109/ACC.2012.6315180 10.5194/wes-3-749-2018 10.1002/oca.2136 10.1017/jfm.2015.70 10.23919/ACC.2018.8431391 10.1088/1742-6596/854/1/012039 10.1016/j.ifacol.2017.08.378 10.1109/ACC.2016.7525616 10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7 10.1002/we.523 10.1007/s10546-019-00473-0 10.1109/ACC.2016.7525115 10.1002/we.2093 10.1088/1742-6596/1037/3/032020 10.1002/we.2210 10.23919/ACC.2018.8431764 10.1002/we.1960 10.1016/S0967-0661(02)00186-7 10.1109/TCST.2013.2257780 10.1088/1742-6596/555/1/012108 10.1016/j.rser.2006.01.008 10.1109/ACC.2016.7525114 10.1002/we.1760 10.1109/ACC.2015.7170981 10.1109/TCST.2019.2923779 10.5194/wes-4-139-2019 10.2514/6.2010-827 10.3390/en11010177 10.5194/gmd-8-2515-2015 10.1016/j.conengprac.2018.11.005 10.1016/j.renene.2018.11.031 10.1002/we.1822 10.1002/we.1533 10.1016/j.jweia.2011.01.011 10.1088/1742-6596/1256/1/012029 10.1002/we.1594 10.1016/j.jweia.2013.08.011 10.1016/j.renene.2005.05.011 10.5194/wes-3-75-2018 10.1002/we.348 10.1017/jfm.2015.84 10.1002/we.1891 10.1016/0021-9991(75)90093-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2021.3053776 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 44 |
ExternalDocumentID | 10_1109_TCST_2021_3053776 9345792 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry for Science and Culture of Lower Saxony through the funding initiative “Niedersächsisches Vorab” (project “ventus efficiens”) – fundername: Hanse-Wissenschaftskolleg, Delmenhorst, Germany – fundername: Federal Ministry for Economic Affairs and Energy according to a resolution by the German Federal Parliament under Grant “WIMS-Cluster” grantid: 0324005 – fundername: Palmer Endowed Chair at the University of Colorado Boulder funderid: 10.13039/100007493 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c293t-248d565336fea22f46e7239bdf2a1657bed471c8333adc3c095d91779c9f44e93 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Mon Jun 30 10:12:50 EDT 2025 Tue Jul 01 02:36:04 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Wed Aug 27 05:11:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-248d565336fea22f46e7239bdf2a1657bed471c8333adc3c095d91779c9f44e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6838-618X 0000-0001-9450-8902 0000-0002-7179-3357 |
PQID | 2610183173 |
PQPubID | 85425 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9345792 crossref_primary_10_1109_TCST_2021_3053776 crossref_citationtrail_10_1109_TCST_2021_3053776 proquest_journals_2610183173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Yilmaz (ref24) 2019 Gasch (ref45) 2011 Jonkman (ref49) 2005 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref51) 2005 Pilong (ref50) 2013 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref23 ref26 ref25 ref20 ref22 ref21 Hansen (ref46) 2008 ref28 ref27 ref29 Sanderse (ref40) 2009 |
References_xml | – ident: ref10 doi: 10.1016/0167-6105(88)90039-6 – ident: ref15 doi: 10.1109/ACC.2012.6315180 – ident: ref31 doi: 10.5194/wes-3-749-2018 – volume-title: International Electrotechnical Commission, Wind Turbines—Part 1: Design Requirements year: 2005 ident: ref51 – ident: ref12 doi: 10.1002/oca.2136 – ident: ref18 doi: 10.1017/jfm.2015.70 – ident: ref22 doi: 10.23919/ACC.2018.8431391 – ident: ref28 doi: 10.1088/1742-6596/854/1/012039 – year: 2019 ident: ref24 article-title: LES-based optimal flow control with applications to wind turbines – year: 2005 ident: ref49 article-title: FAST manual user’s guide – ident: ref9 doi: 10.1016/j.ifacol.2017.08.378 – ident: ref30 doi: 10.1109/ACC.2016.7525616 – ident: ref2 doi: 10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7 – volume-title: Wind Power Plants: Fundamentals, Design, Construction Operation year: 2011 ident: ref45 – ident: ref47 doi: 10.1002/we.523 – ident: ref3 doi: 10.1007/s10546-019-00473-0 – year: 2009 ident: ref40 article-title: Aerodynamics of wind turbine wakes – ident: ref8 doi: 10.1109/ACC.2016.7525115 – ident: ref21 doi: 10.1002/we.2093 – ident: ref33 doi: 10.1088/1742-6596/1037/3/032020 – ident: ref36 doi: 10.1002/we.2210 – ident: ref32 doi: 10.23919/ACC.2018.8431764 – ident: ref34 doi: 10.1002/we.1960 – ident: ref48 doi: 10.1016/S0967-0661(02)00186-7 – ident: ref5 doi: 10.1109/TCST.2013.2257780 – ident: ref42 doi: 10.1088/1742-6596/555/1/012108 – ident: ref14 doi: 10.1016/j.rser.2006.01.008 – ident: ref16 doi: 10.1109/ACC.2016.7525114 – ident: ref4 doi: 10.1002/we.1760 – ident: ref27 doi: 10.1109/ACC.2015.7170981 – ident: ref35 doi: 10.1109/TCST.2019.2923779 – ident: ref17 doi: 10.5194/wes-4-139-2019 – ident: ref38 doi: 10.2514/6.2010-827 – ident: ref19 doi: 10.3390/en11010177 – ident: ref41 doi: 10.5194/gmd-8-2515-2015 – ident: ref20 doi: 10.1016/j.conengprac.2018.11.005 – ident: ref23 doi: 10.1016/j.renene.2018.11.031 – ident: ref7 doi: 10.1002/we.1822 – ident: ref44 doi: 10.1002/we.1533 – ident: ref39 doi: 10.1016/j.jweia.2011.01.011 – volume-title: Aerodynamics Wind Turbines year: 2008 ident: ref46 – volume-title: PJM Manual 12: Balancing Operations year: 2013 ident: ref50 – ident: ref37 doi: 10.1088/1742-6596/1256/1/012029 – ident: ref26 doi: 10.1002/we.1594 – ident: ref11 doi: 10.1016/j.jweia.2013.08.011 – ident: ref13 doi: 10.1016/j.renene.2005.05.011 – ident: ref29 doi: 10.5194/wes-3-75-2018 – ident: ref1 doi: 10.1002/we.348 – ident: ref25 doi: 10.1017/jfm.2015.84 – ident: ref6 doi: 10.1002/we.1891 – ident: ref43 doi: 10.1016/0021-9991(75)90093-5 |
SSID | ssj0014527 |
Score | 2.485446 |
Snippet | In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30 |
SubjectTerms | Active control Active power control (APC) adjoint approach Atmospheric boundary layer Atmospheric modeling Computational modeling Controllers Equalization Fatigue failure Large eddy simulation Load Load alleviation Load modeling Optimal control Optimization Power control Power plants Predictive control Predictive models Production Solid modeling structural load reduction Three dimensional models Tracking errors wake effects Wakes wind farm (WF) control Wind power Wind turbines |
Title | Model Predictive Active Power Control for Optimal Structural Load Equalization in Waked Wind Farms |
URI | https://ieeexplore.ieee.org/document/9345792 https://www.proquest.com/docview/2610183173 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrVKXnwSezWJmm7PI6xMcTpYBvbW8mtILvJLi_-ek_SboiK-NIWmpSQLz2XnJzvIHRvFM90JiNfiCzzmRShz0mo4RIZkXFjjMvi773E3RF7mkSTEnrc58LAW3f4zNTso4vl66Xa2q2yOqcsSjgI3ANYZnmu1j5iwPLyrODhUD92IUmv4NOsD1uDIXiCJKxRy15i6UW-6CBXVOWHJHbqpXOCeruB5adKprXtRtbUxzfOxv-O_BQdF3YmbuYL4wyVzOIcHX1hH6wgaeugzXB_ZWM1VurhZn7r28ppuJUfYsdg1eJXECxz-NzAsc1apg78vBQat11OZp7Jid8WeCymRuMx-Pm4I1bz9QUaddrDVtcvSi74CvT-xiesocHEozTOjCAkY7FJCOVSZ0SEcZRIo0GbqQalVGhFFRhoGhy-hAPkjBlOL1F5sVyYK4QDLgOWBKGkRDEhI2lrgcbMRvJIJGPloWAHQqoKPnJbFmOWOr8k4KnFLbW4pQVuHnrYd3nPyTj-alyxOOwbFhB4qLpDOi1-13UKbmQAsi1M6PXvvW7QIbF5D27vpYrKMNvmFqyRjbxzy_ATDkrbVg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_IPKgHv8X5mYMnsVubpK05ynBM3XSwyXYr-SrI5iY6L_71vqTdEBXx0haalJBf-j7y8n4P4MxqkZtcxYGUeR5wJaNA0MjgJbYyF9Zan8XfuU9aj_x2GA-X4GKRC4Nv_eEzW3OPPpZvpvrdbZXVBeNxKlDgLqPe53GRrbWIGfCiQCv6OCxIfFCyWjJq1vuNXh99QRrVmOMvcQQjX7SQL6vyQxZ7BdPcgM58aMW5klHtfaZq-uMba-N_x74J66WlSa6KpbEFS3ayDWtf-Ad3QLlKaGPSfXXRGif3yFVx67raaaRRHGMnaNeSBxQtz_i5nuebdVwdpD2Vhlz7rMwil5M8TchAjqwhA_T0SVO-Pr_twmPzut9oBWXRhUCj5p8FlF8aNPIYS3IrKc15YlPKhDI5lVESp8oa1Gf6kjEmjWYaTTSDLl8qEHTOrWB7UJlMJ3YfSChUyNMwUoxqLlWsXDXQhLtYHo1VoqsQzkHIdMlI7gpjjDPvmYQic7hlDresxK0K54suLwUdx1-NdxwOi4YlBFU4miOdlT_sW4aOZIjSLUrZwe-9TmGl1e-0s_bN_d0hrFKXBeF3Yo6ggjNvj9E2makTvyQ_AbXf3qM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Active+Power+Control+for+Optimal+Structural+Load+Equalization+in+Waked+Wind+Farms&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Vali%2C+Mehdi&rft.au=Petrovic%2C+Vlaho&rft.au=Pao%2C+Lucy+Y.&rft.au=Kuhn%2C+Martin&rft.date=2022-01-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=1&rft.spage=30&rft.epage=44&rft_id=info:doi/10.1109%2FTCST.2021.3053776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2021_3053776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |