Model Predictive Active Power Control for Optimal Structural Load Equalization in Waked Wind Farms

In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the A...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 30; no. 1; pp. 30 - 44
Main Authors Vali, Mehdi, Petrovic, Vlaho, Pao, Lucy Y., Kuhn, Martin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2021.3053776

Cover

Abstract In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the APC problem, that is, distributing a WF power reference among the operating WTs, does not have a unique solution; this fact can be exploited for structural load alleviation of the individual WTs. Therefore, we formulated a constrained optimization problem to simultaneously minimize the WF power reference tracking errors and the structural load deviations of the WTs from their mean value. The wind power plant is represented by a dynamic 3-D large-eddy simulation model, whereas the predictive controller employs a simplified, computationally inexpensive model to predict the dynamic power and load responses of the turbines that experience turbulent WF flows and wakes. An adjoint approach is an efficient tool used to iteratively compute the gradient of the formulated parameter-varying optimal control problem over a finite prediction horizon. We have discussed the applicability, key features, and computational complexity of the controller by using a WF example consisting of <inline-formula> <tex-math notation="LaTeX">3\times 4 </tex-math></inline-formula> turbines with different wake interactions for each row. The performance of the proposed adjoint-based model predictive control for APC was evaluated by measuring power reference tracking errors and the corresponding damage equivalent fatigue loads of the WT towers; we compared our proposed control design with recently published proportional-integral-based APC approaches.
AbstractList In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the APC problem, that is, distributing a WF power reference among the operating WTs, does not have a unique solution; this fact can be exploited for structural load alleviation of the individual WTs. Therefore, we formulated a constrained optimization problem to simultaneously minimize the WF power reference tracking errors and the structural load deviations of the WTs from their mean value. The wind power plant is represented by a dynamic 3-D large-eddy simulation model, whereas the predictive controller employs a simplified, computationally inexpensive model to predict the dynamic power and load responses of the turbines that experience turbulent WF flows and wakes. An adjoint approach is an efficient tool used to iteratively compute the gradient of the formulated parameter-varying optimal control problem over a finite prediction horizon. We have discussed the applicability, key features, and computational complexity of the controller by using a WF example consisting of [Formula Omitted] turbines with different wake interactions for each row. The performance of the proposed adjoint-based model predictive control for APC was evaluated by measuring power reference tracking errors and the corresponding damage equivalent fatigue loads of the WT towers; we compared our proposed control design with recently published proportional–integral-based APC approaches.
In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines (WTs) operating with fully developed wind farm (WF) flows that have extensive interactions with the atmospheric boundary layer. In general, the APC problem, that is, distributing a WF power reference among the operating WTs, does not have a unique solution; this fact can be exploited for structural load alleviation of the individual WTs. Therefore, we formulated a constrained optimization problem to simultaneously minimize the WF power reference tracking errors and the structural load deviations of the WTs from their mean value. The wind power plant is represented by a dynamic 3-D large-eddy simulation model, whereas the predictive controller employs a simplified, computationally inexpensive model to predict the dynamic power and load responses of the turbines that experience turbulent WF flows and wakes. An adjoint approach is an efficient tool used to iteratively compute the gradient of the formulated parameter-varying optimal control problem over a finite prediction horizon. We have discussed the applicability, key features, and computational complexity of the controller by using a WF example consisting of <inline-formula> <tex-math notation="LaTeX">3\times 4 </tex-math></inline-formula> turbines with different wake interactions for each row. The performance of the proposed adjoint-based model predictive control for APC was evaluated by measuring power reference tracking errors and the corresponding damage equivalent fatigue loads of the WT towers; we compared our proposed control design with recently published proportional-integral-based APC approaches.
Author Vali, Mehdi
Pao, Lucy Y.
Petrovic, Vlaho
Kuhn, Martin
Author_xml – sequence: 1
  givenname: Mehdi
  orcidid: 0000-0002-7179-3357
  surname: Vali
  fullname: Vali, Mehdi
  email: mehdi.vali@uol.de
  organization: ForWind–Center for Wind Energy Research, Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
– sequence: 2
  givenname: Vlaho
  orcidid: 0000-0001-6838-618X
  surname: Petrovic
  fullname: Petrovic, Vlaho
  email: vlaho.petrovic@uol.de
  organization: ForWind–Center for Wind Energy Research, Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
– sequence: 3
  givenname: Lucy Y.
  orcidid: 0000-0001-9450-8902
  surname: Pao
  fullname: Pao, Lucy Y.
  email: pao@colorado.edu
  organization: Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA
– sequence: 4
  givenname: Martin
  surname: Kuhn
  fullname: Kuhn, Martin
  email: martin.kuehn@uol.de
  organization: ForWind–Center for Wind Energy Research, Institute of Physics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
BookMark eNp9UM1OAjEYbAwmAvoAxksTz4v92bbbIyGgJhhIwHDclLabFJctdLsafXoXl3jw4GnmMPPNNzMAvcpXFoBbjEYYI_mwnqzWI4IIHlHEqBD8AvQxY1mCMs56LUecJpxRfgUGdb1DCKeMiD7YvnhjS7gM1jgd3buF4w6W_sMGOPFVDL6EhQ9wcYhur0q4iqHRsQktnXtl4PTYqNJ9qeh8BV0FN-rNGrhxlYEzFfb1NbgsVFnbmzMOwetsup48JfPF4_NkPE80kTQmJM0Maz-kvLCKkCLlVhAqt6YgCnMmttakAuuMUqqMphpJZiQWQmpZpKmVdAjuu7uH4I-NrWO-802o2siccIxwRrGgrQp3Kh18XQdb5IfQ1gqfOUb5acr8NGV-mjI_T9l6xB-PdvGnbwzKlf867zqns9b-JkmaMiEJ_QY4ioL3
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_ijepes_2023_109728
crossref_primary_10_1049_rpg2_12865
crossref_primary_10_1109_TPWRS_2022_3149904
crossref_primary_10_1016_j_apenergy_2022_120414
crossref_primary_10_1109_TASE_2024_3367030
crossref_primary_10_1016_j_ijepes_2024_110282
crossref_primary_10_1016_j_oceaneng_2023_114070
crossref_primary_10_1109_MCS_2024_3433208
crossref_primary_10_1109_TCST_2023_3315547
crossref_primary_10_1109_TSTE_2024_3407775
crossref_primary_10_3390_en15145273
crossref_primary_10_5194_wes_8_1071_2023
crossref_primary_10_1016_j_oceaneng_2024_118508
crossref_primary_10_3390_en15072706
crossref_primary_10_1109_TSTE_2024_3497013
crossref_primary_10_1371_journal_pone_0273257
crossref_primary_10_1016_j_adapen_2024_100177
crossref_primary_10_1016_j_renene_2024_121048
crossref_primary_10_1109_MCS_2023_3291638
crossref_primary_10_1002_adc2_80
crossref_primary_10_1088_1742_6596_2767_4_042038
crossref_primary_10_1109_TCST_2024_3362518
crossref_primary_10_1016_j_apenergy_2024_124612
crossref_primary_10_1063_5_0134878
crossref_primary_10_1002_we_2972
crossref_primary_10_1088_1742_6596_2265_2_022056
crossref_primary_10_5194_wes_7_2271_2022
crossref_primary_10_1016_j_epsr_2023_109793
Cites_doi 10.1016/0167-6105(88)90039-6
10.1109/ACC.2012.6315180
10.5194/wes-3-749-2018
10.1002/oca.2136
10.1017/jfm.2015.70
10.23919/ACC.2018.8431391
10.1088/1742-6596/854/1/012039
10.1016/j.ifacol.2017.08.378
10.1109/ACC.2016.7525616
10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7
10.1002/we.523
10.1007/s10546-019-00473-0
10.1109/ACC.2016.7525115
10.1002/we.2093
10.1088/1742-6596/1037/3/032020
10.1002/we.2210
10.23919/ACC.2018.8431764
10.1002/we.1960
10.1016/S0967-0661(02)00186-7
10.1109/TCST.2013.2257780
10.1088/1742-6596/555/1/012108
10.1016/j.rser.2006.01.008
10.1109/ACC.2016.7525114
10.1002/we.1760
10.1109/ACC.2015.7170981
10.1109/TCST.2019.2923779
10.5194/wes-4-139-2019
10.2514/6.2010-827
10.3390/en11010177
10.5194/gmd-8-2515-2015
10.1016/j.conengprac.2018.11.005
10.1016/j.renene.2018.11.031
10.1002/we.1822
10.1002/we.1533
10.1016/j.jweia.2011.01.011
10.1088/1742-6596/1256/1/012029
10.1002/we.1594
10.1016/j.jweia.2013.08.011
10.1016/j.renene.2005.05.011
10.5194/wes-3-75-2018
10.1002/we.348
10.1017/jfm.2015.84
10.1002/we.1891
10.1016/0021-9991(75)90093-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2021.3053776
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 44
ExternalDocumentID 10_1109_TCST_2021_3053776
9345792
Genre orig-research
GrantInformation_xml – fundername: Ministry for Science and Culture of Lower Saxony through the funding initiative “Niedersächsisches Vorab” (project “ventus efficiens”)
– fundername: Hanse-Wissenschaftskolleg, Delmenhorst, Germany
– fundername: Federal Ministry for Economic Affairs and Energy according to a resolution by the German Federal Parliament under Grant “WIMS-Cluster”
  grantid: 0324005
– fundername: Palmer Endowed Chair at the University of Colorado Boulder
  funderid: 10.13039/100007493
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-248d565336fea22f46e7239bdf2a1657bed471c8333adc3c095d91779c9f44e93
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Mon Jun 30 10:12:50 EDT 2025
Tue Jul 01 02:36:04 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Wed Aug 27 05:11:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-248d565336fea22f46e7239bdf2a1657bed471c8333adc3c095d91779c9f44e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6838-618X
0000-0001-9450-8902
0000-0002-7179-3357
PQID 2610183173
PQPubID 85425
PageCount 15
ParticipantIDs ieee_primary_9345792
crossref_primary_10_1109_TCST_2021_3053776
crossref_citationtrail_10_1109_TCST_2021_3053776
proquest_journals_2610183173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Yilmaz (ref24) 2019
Gasch (ref45) 2011
Jonkman (ref49) 2005
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref51) 2005
Pilong (ref50) 2013
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref21
Hansen (ref46) 2008
ref28
ref27
ref29
Sanderse (ref40) 2009
References_xml – ident: ref10
  doi: 10.1016/0167-6105(88)90039-6
– ident: ref15
  doi: 10.1109/ACC.2012.6315180
– ident: ref31
  doi: 10.5194/wes-3-749-2018
– volume-title: International Electrotechnical Commission, Wind Turbines—Part 1: Design Requirements
  year: 2005
  ident: ref51
– ident: ref12
  doi: 10.1002/oca.2136
– ident: ref18
  doi: 10.1017/jfm.2015.70
– ident: ref22
  doi: 10.23919/ACC.2018.8431391
– ident: ref28
  doi: 10.1088/1742-6596/854/1/012039
– year: 2019
  ident: ref24
  article-title: LES-based optimal flow control with applications to wind turbines
– year: 2005
  ident: ref49
  article-title: FAST manual user’s guide
– ident: ref9
  doi: 10.1016/j.ifacol.2017.08.378
– ident: ref30
  doi: 10.1109/ACC.2016.7525616
– ident: ref2
  doi: 10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7
– volume-title: Wind Power Plants: Fundamentals, Design, Construction Operation
  year: 2011
  ident: ref45
– ident: ref47
  doi: 10.1002/we.523
– ident: ref3
  doi: 10.1007/s10546-019-00473-0
– year: 2009
  ident: ref40
  article-title: Aerodynamics of wind turbine wakes
– ident: ref8
  doi: 10.1109/ACC.2016.7525115
– ident: ref21
  doi: 10.1002/we.2093
– ident: ref33
  doi: 10.1088/1742-6596/1037/3/032020
– ident: ref36
  doi: 10.1002/we.2210
– ident: ref32
  doi: 10.23919/ACC.2018.8431764
– ident: ref34
  doi: 10.1002/we.1960
– ident: ref48
  doi: 10.1016/S0967-0661(02)00186-7
– ident: ref5
  doi: 10.1109/TCST.2013.2257780
– ident: ref42
  doi: 10.1088/1742-6596/555/1/012108
– ident: ref14
  doi: 10.1016/j.rser.2006.01.008
– ident: ref16
  doi: 10.1109/ACC.2016.7525114
– ident: ref4
  doi: 10.1002/we.1760
– ident: ref27
  doi: 10.1109/ACC.2015.7170981
– ident: ref35
  doi: 10.1109/TCST.2019.2923779
– ident: ref17
  doi: 10.5194/wes-4-139-2019
– ident: ref38
  doi: 10.2514/6.2010-827
– ident: ref19
  doi: 10.3390/en11010177
– ident: ref41
  doi: 10.5194/gmd-8-2515-2015
– ident: ref20
  doi: 10.1016/j.conengprac.2018.11.005
– ident: ref23
  doi: 10.1016/j.renene.2018.11.031
– ident: ref7
  doi: 10.1002/we.1822
– ident: ref44
  doi: 10.1002/we.1533
– ident: ref39
  doi: 10.1016/j.jweia.2011.01.011
– volume-title: Aerodynamics Wind Turbines
  year: 2008
  ident: ref46
– volume-title: PJM Manual 12: Balancing Operations
  year: 2013
  ident: ref50
– ident: ref37
  doi: 10.1088/1742-6596/1256/1/012029
– ident: ref26
  doi: 10.1002/we.1594
– ident: ref11
  doi: 10.1016/j.jweia.2013.08.011
– ident: ref13
  doi: 10.1016/j.renene.2005.05.011
– ident: ref29
  doi: 10.5194/wes-3-75-2018
– ident: ref1
  doi: 10.1002/we.348
– ident: ref25
  doi: 10.1017/jfm.2015.84
– ident: ref6
  doi: 10.1002/we.1891
– ident: ref43
  doi: 10.1016/0021-9991(75)90093-5
SSID ssj0014527
Score 2.485446
Snippet In this article, we propose a model predictive active power control (APC) enhanced by the optimal coordination of the structural loadings of wind turbines...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30
SubjectTerms Active control
Active power control (APC)
adjoint approach
Atmospheric boundary layer
Atmospheric modeling
Computational modeling
Controllers
Equalization
Fatigue failure
Large eddy simulation
Load
Load alleviation
Load modeling
Optimal control
Optimization
Power control
Power plants
Predictive control
Predictive models
Production
Solid modeling
structural load reduction
Three dimensional models
Tracking errors
wake effects
Wakes
wind farm (WF) control
Wind power
Wind turbines
Title Model Predictive Active Power Control for Optimal Structural Load Equalization in Waked Wind Farms
URI https://ieeexplore.ieee.org/document/9345792
https://www.proquest.com/docview/2610183173
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrVKXnwSezWJmm7PI6xMcTpYBvbW8mtILvJLi_-ek_SboiK-NIWmpSQLz2XnJzvIHRvFM90JiNfiCzzmRShz0mo4RIZkXFjjMvi773E3RF7mkSTEnrc58LAW3f4zNTso4vl66Xa2q2yOqcsSjgI3ANYZnmu1j5iwPLyrODhUD92IUmv4NOsD1uDIXiCJKxRy15i6UW-6CBXVOWHJHbqpXOCeruB5adKprXtRtbUxzfOxv-O_BQdF3YmbuYL4wyVzOIcHX1hH6wgaeugzXB_ZWM1VurhZn7r28ppuJUfYsdg1eJXECxz-NzAsc1apg78vBQat11OZp7Jid8WeCymRuMx-Pm4I1bz9QUaddrDVtcvSi74CvT-xiesocHEozTOjCAkY7FJCOVSZ0SEcZRIo0GbqQalVGhFFRhoGhy-hAPkjBlOL1F5sVyYK4QDLgOWBKGkRDEhI2lrgcbMRvJIJGPloWAHQqoKPnJbFmOWOr8k4KnFLbW4pQVuHnrYd3nPyTj-alyxOOwbFhB4qLpDOi1-13UKbmQAsi1M6PXvvW7QIbF5D27vpYrKMNvmFqyRjbxzy_ATDkrbVg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_IPKgHv8X5mYMnsVubpK05ynBM3XSwyXYr-SrI5iY6L_71vqTdEBXx0haalJBf-j7y8n4P4MxqkZtcxYGUeR5wJaNA0MjgJbYyF9Zan8XfuU9aj_x2GA-X4GKRC4Nv_eEzW3OPPpZvpvrdbZXVBeNxKlDgLqPe53GRrbWIGfCiQCv6OCxIfFCyWjJq1vuNXh99QRrVmOMvcQQjX7SQL6vyQxZ7BdPcgM58aMW5klHtfaZq-uMba-N_x74J66WlSa6KpbEFS3ayDWtf-Ad3QLlKaGPSfXXRGif3yFVx67raaaRRHGMnaNeSBxQtz_i5nuebdVwdpD2Vhlz7rMwil5M8TchAjqwhA_T0SVO-Pr_twmPzut9oBWXRhUCj5p8FlF8aNPIYS3IrKc15YlPKhDI5lVESp8oa1Gf6kjEmjWYaTTSDLl8qEHTOrWB7UJlMJ3YfSChUyNMwUoxqLlWsXDXQhLtYHo1VoqsQzkHIdMlI7gpjjDPvmYQic7hlDresxK0K54suLwUdx1-NdxwOi4YlBFU4miOdlT_sW4aOZIjSLUrZwe-9TmGl1e-0s_bN_d0hrFKXBeF3Yo6ggjNvj9E2makTvyQ_AbXf3qM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Predictive+Active+Power+Control+for+Optimal+Structural+Load+Equalization+in+Waked+Wind+Farms&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Vali%2C+Mehdi&rft.au=Petrovic%2C+Vlaho&rft.au=Pao%2C+Lucy+Y.&rft.au=Kuhn%2C+Martin&rft.date=2022-01-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=1&rft.spage=30&rft.epage=44&rft_id=info:doi/10.1109%2FTCST.2021.3053776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2021_3053776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon