Adaptive User Experience in the Car-Levels of Adaptivity and Adaptive HMI Design

Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity in the vehicle context address the three main goals: Increasing safety, usability and empathy in vehicle systems. Adaptivity of systems can...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 5; pp. 4866 - 4876
Main Authors Rittger, Lena, Engelhardt, Doreen, Schwartz, Robert
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2021.3124990

Cover

Loading…
Abstract Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity in the vehicle context address the three main goals: Increasing safety, usability and empathy in vehicle systems. Adaptivity of systems can be evaluated by considering the technical system features, user-interface-related features and the actual user experience of the adaptive system. We provide an overview of classifications for adaptive systems including the Levels of Adaptive Sensitive Responses (LASR). The levels differentiate the input that a system considers in its operations to adapt to user groups or to the individual user. Along with that, we propose User Experience (UX) design guidelines applicable to the different levels. In an online survey, we varied LASR and one of the UX design guidelines, namely transparency. The within-subjects study showed that both, the levels and the variation of transparency, influenced the perception of intelligence, transparency and intuitive design. However, a significant proportion of users did not understand the difference between the two LASR versions, indicating that users build mental models of systems that imply more personal data usage than the system actually employs. The LASR framework allowed this differentiation to be revealed in system performance and user perception. More research is necessary to elaborate the correlation between levels of adaptivity, UX design, specific UX design guidelines and user experience measures.
AbstractList Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity in the vehicle context address the three main goals: Increasing safety, usability and empathy in vehicle systems. Adaptivity of systems can be evaluated by considering the technical system features, user-interface-related features and the actual user experience of the adaptive system. We provide an overview of classifications for adaptive systems including the Levels of Adaptive Sensitive Responses (LASR). The levels differentiate the input that a system considers in its operations to adapt to user groups or to the individual user. Along with that, we propose User Experience (UX) design guidelines applicable to the different levels. In an online survey, we varied LASR and one of the UX design guidelines, namely transparency. The within-subjects study showed that both, the levels and the variation of transparency, influenced the perception of intelligence, transparency and intuitive design. However, a significant proportion of users did not understand the difference between the two LASR versions, indicating that users build mental models of systems that imply more personal data usage than the system actually employs. The LASR framework allowed this differentiation to be revealed in system performance and user perception. More research is necessary to elaborate the correlation between levels of adaptivity, UX design, specific UX design guidelines and user experience measures.
Author Schwartz, Robert
Rittger, Lena
Engelhardt, Doreen
Author_xml – sequence: 1
  givenname: Lena
  orcidid: 0000-0002-1673-9948
  surname: Rittger
  fullname: Rittger, Lena
  email: lena.rittger@audi.de
  organization: Audi AG, Ingolstadt, Germany
– sequence: 2
  givenname: Doreen
  surname: Engelhardt
  fullname: Engelhardt, Doreen
  email: doreen.engelhardt@audi.de
  organization: Audi AG, Ingolstadt, Germany
– sequence: 3
  givenname: Robert
  orcidid: 0000-0001-8199-565X
  surname: Schwartz
  fullname: Schwartz, Robert
  email: robert.schwartz@web.de
  organization: Institute for Media Technology/Department of Media Production, Ilmenau University of Technology, Ilmenau, Germany
BookMark eNp9kMFOAjEQhhuDiYA-gPHSxPNi22279EgQhQSjiXBuuruzWoLdtS1E3t7dQDh48DSTyffNTP4B6rnaAUK3lIwoJephtVi9jxhhdJRSxpUiF6hPhRgnhFDZ63rGE0UEuUKDEDbtlAtK--htUpom2j3gdQCPZz8NeAuuAGwdjp-Ap8YnS9jDNuC6wifaxgM2rsRnef6ywI8Q7Ie7RpeV2Qa4OdUhWj_NVtN5snx9Xkwny6RgKo0J44KNec5SItMsFZRwlRWlEUyVxlQtIhUHljFF8gIyaYQQORcgCctFJolKh-j-uLfx9fcOQtSbeudde1IzKVTKM5rylsqOVOHrEDxUurDRRFu76I3dakp0F5_u4tNdfPoUX2vSP2bj7Zfxh3-du6NjAeDMq4xK0n70C32Qei4
CODEN ITISFG
CitedBy_id crossref_primary_10_1108_INTR_04_2022_0253
crossref_primary_10_3390_app131910687
crossref_primary_10_1080_10447318_2023_2215098
crossref_primary_10_1109_OJVT_2024_3447449
Cites_doi 10.4271/j3216_202107
10.1007/978-3-540-73331-7_14
10.1518/001872097778543886
10.1007/s35148-020-0332-4
10.1177/0018720812443983
10.1109/ACII.2019.8925498
10.1145/3313831.3376210
10.1145/3239092.3265963
10.1177/0018720812467459
10.1145/3301275.3302262
10.1145/3377325.3377500
10.1177/1529100619832930
10.1145/503376.503433
10.1007/978-3-540-85099-1
10.1145/25065.950626
10.1109/34.824819
10.1109/3468.844354
10.1007/s10111-015-0339-x
10.1109/HSI.2016.7529639
10.1007/s12193-020-00332-0
10.1145/3290605.3300233
10.1007/978-3-642-28509-7_10
10.1524/9783486598834
10.1007/978-3-642-21708-1_62
10.1109/HRI.2010.5453224
10.1145/3313831.3376877
10.1007/978-3-322-90890-2_3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3124990
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 4876
ExternalDocumentID 10_1109_TITS_2021_3124990
9716059
Genre orig-research
GrantInformation_xml – fundername: Audi AG
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-245284b2306373510497cda529daaf293694e27290bce76a555b45e602b576093
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 07:12:19 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 04:29:08 EDT 2025
Wed Aug 27 02:40:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-245284b2306373510497cda529daaf293694e27290bce76a555b45e602b576093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1673-9948
0000-0001-8199-565X
PQID 2659347134
PQPubID 75735
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TITS_2021_3124990
crossref_primary_10_1109_TITS_2021_3124990
proquest_journals_2659347134
ieee_primary_9716059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref31
ref30
Walter (ref2) 2019
ref33
ref10
ref32
Wahlster (ref27)
ref17
ref18
(ref20) 2010
Reinmüller (ref14) 2019
Winston (ref11) 1992
Peter (ref16) 2008; 4868
ref24
ref23
ref26
ref25
ref22
ref21
ref28
Koehler (ref13) 2018
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Parasuraman (ref19)
Siegmund (ref1)
References_xml – ident: ref10
  doi: 10.4271/j3216_202107
– ident: ref21
  doi: 10.1007/978-3-540-73331-7_14
– ident: ref8
  doi: 10.1518/001872097778543886
– ident: ref6
  doi: 10.1007/s35148-020-0332-4
– ident: ref4
  doi: 10.1177/0018720812443983
– volume-title: International Organization for Standardization, Ergonomics of Human-System Interaction—Part 110: Human Centered Design for Interactive Systems
  year: 2010
  ident: ref20
– year: 2019
  ident: ref14
  article-title: Towards the adaptation of warning driver assistance: Behavioral effects and implications
– year: 2019
  ident: ref2
  article-title: Personalization and context-sensitive user interaction of in-vehicle infotainment systems
– year: 2018
  ident: ref13
  article-title: Adaptives Informationskonzept für beanspruchende urbane Fahrsituationen
– start-page: 119
  volume-title: Proc. 3rd Int. Conf. Automat. Technol. Hum. Perform.
  ident: ref19
  article-title: Adaptive aiding and adaptive task allocation enhance human-machine interaction
– ident: ref29
  doi: 10.1109/ACII.2019.8925498
– ident: ref30
  doi: 10.1145/3313831.3376210
– ident: ref3
  doi: 10.1145/3239092.3265963
– volume-title: Artificial Intelligence
  year: 1992
  ident: ref11
– ident: ref17
  doi: 10.1177/0018720812467459
– ident: ref23
  doi: 10.1145/3301275.3302262
– ident: ref7
  doi: 10.1145/3377325.3377500
– ident: ref34
  doi: 10.1177/1529100619832930
– ident: ref15
  doi: 10.1145/503376.503433
– volume: 4868
  volume-title: Affect and Emotion in Human-Computer Interaction: From Theory to Applications
  year: 2008
  ident: ref16
  doi: 10.1007/978-3-540-85099-1
– ident: ref26
  doi: 10.1145/25065.950626
– ident: ref18
  doi: 10.1109/34.824819
– ident: ref9
  doi: 10.1109/3468.844354
– start-page: 105
  volume-title: Proc. Adjunct 5th Int. Conf. Automot. User Interfaces Interact. Veh. Appl.
  ident: ref1
  article-title: Personalized situation-adaptive user interaction in the car
– ident: ref5
  doi: 10.1007/s10111-015-0339-x
– ident: ref25
  doi: 10.1109/HSI.2016.7529639
– ident: ref31
  doi: 10.1007/s12193-020-00332-0
– ident: ref24
  doi: 10.1145/3290605.3300233
– ident: ref22
  doi: 10.1007/978-3-642-28509-7_10
– ident: ref12
  doi: 10.1524/9783486598834
– start-page: 1
  volume-title: Proc. RUIU
  ident: ref27
  article-title: An introduction to intelligent user interfaces
– ident: ref28
  doi: 10.1007/978-3-642-21708-1_62
– ident: ref33
  doi: 10.1109/HRI.2010.5453224
– ident: ref32
  doi: 10.1145/3313831.3376877
– ident: ref35
  doi: 10.1007/978-3-322-90890-2_3
SSID ssj0014511
Score 2.3935528
Snippet Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4866
SubjectTerms Adaptive algorithms
Adaptive systems
affective computing
Artificial intelligence
Automation
Automobiles
Guidelines
human–computer interaction
Intelligent systems
intelligent vehicles
interactive systems
Perception
road vehicles
Systems analysis
Task analysis
User experience
User groups
User interfaces
Vehicles
Title Adaptive User Experience in the Car-Levels of Adaptivity and Adaptive HMI Design
URI https://ieeexplore.ieee.org/document/9716059
https://www.proquest.com/docview/2659347134
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34qmJ9kYMnMXU3TXbNUXzQihXBFrwt2SQLomyLthd_vTPpdi0q4m0JCYRMHt-3M_MNwLGPvZbnznKfRI5LV0huXKS5QaihbO5ym1CicP8-6Q7l7ZN6asBpnQvjvQ_BZ75Nn8GX70Z2Sr_KzkjuCOHAEiwhcZvlatUeA9LZCtqoQnIdqbkHM4702aA3eEQmKGIkqMg26PpdeINCUZUfN3F4Xm7WoT-f2Cyq5KU9neRt-_FNs_G_M9-AtQpnsovZxtiEhi-3YHVBfbAJDxfOjOm2Y0Pch-xL9Jg9lwxxIbs0b_yOgore2ahgVW9E7cyUjtWDu_0euwpxINswvLkeXHZ5VWCBW3zlJ5y8rucyJxbSSTt4OqVOrTNKaGdMIajWn_QC4XeUW58mRimVS4VWFTnSlEh3dmC5HJV-F1gaS4vtWsY-lRZRn43TwsbCkbyLkUULovmSZ7ZSH6ciGK9ZYCGRzshKGVkpq6zUgpN6yHgmvfFX5yatet2xWvAWHMztmlWH8z0TidIdSUm0e7-P2ocVQVkOIa7xAJYnb1N_iNhjkh-FTfcJ8IrSbA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSDryrWZw6exNTdNNltjuKDVlsRbMHbkk2yIMq29HHx15tJt2tREW9LSCBkkplvdma-ATizoZW8aTS1UWAoNxmnygSSKgc1hE5NqiMsFO4-Rq0-v38RL0twUdbCWGt98pmt46eP5ZuBnuKvskukO3JwYBlWBBbjzqq1ypgBMm15dlTGqQzEPIYZBvKy1-49O1-Qhc5Fdf4GKuAFK-TbqvzQxd7A3G1Cd761WV7JW306Sev64xtr43_3vgUbBdIkV7OrsQ1LNt-B9QX-wSo8XRk1RH1H-u4mki_aY_KaE4cMybUa0Q6mFY3JICPFbIfbicoNKRe3um1y4zNBdqF_d9u7btGixQLVzs5PKMZdmzxFP6QRN9z75DLWRgkmjVIZw25_3DIHwINU2zhSQoiUCydXljpHJZCNPajkg9zuA4lDrt245KGNuXa4T4dxpkNmkOBF8awGwfzIE13wj2MbjPfE-yGBTFBKCUopKaRUg_NyyXBGvvHX5CqeejmxOPAaHM3lmhTPc5ywSMgGxzLag99XncJqq9ftJJ3248MhrDGsefBZjkdQmYym9tghkUl64i_gJxiZ1bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+User+Experience+in+the+Car-Levels+of+Adaptivity+and+Adaptive+HMI+Design&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Rittger%2C+Lena&rft.au=Engelhardt%2C+Doreen&rft.au=Schwartz%2C+Robert&rft.date=2022-05-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=5&rft.spage=4866&rft.epage=4876&rft_id=info:doi/10.1109%2FTITS.2021.3124990&rft.externalDocID=9716059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon