Adaptive User Experience in the Car-Levels of Adaptivity and Adaptive HMI Design
Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity in the vehicle context address the three main goals: Increasing safety, usability and empathy in vehicle systems. Adaptivity of systems can...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 5; pp. 4866 - 4876 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2021.3124990 |
Cover
Loading…
Abstract | Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity in the vehicle context address the three main goals: Increasing safety, usability and empathy in vehicle systems. Adaptivity of systems can be evaluated by considering the technical system features, user-interface-related features and the actual user experience of the adaptive system. We provide an overview of classifications for adaptive systems including the Levels of Adaptive Sensitive Responses (LASR). The levels differentiate the input that a system considers in its operations to adapt to user groups or to the individual user. Along with that, we propose User Experience (UX) design guidelines applicable to the different levels. In an online survey, we varied LASR and one of the UX design guidelines, namely transparency. The within-subjects study showed that both, the levels and the variation of transparency, influenced the perception of intelligence, transparency and intuitive design. However, a significant proportion of users did not understand the difference between the two LASR versions, indicating that users build mental models of systems that imply more personal data usage than the system actually employs. The LASR framework allowed this differentiation to be revealed in system performance and user perception. More research is necessary to elaborate the correlation between levels of adaptivity, UX design, specific UX design guidelines and user experience measures. |
---|---|
AbstractList | Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity in the vehicle context address the three main goals: Increasing safety, usability and empathy in vehicle systems. Adaptivity of systems can be evaluated by considering the technical system features, user-interface-related features and the actual user experience of the adaptive system. We provide an overview of classifications for adaptive systems including the Levels of Adaptive Sensitive Responses (LASR). The levels differentiate the input that a system considers in its operations to adapt to user groups or to the individual user. Along with that, we propose User Experience (UX) design guidelines applicable to the different levels. In an online survey, we varied LASR and one of the UX design guidelines, namely transparency. The within-subjects study showed that both, the levels and the variation of transparency, influenced the perception of intelligence, transparency and intuitive design. However, a significant proportion of users did not understand the difference between the two LASR versions, indicating that users build mental models of systems that imply more personal data usage than the system actually employs. The LASR framework allowed this differentiation to be revealed in system performance and user perception. More research is necessary to elaborate the correlation between levels of adaptivity, UX design, specific UX design guidelines and user experience measures. |
Author | Schwartz, Robert Rittger, Lena Engelhardt, Doreen |
Author_xml | – sequence: 1 givenname: Lena orcidid: 0000-0002-1673-9948 surname: Rittger fullname: Rittger, Lena email: lena.rittger@audi.de organization: Audi AG, Ingolstadt, Germany – sequence: 2 givenname: Doreen surname: Engelhardt fullname: Engelhardt, Doreen email: doreen.engelhardt@audi.de organization: Audi AG, Ingolstadt, Germany – sequence: 3 givenname: Robert orcidid: 0000-0001-8199-565X surname: Schwartz fullname: Schwartz, Robert email: robert.schwartz@web.de organization: Institute for Media Technology/Department of Media Production, Ilmenau University of Technology, Ilmenau, Germany |
BookMark | eNp9kMFOAjEQhhuDiYA-gPHSxPNi22279EgQhQSjiXBuuruzWoLdtS1E3t7dQDh48DSTyffNTP4B6rnaAUK3lIwoJephtVi9jxhhdJRSxpUiF6hPhRgnhFDZ63rGE0UEuUKDEDbtlAtK--htUpom2j3gdQCPZz8NeAuuAGwdjp-Ap8YnS9jDNuC6wifaxgM2rsRnef6ywI8Q7Ie7RpeV2Qa4OdUhWj_NVtN5snx9Xkwny6RgKo0J44KNec5SItMsFZRwlRWlEUyVxlQtIhUHljFF8gIyaYQQORcgCctFJolKh-j-uLfx9fcOQtSbeudde1IzKVTKM5rylsqOVOHrEDxUurDRRFu76I3dakp0F5_u4tNdfPoUX2vSP2bj7Zfxh3-du6NjAeDMq4xK0n70C32Qei4 |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1108_INTR_04_2022_0253 crossref_primary_10_3390_app131910687 crossref_primary_10_1080_10447318_2023_2215098 crossref_primary_10_1109_OJVT_2024_3447449 |
Cites_doi | 10.4271/j3216_202107 10.1007/978-3-540-73331-7_14 10.1518/001872097778543886 10.1007/s35148-020-0332-4 10.1177/0018720812443983 10.1109/ACII.2019.8925498 10.1145/3313831.3376210 10.1145/3239092.3265963 10.1177/0018720812467459 10.1145/3301275.3302262 10.1145/3377325.3377500 10.1177/1529100619832930 10.1145/503376.503433 10.1007/978-3-540-85099-1 10.1145/25065.950626 10.1109/34.824819 10.1109/3468.844354 10.1007/s10111-015-0339-x 10.1109/HSI.2016.7529639 10.1007/s12193-020-00332-0 10.1145/3290605.3300233 10.1007/978-3-642-28509-7_10 10.1524/9783486598834 10.1007/978-3-642-21708-1_62 10.1109/HRI.2010.5453224 10.1145/3313831.3376877 10.1007/978-3-322-90890-2_3 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2021.3124990 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 4876 |
ExternalDocumentID | 10_1109_TITS_2021_3124990 9716059 |
Genre | orig-research |
GrantInformation_xml | – fundername: Audi AG |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-245284b2306373510497cda529daaf293694e27290bce76a555b45e602b576093 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 07:12:19 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 04:29:08 EDT 2025 Wed Aug 27 02:40:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-245284b2306373510497cda529daaf293694e27290bce76a555b45e602b576093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1673-9948 0000-0001-8199-565X |
PQID | 2659347134 |
PQPubID | 75735 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2021_3124990 crossref_primary_10_1109_TITS_2021_3124990 proquest_journals_2659347134 ieee_primary_9716059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref34 ref15 ref31 ref30 Walter (ref2) 2019 ref33 ref10 ref32 Wahlster (ref27) ref17 ref18 (ref20) 2010 Reinmüller (ref14) 2019 Winston (ref11) 1992 Peter (ref16) 2008; 4868 ref24 ref23 ref26 ref25 ref22 ref21 ref28 Koehler (ref13) 2018 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Parasuraman (ref19) Siegmund (ref1) |
References_xml | – ident: ref10 doi: 10.4271/j3216_202107 – ident: ref21 doi: 10.1007/978-3-540-73331-7_14 – ident: ref8 doi: 10.1518/001872097778543886 – ident: ref6 doi: 10.1007/s35148-020-0332-4 – ident: ref4 doi: 10.1177/0018720812443983 – volume-title: International Organization for Standardization, Ergonomics of Human-System Interaction—Part 110: Human Centered Design for Interactive Systems year: 2010 ident: ref20 – year: 2019 ident: ref14 article-title: Towards the adaptation of warning driver assistance: Behavioral effects and implications – year: 2019 ident: ref2 article-title: Personalization and context-sensitive user interaction of in-vehicle infotainment systems – year: 2018 ident: ref13 article-title: Adaptives Informationskonzept für beanspruchende urbane Fahrsituationen – start-page: 119 volume-title: Proc. 3rd Int. Conf. Automat. Technol. Hum. Perform. ident: ref19 article-title: Adaptive aiding and adaptive task allocation enhance human-machine interaction – ident: ref29 doi: 10.1109/ACII.2019.8925498 – ident: ref30 doi: 10.1145/3313831.3376210 – ident: ref3 doi: 10.1145/3239092.3265963 – volume-title: Artificial Intelligence year: 1992 ident: ref11 – ident: ref17 doi: 10.1177/0018720812467459 – ident: ref23 doi: 10.1145/3301275.3302262 – ident: ref7 doi: 10.1145/3377325.3377500 – ident: ref34 doi: 10.1177/1529100619832930 – ident: ref15 doi: 10.1145/503376.503433 – volume: 4868 volume-title: Affect and Emotion in Human-Computer Interaction: From Theory to Applications year: 2008 ident: ref16 doi: 10.1007/978-3-540-85099-1 – ident: ref26 doi: 10.1145/25065.950626 – ident: ref18 doi: 10.1109/34.824819 – ident: ref9 doi: 10.1109/3468.844354 – start-page: 105 volume-title: Proc. Adjunct 5th Int. Conf. Automot. User Interfaces Interact. Veh. Appl. ident: ref1 article-title: Personalized situation-adaptive user interaction in the car – ident: ref5 doi: 10.1007/s10111-015-0339-x – ident: ref25 doi: 10.1109/HSI.2016.7529639 – ident: ref31 doi: 10.1007/s12193-020-00332-0 – ident: ref24 doi: 10.1145/3290605.3300233 – ident: ref22 doi: 10.1007/978-3-642-28509-7_10 – ident: ref12 doi: 10.1524/9783486598834 – start-page: 1 volume-title: Proc. RUIU ident: ref27 article-title: An introduction to intelligent user interfaces – ident: ref28 doi: 10.1007/978-3-642-21708-1_62 – ident: ref33 doi: 10.1109/HRI.2010.5453224 – ident: ref32 doi: 10.1145/3313831.3376877 – ident: ref35 doi: 10.1007/978-3-322-90890-2_3 |
SSID | ssj0014511 |
Score | 2.3935528 |
Snippet | Advancements in driver state detection and artificial intelligence allow for more and more user-centred and individual experiences. Intelligence and adaptivity... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4866 |
SubjectTerms | Adaptive algorithms Adaptive systems affective computing Artificial intelligence Automation Automobiles Guidelines human–computer interaction Intelligent systems intelligent vehicles interactive systems Perception road vehicles Systems analysis Task analysis User experience User groups User interfaces Vehicles |
Title | Adaptive User Experience in the Car-Levels of Adaptivity and Adaptive HMI Design |
URI | https://ieeexplore.ieee.org/document/9716059 https://www.proquest.com/docview/2659347134 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6qJz34qmJ9kYMnMXU3TXbNUXzQihXBFrwt2SQLomyLthd_vTPpdi0q4m0JCYRMHt-3M_MNwLGPvZbnznKfRI5LV0huXKS5QaihbO5ym1CicP8-6Q7l7ZN6asBpnQvjvQ_BZ75Nn8GX70Z2Sr_KzkjuCOHAEiwhcZvlatUeA9LZCtqoQnIdqbkHM4702aA3eEQmKGIkqMg26PpdeINCUZUfN3F4Xm7WoT-f2Cyq5KU9neRt-_FNs_G_M9-AtQpnsovZxtiEhi-3YHVBfbAJDxfOjOm2Y0Pch-xL9Jg9lwxxIbs0b_yOgore2ahgVW9E7cyUjtWDu_0euwpxINswvLkeXHZ5VWCBW3zlJ5y8rucyJxbSSTt4OqVOrTNKaGdMIajWn_QC4XeUW58mRimVS4VWFTnSlEh3dmC5HJV-F1gaS4vtWsY-lRZRn43TwsbCkbyLkUULovmSZ7ZSH6ciGK9ZYCGRzshKGVkpq6zUgpN6yHgmvfFX5yatet2xWvAWHMztmlWH8z0TidIdSUm0e7-P2ocVQVkOIa7xAJYnb1N_iNhjkh-FTfcJ8IrSbA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSDryrWZw6exNTdNNltjuKDVlsRbMHbkk2yIMq29HHx15tJt2tREW9LSCBkkplvdma-ATizoZW8aTS1UWAoNxmnygSSKgc1hE5NqiMsFO4-Rq0-v38RL0twUdbCWGt98pmt46eP5ZuBnuKvskukO3JwYBlWBBbjzqq1ypgBMm15dlTGqQzEPIYZBvKy1-49O1-Qhc5Fdf4GKuAFK-TbqvzQxd7A3G1Cd761WV7JW306Sev64xtr43_3vgUbBdIkV7OrsQ1LNt-B9QX-wSo8XRk1RH1H-u4mki_aY_KaE4cMybUa0Q6mFY3JICPFbIfbicoNKRe3um1y4zNBdqF_d9u7btGixQLVzs5PKMZdmzxFP6QRN9z75DLWRgkmjVIZw25_3DIHwINU2zhSQoiUCydXljpHJZCNPajkg9zuA4lDrt245KGNuXa4T4dxpkNmkOBF8awGwfzIE13wj2MbjPfE-yGBTFBKCUopKaRUg_NyyXBGvvHX5CqeejmxOPAaHM3lmhTPc5ywSMgGxzLag99XncJqq9ftJJ3248MhrDGsefBZjkdQmYym9tghkUl64i_gJxiZ1bQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+User+Experience+in+the+Car-Levels+of+Adaptivity+and+Adaptive+HMI+Design&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Rittger%2C+Lena&rft.au=Engelhardt%2C+Doreen&rft.au=Schwartz%2C+Robert&rft.date=2022-05-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=5&rft.spage=4866&rft.epage=4876&rft_id=info:doi/10.1109%2FTITS.2021.3124990&rft.externalDocID=9716059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |