Compact Mixed-Signal Convolutional Neural Network Using a Single Modular Neuron

This paper demonstrates a compact mixed-signal (MS) convolutional neural network (CNN) design procedure by proposing a MS modular neuron unit that alleviates analog circuit related design issues such as noise. Through the first step of the proposed procedure, we design a CNN in software with a minim...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 67; no. 12; pp. 5189 - 5199
Main Authors Chang, Dong-Jin, Nam, Byeong-Gyu, Ryu, Seung-Tak
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper demonstrates a compact mixed-signal (MS) convolutional neural network (CNN) design procedure by proposing a MS modular neuron unit that alleviates analog circuit related design issues such as noise. Through the first step of the proposed procedure, we design a CNN in software with a minimized number of channels for each layer while satisfying the network performance to the target, which creates low representational and computational cost. Then, the network is reconstructed and retrained with a single modular neuron that is recursively utilized for the entire network for the maximum hardware efficiency with a fixed number of parameters that consider signal attenuation. For the last step of the proposed procedure, the parameters of the networks are quantized to an implementable level of MS neurons. We designed the networks for MNIST and Cifar-10 and achieved compact CNNs with a single MS neuron with 97% accuracy for MNIST and 85% accuracy for Cifar-10 whose representational cost and computational cost are reduced to least two times smaller than prior works. The estimated energy per classification of the hardware network for Cifar-10 with a single MS neuron, designed with optimum noise and matching requirements, is <inline-formula> <tex-math notation="LaTeX">0.5\mu </tex-math></inline-formula> J, which is five times smaller than its digital counterpart.
AbstractList This paper demonstrates a compact mixed-signal (MS) convolutional neural network (CNN) design procedure by proposing a MS modular neuron unit that alleviates analog circuit related design issues such as noise. Through the first step of the proposed procedure, we design a CNN in software with a minimized number of channels for each layer while satisfying the network performance to the target, which creates low representational and computational cost. Then, the network is reconstructed and retrained with a single modular neuron that is recursively utilized for the entire network for the maximum hardware efficiency with a fixed number of parameters that consider signal attenuation. For the last step of the proposed procedure, the parameters of the networks are quantized to an implementable level of MS neurons. We designed the networks for MNIST and Cifar-10 and achieved compact CNNs with a single MS neuron with 97% accuracy for MNIST and 85% accuracy for Cifar-10 whose representational cost and computational cost are reduced to least two times smaller than prior works. The estimated energy per classification of the hardware network for Cifar-10 with a single MS neuron, designed with optimum noise and matching requirements, is [Formula Omitted] J, which is five times smaller than its digital counterpart.
This paper demonstrates a compact mixed-signal (MS) convolutional neural network (CNN) design procedure by proposing a MS modular neuron unit that alleviates analog circuit related design issues such as noise. Through the first step of the proposed procedure, we design a CNN in software with a minimized number of channels for each layer while satisfying the network performance to the target, which creates low representational and computational cost. Then, the network is reconstructed and retrained with a single modular neuron that is recursively utilized for the entire network for the maximum hardware efficiency with a fixed number of parameters that consider signal attenuation. For the last step of the proposed procedure, the parameters of the networks are quantized to an implementable level of MS neurons. We designed the networks for MNIST and Cifar-10 and achieved compact CNNs with a single MS neuron with 97% accuracy for MNIST and 85% accuracy for Cifar-10 whose representational cost and computational cost are reduced to least two times smaller than prior works. The estimated energy per classification of the hardware network for Cifar-10 with a single MS neuron, designed with optimum noise and matching requirements, is <inline-formula> <tex-math notation="LaTeX">0.5\mu </tex-math></inline-formula> J, which is five times smaller than its digital counterpart.
Author Nam, Byeong-Gyu
Chang, Dong-Jin
Ryu, Seung-Tak
Author_xml – sequence: 1
  givenname: Dong-Jin
  surname: Chang
  fullname: Chang, Dong-Jin
  email: yourange@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 2
  givenname: Byeong-Gyu
  orcidid: 0000-0003-0069-1959
  surname: Nam
  fullname: Nam, Byeong-Gyu
  email: bgnam@cnu.ac.kr
  organization: Department of Science and Engineering, Chungnam National University, Daejeon, South Korea
– sequence: 3
  givenname: Seung-Tak
  orcidid: 0000-0002-6947-7785
  surname: Ryu
  fullname: Ryu, Seung-Tak
  email: stryu@kaist.ac.kr
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
BookMark eNo9kMtuwjAQRa2KSgXaD6i6idR16PiRxF5WUR9IUBbA2nKSCQoNMbWTPv6-SUFd3Rnp3NHoTMiosQ0SckthRimoh026ns8YMJhxgESI5IKMaRTJECTEo2EWKpScySsy8X4PwBRwOiar1B6OJm-DZfWNRbiudo2pg9Q2n7bu2soO2xt27i_aL-veg62vml1ggnUfNQZLW3S1cX-Uba7JZWlqjzfnnJLt89MmfQ0Xq5d5-rgIc6Z4GzKOkMTATBwDJmBiFlHJUJaY5VFZMiOMLKCAEkTGqAAhIFM8QUULNBkt-JTcn-4enf3o0Ld6bzvXf-s1E3HCVMwk7Sl6onJnvXdY6qOrDsb9aAp68KYHb3rwps_e-s7dqVMh4j-vaMQoj_gvxb9qWw
CODEN ITCSCH
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3106658
Cites_doi 10.1109/JSSC.2018.2869150
10.1049/el.2014.3995
10.1109/ASSCC.2008.4708780
10.1109/ISSCC.2016.7418008
10.1038/nature14539
10.1109/JSSC.2016.2563780
10.1109/JSSC.2013.2278471
10.1038/nature16961
10.1109/4.104196
10.1109/ISSCC.2017.7870350
10.1109/JSSC.2016.2599536
10.1109/ACSSC.2015.7421361
10.1109/JSSC.2017.2712626
10.1109/VLSIC.2018.8502421
10.1109/JSSC.2016.2642198
10.1109/TCSI.2016.2600663
10.1109/ISSCC.2017.7870467
10.1007/978-3-030-01237-3_23
10.1109/TBCAS.2015.2500101
10.1162/neco.1996.8.3.643
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2020.3007447
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 5199
ExternalDocumentID 10_1109_TCSI_2020_3007447
9152135
Genre orig-research
GrantInformation_xml – fundername: Samsung Research Funding Center of Samsung Electronics
  grantid: SRFC-IT1502-04
  funderid: 10.13039/100004358
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RIG
RNS
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-23e07602a660e70a625182e8febc5ff2a4a8d0d0f04b2140440b937e91deab1d3
IEDL.DBID RIE
ISSN 1549-8328
IngestDate Thu Oct 10 16:14:32 EDT 2024
Fri Aug 23 01:04:38 EDT 2024
Wed Jun 26 19:26:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-23e07602a660e70a625182e8febc5ff2a4a8d0d0f04b2140440b937e91deab1d3
ORCID 0000-0002-6947-7785
0000-0003-0069-1959
PQID 2467296281
PQPubID 85411
PageCount 11
ParticipantIDs proquest_journals_2467296281
ieee_primary_9152135
crossref_primary_10_1109_TCSI_2020_3007447
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bankman (ref9) 2018
ref34
ref12
ref15
he (ref24) 2015
ref14
ref31
tan (ref22) 2019
ref33
ref11
ref32
ref10
howard (ref23) 2017
krizhevsky (ref2) 2012; 25
ref17
ref16
ref19
ref18
silver (ref3) 2016; 529
sakr (ref21) 2017; 70
chen (ref4) 2015
ioffe (ref25) 2015
bishop (ref13) 2006
le cun (ref1) 2015; 521
ref20
kull (ref30) 2013
jung (ref28) 2018
ref27
ref7
ref6
whatmough (ref29) 2017
ref5
courbariaux (ref8) 2016
zhou (ref26) 2016
References_xml – ident: ref10
  doi: 10.1109/JSSC.2018.2869150
– ident: ref17
  doi: 10.1049/el.2014.3995
– ident: ref34
  doi: 10.1109/ASSCC.2008.4708780
– ident: ref5
  doi: 10.1109/ISSCC.2016.7418008
– volume: 521
  start-page: 436
  year: 2015
  ident: ref1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: le cun
– year: 2015
  ident: ref25
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
  contributor:
    fullname: ioffe
– volume: 70
  start-page: 3007
  year: 2017
  ident: ref21
  article-title: Analytical guarantees on numerical precision of deep neural networks
  publication-title: Proc 34th Int Conf Mach Learn
  contributor:
    fullname: sakr
– year: 2016
  ident: ref8
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1
  publication-title: arXiv 1602 02830 [cs]
  contributor:
    fullname: courbariaux
– ident: ref33
  doi: 10.1109/JSSC.2016.2563780
– start-page: 242
  year: 2017
  ident: ref29
  article-title: A 28nm SoC with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with >0.1 timing error rate tolerance for IoT applications
  publication-title: IEEE ISSCC Dig Tech Papers
  contributor:
    fullname: whatmough
– ident: ref19
  doi: 10.1109/JSSC.2013.2278471
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref2
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: krizhevsky
– volume: 529
  start-page: 484
  year: 2016
  ident: ref3
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
  contributor:
    fullname: silver
– ident: ref14
  doi: 10.1109/4.104196
– year: 2015
  ident: ref24
  article-title: Deep residual learning for image recognition
  publication-title: arXiv 1512 03385
  contributor:
    fullname: he
– start-page: 468
  year: 2013
  ident: ref30
  article-title: A 3.1 mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS
  publication-title: IEEE ISSCC Dig Tech Papers
  contributor:
    fullname: kull
– ident: ref7
  doi: 10.1109/ISSCC.2017.7870350
– year: 2019
  ident: ref22
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: arXiv 1905 11946
  contributor:
    fullname: tan
– ident: ref18
  doi: 10.1109/JSSC.2016.2599536
– ident: ref20
  doi: 10.1109/ACSSC.2015.7421361
– year: 2016
  ident: ref26
  article-title: DoReFa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients
  publication-title: arXiv 1606 06160 [cs]
  contributor:
    fullname: zhou
– ident: ref11
  doi: 10.1109/JSSC.2017.2712626
– ident: ref12
  doi: 10.1109/VLSIC.2018.8502421
– year: 2017
  ident: ref23
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
  contributor:
    fullname: howard
– ident: ref15
  doi: 10.1109/JSSC.2016.2642198
– ident: ref6
  doi: 10.1109/TCSI.2016.2600663
– ident: ref31
  doi: 10.1109/ISSCC.2017.7870467
– year: 2015
  ident: ref4
  article-title: Compressing neural networks with the hashing trick
  publication-title: arXiv 1504 04788
  contributor:
    fullname: chen
– year: 2006
  ident: ref13
  publication-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: bishop
– year: 2018
  ident: ref28
  article-title: Learning to quantize deep networks by optimizing quantization intervals with task loss
  publication-title: arXiv 1808 05779
  contributor:
    fullname: jung
– ident: ref27
  doi: 10.1007/978-3-030-01237-3_23
– start-page: 222
  year: 2018
  ident: ref9
  article-title: An always-on 3.8 ?J/86% CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS
  publication-title: IEEE ISSCC Dig Tech Papers
  contributor:
    fullname: bankman
– ident: ref16
  doi: 10.1109/TBCAS.2015.2500101
– ident: ref32
  doi: 10.1162/neco.1996.8.3.643
SSID ssj0029031
Score 2.357093
Snippet This paper demonstrates a compact mixed-signal (MS) convolutional neural network (CNN) design procedure by proposing a MS modular neuron unit that alleviates...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 5189
SubjectTerms Accuracy
Analog circuits
Artificial neural networks
Attenuation
Biological neural networks
Circuit design
compact neural network
computational cost
Computational efficiency
Computing costs
Convolution
convolutional neural network
Deep neural network
Design
Hardware
mixed-signal neuron
modular neuron
Modular units
network retraining
Neural networks
Neurons
Parameters
representational cost
Software
Title Compact Mixed-Signal Convolutional Neural Network Using a Single Modular Neuron
URI https://ieeexplore.ieee.org/document/9152135
https://www.proquest.com/docview/2467296281
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGTnDgNRCDgXrghMiWplnTHNHENJAGh23SblVeRROoRdAhxK8nSbtpAg6c0kpJFdmu7S92bIBLRUWoFVUooyxD1DrUKJGao74UiQ6ForHvdTh-iEczej_vzxtwvb4LY4zxyWem6x59LF8XaumOynrcGZuovwVbjPPqrtYaXHEcVbVRKUdWSpM6ghli3psOJncWCRILUJ3FdJ1UNmyQb6rySxN78zLcg_FqY1VWyXN3Wcqu-vpRs_G_O9-H3drPDG4qwTiAhskPYWej-mALHr0uUGUwXnwajSaLJ7diUOQftTjaN1e7ww8-WTzwCQaBCCZ2eDHBuNAui9XPKvIjmA1vp4MRqvsrIGWNfIlIZFxcjog4xoZhYaGQRRsmyYxU_Swjglp-YY0zTCVxZXgoltabMTzURshQR8fQzIvcnEAQZowowWKpGKaacWkkZpplOooTTWTYhqsVxdPXqoxG6uEH5qljT-rYk9bsaUPLUXA9sSZeGzorHqX1j_aeEqvoCY9JEp7-veoMtt23qwyUDjTLt6U5t35EKS-8AH0DJzbEnw
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgB44ITLSNGubI5pAG6xw2JC4VXkVTaAWQYcQv54k7aYJOHBKKyVqZLu2v9ixAU4l5b6SVKKMRhmixqFGsVAMdQWPlc8lDV2vw-Qu7D_Qm8fuYwPO53dhtNYu-Ux37KOL5atCTu1R2QWzxiboLsGy8avjsLqtNYdXDAdVdVTKkJHTuI5h-phdjHujgcGCxEBUazNtL5UFK-TaqvzSxc7AXG9AMttalVfy3JmWoiO_flRt_O_eN2G99jS9y0o0tqCh821YW6g_uAP3ThvI0ksmn1qh0eTJrugV-UctkObNVu9wg0sX91yKgce9kRletJcUyuaxullFvgsP11fjXh_VHRaQNGa-RCTQNjJHeBhiHWFuwJDBGzrOtJDdLCOcGo5hhTNMBbGFeCgWxp_RzFeaC18Fe9DMi1zvg-dnEZE8CoWMMFURE1rgSEWZCsJYEeG34GxG8fS1KqSROgCCWWrZk1r2pDV7WrBjKTifWBOvBe0Zj9L6V3tPiVH1hIUk9g_-XnUCK_1xMkyHg7vbQ1i136nyUdrQLN-m-sh4FaU4dsL0DZxkx-o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+Mixed-Signal+Convolutional+Neural+Network+Using+a+Single+Modular+Neuron&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Chang%2C+Dong-Jin&rft.au=Nam%2C+Byeong-Gyu&rft.au=Ryu%2C+Seung-Tak&rft.date=2020-12-01&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=67&rft.issue=12&rft.spage=5189&rft.epage=5199&rft_id=info:doi/10.1109%2FTCSI.2020.3007447&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSI_2020_3007447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon