DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for On-Chip Training
DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit level and up to algorithm level. A python wrapper is developed to interface NeuroSim with a popular machine learning plat...
Saved in:
Published in | IEEE transactions on computer-aided design of integrated circuits and systems Vol. 40; no. 11; pp. 2306 - 2319 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0070 1937-4151 |
DOI | 10.1109/TCAD.2020.3043731 |
Cover
Loading…
Abstract | DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit level and up to algorithm level. A python wrapper is developed to interface NeuroSim with a popular machine learning platform: Pytorch, to support flexible network structures. The framework provides automatic algorithm-to-hardware mapping, and evaluates chip-level area, energy efficiency and throughput for training or inference, as well as training/inference accuracy with hardware constraints. Our prior inference version of DNN+NeuroSim framework available at https://github.com/neurosim/DNN_NeuroSim_V1.2 was developed to estimate the impact of reliability in synaptic devices, and analog-to-digital converter (ADC) quantization loss on the accuracy and hardware performance of an inference engine. In this work, we further investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s nonideal device properties for on-chip training. By introducing the nonlinearity, asymmetry, device-to-device and cycle-to-cycle variation of weight update into the python wrapper, and peripheral circuits for error/weight gradient computation in NeuroSim core, we benchmarked CIM accelerators based on state-of-the-art SRAM and eNVM devices for VGG-8 on CIFAR-10 dataset, revealing the crucial specs of synaptic devices for on-chip training. The latest training version of the DNN+NeuroSim framework is available at https://github.com/neurosim/DNN_NeuroSim_V2.1 . |
---|---|
AbstractList | DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit level and up to algorithm level. A python wrapper is developed to interface NeuroSim with a popular machine learning platform: Pytorch, to support flexible network structures. The framework provides automatic algorithm-to-hardware mapping, and evaluates chip-level area, energy efficiency and throughput for training or inference, as well as training/inference accuracy with hardware constraints. Our prior inference version of DNN+NeuroSim framework available at https://github.com/neurosim/DNN_NeuroSim_V1.2 was developed to estimate the impact of reliability in synaptic devices, and analog-to-digital converter (ADC) quantization loss on the accuracy and hardware performance of an inference engine. In this work, we further investigated the impact of the “analog” emerging nonvolatile memory (eNVM)’s nonideal device properties for on-chip training. By introducing the nonlinearity, asymmetry, device-to-device and cycle-to-cycle variation of weight update into the python wrapper, and peripheral circuits for error/weight gradient computation in NeuroSim core, we benchmarked CIM accelerators based on state-of-the-art SRAM and eNVM devices for VGG-8 on CIFAR-10 dataset, revealing the crucial specs of synaptic devices for on-chip training. The latest training version of the DNN+NeuroSim framework is available at https://github.com/neurosim/DNN_NeuroSim_V2.1 . |
Author | Peng, Xiaochen Lu, Anni Huang, Shanshi Yu, Shimeng Jiang, Hongwu |
Author_xml | – sequence: 1 givenname: Xiaochen orcidid: 0000-0001-6148-7711 surname: Peng fullname: Peng, Xiaochen email: xpeng76@gatech.edu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 2 givenname: Shanshi orcidid: 0000-0002-1760-7656 surname: Huang fullname: Huang, Shanshi organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 3 givenname: Hongwu orcidid: 0000-0002-3048-5948 surname: Jiang fullname: Jiang, Hongwu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 4 givenname: Anni orcidid: 0000-0002-4415-0866 surname: Lu fullname: Lu, Anni organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA – sequence: 5 givenname: Shimeng orcidid: 0000-0002-0068-3652 surname: Yu fullname: Yu, Shimeng organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA |
BookMark | eNp9kDtPwzAUhS0EEuXxAxCLJUbk4EcSx2whLQ8JykBhjYxzA24buziJUP89KUUMDOgOZznfObrnAO067wChE0Yjxqi6mBX5OOKU00jQWEjBdtCIKSFJzBK2i0aUy4xQKuk-OmjbOaUsTrgaIT-eTs-n0Af_ZBv8wiN6iXOHJ64inSeD4Ctw5r3RYWHdG74OuoFPHxa49gEXvln1HRDryAM0PqxxbgwsIejOh_bb8uhI8W5XeBa0dUPCEdqr9bKF4x89RM_Xk1lxS-4fb-6K_J4YrkRHOGevqlYJjcGwTGUmrSpeQ8YTISGG1Ig6Sas61hkHlkEKRsY6FVILKWkFTByis23uKviPHtqunPs-uKGy5EkmUqFSxQcX27pM8G0boC5XwQ6_rktGy82u5WbXcrNr-bPrwMg_jLGd7qx33fDj8l_ydEtaAPhtUnw4ycQXSfaFyA |
CODEN | ITCSDI |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_126205 crossref_primary_10_1109_ACCESS_2023_3324375 crossref_primary_10_1002_admt_202302238 crossref_primary_10_1109_TETC_2022_3223630 crossref_primary_10_1021_acsnano_3c03505 crossref_primary_10_1038_s41586_024_08253_8 crossref_primary_10_1109_TCAD_2024_3358220 crossref_primary_10_1002_adma_202206864 crossref_primary_10_1002_admt_202201772 crossref_primary_10_1038_s41467_023_36270_0 crossref_primary_10_1021_acs_nanolett_1c03169 crossref_primary_10_1088_2634_4386_ad29fc crossref_primary_10_1109_TVLSI_2024_3439231 crossref_primary_10_1109_JETCAS_2023_3328864 crossref_primary_10_1109_JSSC_2024_3399615 crossref_primary_10_1016_j_jfranklin_2024_107363 crossref_primary_10_1109_TNANO_2023_3296673 crossref_primary_10_1016_j_nanoen_2024_109473 crossref_primary_10_1109_JETCAS_2023_3243619 crossref_primary_10_3389_fnins_2022_775457 crossref_primary_10_1109_TCSI_2021_3097282 crossref_primary_10_1002_adfm_202419179 crossref_primary_10_1016_j_nantod_2024_102534 crossref_primary_10_1038_s41928_023_00939_7 crossref_primary_10_1109_TCAD_2024_3435762 crossref_primary_10_1002_adma_202413178 crossref_primary_10_1145_3665898 crossref_primary_10_1109_JIOT_2024_3395496 crossref_primary_10_1109_TETC_2023_3237778 crossref_primary_10_1002_adma_202300023 crossref_primary_10_1145_3656171 crossref_primary_10_1016_j_memori_2023_100066 crossref_primary_10_1109_TCAD_2024_3485589 crossref_primary_10_1038_s41378_022_00390_2 crossref_primary_10_1145_3500929 crossref_primary_10_1021_acsami_4c10687 crossref_primary_10_1002_sstr_202400319 crossref_primary_10_1109_TED_2021_3102896 crossref_primary_10_3390_jlpea12010010 crossref_primary_10_1021_acsaelm_2c00289 crossref_primary_10_1109_TBCAS_2021_3108354 crossref_primary_10_1016_j_apsusc_2022_155956 crossref_primary_10_1002_adma_202303664 crossref_primary_10_1002_advs_202200168 crossref_primary_10_1038_s41598_024_73439_z crossref_primary_10_1002_advs_202200566 crossref_primary_10_1021_acsnano_4c06942 crossref_primary_10_1109_TNNLS_2023_3327906 crossref_primary_10_1126_sciadv_adg9123 crossref_primary_10_1108_IJWIS_08_2023_0131 crossref_primary_10_1145_3569940 crossref_primary_10_1038_s41378_021_00305_7 crossref_primary_10_1109_TCSII_2023_3240474 crossref_primary_10_1109_JETCAS_2022_3207687 crossref_primary_10_1109_JETCAS_2023_3321107 crossref_primary_10_1038_s41598_023_42214_x crossref_primary_10_1109_MED_2023_3296084 crossref_primary_10_1038_s41598_024_80272_x crossref_primary_10_1109_TCAD_2022_3172907 crossref_primary_10_1038_s41467_025_58039_3 crossref_primary_10_1007_s40820_024_01579_y crossref_primary_10_1109_TMAG_2023_3315283 crossref_primary_10_1109_TVLSI_2021_3063543 crossref_primary_10_1002_adma_202110343 crossref_primary_10_1016_j_neunet_2023_01_008 crossref_primary_10_1145_3617894 crossref_primary_10_1038_s41467_023_41419_y crossref_primary_10_3390_electronics10060689 crossref_primary_10_1109_TCSI_2021_3072200 crossref_primary_10_1039_D4MH00716F crossref_primary_10_1002_adfm_202313010 crossref_primary_10_1002_smll_202412761 crossref_primary_10_1016_j_mejo_2025_106598 crossref_primary_10_3389_fnins_2021_761127 crossref_primary_10_1007_s10462_024_10787_2 crossref_primary_10_3390_electronics13061121 crossref_primary_10_1109_TPDS_2024_3522781 crossref_primary_10_3389_fncom_2023_1274575 crossref_primary_10_1038_s41928_024_01328_4 crossref_primary_10_1007_s11432_023_4021_y crossref_primary_10_1039_D3NR00510K crossref_primary_10_1038_s41928_024_01269_y crossref_primary_10_1021_acsaelm_3c01420 crossref_primary_10_1002_aisy_202300125 crossref_primary_10_1038_s41467_023_41958_4 crossref_primary_10_1016_j_neucom_2022_02_043 crossref_primary_10_1021_acsnano_3c09595 crossref_primary_10_1126_sciadv_adh9889 crossref_primary_10_1007_s11571_024_10069_1 crossref_primary_10_1016_j_neucom_2024_129210 crossref_primary_10_1016_j_neunet_2024_106312 crossref_primary_10_1186_s11671_022_03701_8 crossref_primary_10_1016_j_vlsi_2024_102225 crossref_primary_10_1109_JSSC_2023_3269098 crossref_primary_10_1109_TCAD_2023_3262201 crossref_primary_10_1021_acsaelm_0c00499 crossref_primary_10_1109_TED_2022_3179460 crossref_primary_10_1109_JETCAS_2022_3214334 crossref_primary_10_1109_JSSC_2021_3108344 crossref_primary_10_1109_TCSI_2024_3430290 crossref_primary_10_1038_s44335_024_00001_5 crossref_primary_10_1126_sciadv_abm8537 crossref_primary_10_2139_ssrn_4721109 crossref_primary_10_1002_adma_202102980 crossref_primary_10_1021_acsami_3c18146 crossref_primary_10_3390_app142311198 crossref_primary_10_1109_TVLSI_2024_3472270 |
Cites_doi | 10.1109/JPROC.2018.2790840 10.1109/TED.2015.2439635 10.1109/ISCAS45731.2020.9181020 10.1109/ISCAS.2019.8702715 10.1109/IEDM.2013.6724692 10.1109/IEDM19573.2019.8993491 10.1109/DAC18072.2020.9218524 10.1109/ISCAS.2016.7539046 10.1038/s41563-017-0001-5 10.1021/nl904092h 10.1109/IRPS.2018.8353615 10.1109/LED.2016.2582859 10.1109/TCAD.2018.2789723 10.1109/IEDM.2017.8268338 10.1109/TC.2020.2980533 10.1109/TCSI.2019.2958568 10.1109/IEDM.2018.8614551 10.1109/ESSDERC.2016.7599680 10.23919/VLSIT.2019.8776551 10.1109/ICRC.2016.7738684 10.1109/VLSIT.2018.8510690 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCAD.2020.3043731 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-4151 |
EndPage | 2319 |
ExternalDocumentID | 10_1109_TCAD_2020_3043731 9292971 |
Genre | orig-research |
GrantInformation_xml | – fundername: ASCENT, one of the SRC/DARPA JUMP centers, NSF/SRC E2CDA program grantid: NSF-CCF-1903951 funderid: 10.13039/100000185 |
GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-221b9f9504ec1898c6dd2fe82537e4e6c3f56df4a82e18e6ec74a637a3770de13 |
IEDL.DBID | RIE |
ISSN | 0278-0070 |
IngestDate | Mon Jun 30 10:14:05 EDT 2025 Tue Jul 01 00:30:52 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Aug 27 02:26:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-221b9f9504ec1898c6dd2fe82537e4e6c3f56df4a82e18e6ec74a637a3770de13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6148-7711 0000-0002-0068-3652 0000-0002-3048-5948 0000-0002-4415-0866 0000-0002-1760-7656 |
PQID | 2583639692 |
PQPubID | 85470 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TCAD_2020_3043731 ieee_primary_9292971 crossref_primary_10_1109_TCAD_2020_3043731 proquest_journals_2583639692 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
PublicationTitleAbbrev | TCAD |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref10 ref2 ref1 ref17 ref16 (ref11) 2016 ref24 ref23 wu (ref8) 2018 ref25 ref20 ref22 ref21 seo (ref18) 2011 huang (ref19) 2020 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1109/JPROC.2018.2790840 – ident: ref22 doi: 10.1109/TED.2015.2439635 – start-page: 1 year: 2018 ident: ref8 article-title: Training and inference with integers in deep neural networks publication-title: Proc Int Conf Learn Represent (ICLR) – ident: ref14 doi: 10.1109/ISCAS45731.2020.9181020 – ident: ref10 doi: 10.1109/ISCAS.2019.8702715 – ident: ref24 doi: 10.1109/IEDM.2013.6724692 – ident: ref7 doi: 10.1109/IEDM19573.2019.8993491 – ident: ref13 doi: 10.1109/DAC18072.2020.9218524 – ident: ref17 doi: 10.1109/ISCAS.2016.7539046 – ident: ref4 doi: 10.1038/s41563-017-0001-5 – ident: ref23 doi: 10.1021/nl904092h – ident: ref9 doi: 10.1109/IRPS.2018.8353615 – start-page: 1025 year: 2020 ident: ref19 article-title: Overcoming challenges for achieving high in-situ training accuracy with emerging memories publication-title: Proc Design Autom Testing of Europe (DATE) – ident: ref25 doi: 10.1109/LED.2016.2582859 – ident: ref12 doi: 10.1109/TCAD.2018.2789723 – ident: ref6 doi: 10.1109/IEDM.2017.8268338 – ident: ref15 doi: 10.1109/TC.2020.2980533 – ident: ref16 doi: 10.1109/TCSI.2019.2958568 – ident: ref5 doi: 10.1109/IEDM.2018.8614551 – year: 2016 ident: ref11 publication-title: ASU PTM Model – ident: ref20 doi: 10.1109/ESSDERC.2016.7599680 – ident: ref3 doi: 10.23919/VLSIT.2019.8776551 – ident: ref21 doi: 10.1109/ICRC.2016.7738684 – ident: ref2 doi: 10.1109/VLSIT.2018.8510690 – start-page: 1 year: 2011 ident: ref18 article-title: A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons publication-title: Proc IEEE Custom Integr Circuits Conf (CICC) |
SSID | ssj0014529 |
Score | 2.6475348 |
Snippet | DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2306 |
SubjectTerms | Accelerators Algorithms Analog to digital conversion Analog to digital converters Artificial neural networks Benchmark testing Circuit design Common Information Model (computing) Computer architecture Computer memory Deep learning emerging nonvolatile memory (eNVM) Hardware hardware accelerator in-memory computing Inference Integrated circuit modeling Machine learning Microprocessors on-chip training System-on-chip Training Weight |
Title | DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for On-Chip Training |
URI | https://ieeexplore.ieee.org/document/9292971 https://www.proquest.com/docview/2583639692 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAEz1QHkVsC8gHTqVe4kecmNvyWKFKuz2wVNwix5loV5QsKtlD-fWMvd5VaRHiFB_GUaJvkpnxzHxDyFGthZKQG5bJWjCVcstsIhXLS-GMzWrBKx8oDob66kZ9v01vV8i3ZS8MAITiM-j6ZcjlV1M380dlJ2jKhfEN46sYuM17tZYZA59ADOcpnjEW9ThmMHliTkb4UhgJCgxQA5MPf2GDwlCV__7Ewbz0P5LB4sHmVSV33Vlbdt3TP5yN733yTbIR_UzamyvGFlmBZpt8-It9cIdML4bD40DOcT25pz9FNzmlvYZeNhVrpwwv9AxVeHxvw3E67S_KuCj6uTROg2CThg18se4f2nMOTVjI2j8GkR8NOx9PHugoTqH4RG76l6PzKxbnLzCHTkDLhOClqU2aKHA8N7nTVSVqwJhSZqBAO1mnuqqVzQXwHDS4TFktMyuzLKmAy12y1kwb2CPUlDwpUciIMle4tMJwpzPABd4dbIckC0QKF8nJ_YyMX0UIUhJTeBALD2IRQeyQr8stD3NmjreEdzwoS8GIR4fsL2Av4rf7WIg0l-i3aSM-v77rC1kXvrIldCTuk7X29wwO0DVpy8Ogk88j_d1h |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAceBXUQIE9cAI29T689nILpVGAJhxIUW_Wej1WI6hTUecAv57ZzSbiJcTJe5i1bH1jz8zOzDcAz1ojtcLS8kK1kutcOO4ypXlZS29d0UrRhEBxOjOTU_3uLD_bgZfbXhhEjMVnOAzLmMtvln4VjsoOyZRLGxrGr-WhGXfdrbXNGYQUYjxRCZyxpMkphykyezin16JYUFKIGrl8xC9WKI5V-eNfHA3M-DZMN4-2riv5PFz19dB__4218X-f_Q7cSp4mG61V4y7sYHcPbv7EP7gHyzez2YtIz_FxccE-yWH2io06dtw1vF9yurDXpMTnFy4eqLPxppCLkafL0jwIvuj4NJTrfmMj78mIxbz9VRT50PGj88Ulm6c5FPfhdHw8P5rwNIGBe3IDei6lqG1r80yjF6UtvWka2SJFlapAjcarNjdNq10pUZRo0BfaGVU4VRRZg0I9gN1u2eE-MFuLrCYhK-tS09JJK7wpkBZ0d3QDyDaIVD7Rk4cpGV-qGKZktgogVgHEKoE4gOfbLZdrbo5_Ce8FULaCCY8BHGxgr9LXe1XJvFTkuRkrH_5911O4PplPT6qTt7P3j-CGDHUusT_xAHb7ryt8TI5KXz-J-vkD2F3gqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNN%2BNeuroSim+V2.0%3A+An+End-to-End+Benchmarking+Framework+for+Compute-in-Memory+Accelerators+for+On-Chip+Training&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Peng%2C+Xiaochen&rft.au=Huang%2C+Shanshi&rft.au=Jiang%2C+Hongwu&rft.au=Lu%2C+Anni&rft.date=2021-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=40&rft.issue=11&rft.spage=2306&rft.epage=2319&rft_id=info:doi/10.1109%2FTCAD.2020.3043731&rft.externalDocID=9292971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |