DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for On-Chip Training

DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit level and up to algorithm level. A python wrapper is developed to interface NeuroSim with a popular machine learning plat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computer-aided design of integrated circuits and systems Vol. 40; no. 11; pp. 2306 - 2319
Main Authors Peng, Xiaochen, Huang, Shanshi, Jiang, Hongwu, Lu, Anni, Yu, Shimeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0070
1937-4151
DOI10.1109/TCAD.2020.3043731

Cover

Loading…
Abstract DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit level and up to algorithm level. A python wrapper is developed to interface NeuroSim with a popular machine learning platform: Pytorch, to support flexible network structures. The framework provides automatic algorithm-to-hardware mapping, and evaluates chip-level area, energy efficiency and throughput for training or inference, as well as training/inference accuracy with hardware constraints. Our prior inference version of DNN+NeuroSim framework available at https://github.com/neurosim/DNN_NeuroSim_V1.2 was developed to estimate the impact of reliability in synaptic devices, and analog-to-digital converter (ADC) quantization loss on the accuracy and hardware performance of an inference engine. In this work, we further investigated the impact of the "analog" emerging nonvolatile memory (eNVM)'s nonideal device properties for on-chip training. By introducing the nonlinearity, asymmetry, device-to-device and cycle-to-cycle variation of weight update into the python wrapper, and peripheral circuits for error/weight gradient computation in NeuroSim core, we benchmarked CIM accelerators based on state-of-the-art SRAM and eNVM devices for VGG-8 on CIFAR-10 dataset, revealing the crucial specs of synaptic devices for on-chip training. The latest training version of the DNN+NeuroSim framework is available at https://github.com/neurosim/DNN_NeuroSim_V2.1 .
AbstractList DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit level and up to algorithm level. A python wrapper is developed to interface NeuroSim with a popular machine learning platform: Pytorch, to support flexible network structures. The framework provides automatic algorithm-to-hardware mapping, and evaluates chip-level area, energy efficiency and throughput for training or inference, as well as training/inference accuracy with hardware constraints. Our prior inference version of DNN+NeuroSim framework available at https://github.com/neurosim/DNN_NeuroSim_V1.2 was developed to estimate the impact of reliability in synaptic devices, and analog-to-digital converter (ADC) quantization loss on the accuracy and hardware performance of an inference engine. In this work, we further investigated the impact of the “analog” emerging nonvolatile memory (eNVM)’s nonideal device properties for on-chip training. By introducing the nonlinearity, asymmetry, device-to-device and cycle-to-cycle variation of weight update into the python wrapper, and peripheral circuits for error/weight gradient computation in NeuroSim core, we benchmarked CIM accelerators based on state-of-the-art SRAM and eNVM devices for VGG-8 on CIFAR-10 dataset, revealing the crucial specs of synaptic devices for on-chip training. The latest training version of the DNN+NeuroSim framework is available at https://github.com/neurosim/DNN_NeuroSim_V2.1 .
Author Peng, Xiaochen
Lu, Anni
Huang, Shanshi
Yu, Shimeng
Jiang, Hongwu
Author_xml – sequence: 1
  givenname: Xiaochen
  orcidid: 0000-0001-6148-7711
  surname: Peng
  fullname: Peng, Xiaochen
  email: xpeng76@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 2
  givenname: Shanshi
  orcidid: 0000-0002-1760-7656
  surname: Huang
  fullname: Huang, Shanshi
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 3
  givenname: Hongwu
  orcidid: 0000-0002-3048-5948
  surname: Jiang
  fullname: Jiang, Hongwu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 4
  givenname: Anni
  orcidid: 0000-0002-4415-0866
  surname: Lu
  fullname: Lu, Anni
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
– sequence: 5
  givenname: Shimeng
  orcidid: 0000-0002-0068-3652
  surname: Yu
  fullname: Yu, Shimeng
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
BookMark eNp9kDtPwzAUhS0EEuXxAxCLJUbk4EcSx2whLQ8JykBhjYxzA24buziJUP89KUUMDOgOZznfObrnAO067wChE0Yjxqi6mBX5OOKU00jQWEjBdtCIKSFJzBK2i0aUy4xQKuk-OmjbOaUsTrgaIT-eTs-n0Af_ZBv8wiN6iXOHJ64inSeD4Ctw5r3RYWHdG74OuoFPHxa49gEXvln1HRDryAM0PqxxbgwsIejOh_bb8uhI8W5XeBa0dUPCEdqr9bKF4x89RM_Xk1lxS-4fb-6K_J4YrkRHOGevqlYJjcGwTGUmrSpeQ8YTISGG1Ig6Sas61hkHlkEKRsY6FVILKWkFTByis23uKviPHtqunPs-uKGy5EkmUqFSxQcX27pM8G0boC5XwQ6_rktGy82u5WbXcrNr-bPrwMg_jLGd7qx33fDj8l_ydEtaAPhtUnw4ycQXSfaFyA
CODEN ITCSDI
CitedBy_id crossref_primary_10_1016_j_eswa_2024_126205
crossref_primary_10_1109_ACCESS_2023_3324375
crossref_primary_10_1002_admt_202302238
crossref_primary_10_1109_TETC_2022_3223630
crossref_primary_10_1021_acsnano_3c03505
crossref_primary_10_1038_s41586_024_08253_8
crossref_primary_10_1109_TCAD_2024_3358220
crossref_primary_10_1002_adma_202206864
crossref_primary_10_1002_admt_202201772
crossref_primary_10_1038_s41467_023_36270_0
crossref_primary_10_1021_acs_nanolett_1c03169
crossref_primary_10_1088_2634_4386_ad29fc
crossref_primary_10_1109_TVLSI_2024_3439231
crossref_primary_10_1109_JETCAS_2023_3328864
crossref_primary_10_1109_JSSC_2024_3399615
crossref_primary_10_1016_j_jfranklin_2024_107363
crossref_primary_10_1109_TNANO_2023_3296673
crossref_primary_10_1016_j_nanoen_2024_109473
crossref_primary_10_1109_JETCAS_2023_3243619
crossref_primary_10_3389_fnins_2022_775457
crossref_primary_10_1109_TCSI_2021_3097282
crossref_primary_10_1002_adfm_202419179
crossref_primary_10_1016_j_nantod_2024_102534
crossref_primary_10_1038_s41928_023_00939_7
crossref_primary_10_1109_TCAD_2024_3435762
crossref_primary_10_1002_adma_202413178
crossref_primary_10_1145_3665898
crossref_primary_10_1109_JIOT_2024_3395496
crossref_primary_10_1109_TETC_2023_3237778
crossref_primary_10_1002_adma_202300023
crossref_primary_10_1145_3656171
crossref_primary_10_1016_j_memori_2023_100066
crossref_primary_10_1109_TCAD_2024_3485589
crossref_primary_10_1038_s41378_022_00390_2
crossref_primary_10_1145_3500929
crossref_primary_10_1021_acsami_4c10687
crossref_primary_10_1002_sstr_202400319
crossref_primary_10_1109_TED_2021_3102896
crossref_primary_10_3390_jlpea12010010
crossref_primary_10_1021_acsaelm_2c00289
crossref_primary_10_1109_TBCAS_2021_3108354
crossref_primary_10_1016_j_apsusc_2022_155956
crossref_primary_10_1002_adma_202303664
crossref_primary_10_1002_advs_202200168
crossref_primary_10_1038_s41598_024_73439_z
crossref_primary_10_1002_advs_202200566
crossref_primary_10_1021_acsnano_4c06942
crossref_primary_10_1109_TNNLS_2023_3327906
crossref_primary_10_1126_sciadv_adg9123
crossref_primary_10_1108_IJWIS_08_2023_0131
crossref_primary_10_1145_3569940
crossref_primary_10_1038_s41378_021_00305_7
crossref_primary_10_1109_TCSII_2023_3240474
crossref_primary_10_1109_JETCAS_2022_3207687
crossref_primary_10_1109_JETCAS_2023_3321107
crossref_primary_10_1038_s41598_023_42214_x
crossref_primary_10_1109_MED_2023_3296084
crossref_primary_10_1038_s41598_024_80272_x
crossref_primary_10_1109_TCAD_2022_3172907
crossref_primary_10_1038_s41467_025_58039_3
crossref_primary_10_1007_s40820_024_01579_y
crossref_primary_10_1109_TMAG_2023_3315283
crossref_primary_10_1109_TVLSI_2021_3063543
crossref_primary_10_1002_adma_202110343
crossref_primary_10_1016_j_neunet_2023_01_008
crossref_primary_10_1145_3617894
crossref_primary_10_1038_s41467_023_41419_y
crossref_primary_10_3390_electronics10060689
crossref_primary_10_1109_TCSI_2021_3072200
crossref_primary_10_1039_D4MH00716F
crossref_primary_10_1002_adfm_202313010
crossref_primary_10_1002_smll_202412761
crossref_primary_10_1016_j_mejo_2025_106598
crossref_primary_10_3389_fnins_2021_761127
crossref_primary_10_1007_s10462_024_10787_2
crossref_primary_10_3390_electronics13061121
crossref_primary_10_1109_TPDS_2024_3522781
crossref_primary_10_3389_fncom_2023_1274575
crossref_primary_10_1038_s41928_024_01328_4
crossref_primary_10_1007_s11432_023_4021_y
crossref_primary_10_1039_D3NR00510K
crossref_primary_10_1038_s41928_024_01269_y
crossref_primary_10_1021_acsaelm_3c01420
crossref_primary_10_1002_aisy_202300125
crossref_primary_10_1038_s41467_023_41958_4
crossref_primary_10_1016_j_neucom_2022_02_043
crossref_primary_10_1021_acsnano_3c09595
crossref_primary_10_1126_sciadv_adh9889
crossref_primary_10_1007_s11571_024_10069_1
crossref_primary_10_1016_j_neucom_2024_129210
crossref_primary_10_1016_j_neunet_2024_106312
crossref_primary_10_1186_s11671_022_03701_8
crossref_primary_10_1016_j_vlsi_2024_102225
crossref_primary_10_1109_JSSC_2023_3269098
crossref_primary_10_1109_TCAD_2023_3262201
crossref_primary_10_1021_acsaelm_0c00499
crossref_primary_10_1109_TED_2022_3179460
crossref_primary_10_1109_JETCAS_2022_3214334
crossref_primary_10_1109_JSSC_2021_3108344
crossref_primary_10_1109_TCSI_2024_3430290
crossref_primary_10_1038_s44335_024_00001_5
crossref_primary_10_1126_sciadv_abm8537
crossref_primary_10_2139_ssrn_4721109
crossref_primary_10_1002_adma_202102980
crossref_primary_10_1021_acsami_3c18146
crossref_primary_10_3390_app142311198
crossref_primary_10_1109_TVLSI_2024_3472270
Cites_doi 10.1109/JPROC.2018.2790840
10.1109/TED.2015.2439635
10.1109/ISCAS45731.2020.9181020
10.1109/ISCAS.2019.8702715
10.1109/IEDM.2013.6724692
10.1109/IEDM19573.2019.8993491
10.1109/DAC18072.2020.9218524
10.1109/ISCAS.2016.7539046
10.1038/s41563-017-0001-5
10.1021/nl904092h
10.1109/IRPS.2018.8353615
10.1109/LED.2016.2582859
10.1109/TCAD.2018.2789723
10.1109/IEDM.2017.8268338
10.1109/TC.2020.2980533
10.1109/TCSI.2019.2958568
10.1109/IEDM.2018.8614551
10.1109/ESSDERC.2016.7599680
10.23919/VLSIT.2019.8776551
10.1109/ICRC.2016.7738684
10.1109/VLSIT.2018.8510690
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2020.3043731
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 2319
ExternalDocumentID 10_1109_TCAD_2020_3043731
9292971
Genre orig-research
GrantInformation_xml – fundername: ASCENT, one of the SRC/DARPA JUMP centers, NSF/SRC E2CDA program
  grantid: NSF-CCF-1903951
  funderid: 10.13039/100000185
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-221b9f9504ec1898c6dd2fe82537e4e6c3f56df4a82e18e6ec74a637a3770de13
IEDL.DBID RIE
ISSN 0278-0070
IngestDate Mon Jun 30 10:14:05 EDT 2025
Tue Jul 01 00:30:52 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:26:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-221b9f9504ec1898c6dd2fe82537e4e6c3f56df4a82e18e6ec74a637a3770de13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6148-7711
0000-0002-0068-3652
0000-0002-3048-5948
0000-0002-4415-0866
0000-0002-1760-7656
PQID 2583639692
PQPubID 85470
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TCAD_2020_3043731
ieee_primary_9292971
crossref_primary_10_1109_TCAD_2020_3043731
proquest_journals_2583639692
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref2
ref1
ref17
ref16
(ref11) 2016
ref24
ref23
wu (ref8) 2018
ref25
ref20
ref22
ref21
seo (ref18) 2011
huang (ref19) 2020
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1109/JPROC.2018.2790840
– ident: ref22
  doi: 10.1109/TED.2015.2439635
– start-page: 1
  year: 2018
  ident: ref8
  article-title: Training and inference with integers in deep neural networks
  publication-title: Proc Int Conf Learn Represent (ICLR)
– ident: ref14
  doi: 10.1109/ISCAS45731.2020.9181020
– ident: ref10
  doi: 10.1109/ISCAS.2019.8702715
– ident: ref24
  doi: 10.1109/IEDM.2013.6724692
– ident: ref7
  doi: 10.1109/IEDM19573.2019.8993491
– ident: ref13
  doi: 10.1109/DAC18072.2020.9218524
– ident: ref17
  doi: 10.1109/ISCAS.2016.7539046
– ident: ref4
  doi: 10.1038/s41563-017-0001-5
– ident: ref23
  doi: 10.1021/nl904092h
– ident: ref9
  doi: 10.1109/IRPS.2018.8353615
– start-page: 1025
  year: 2020
  ident: ref19
  article-title: Overcoming challenges for achieving high in-situ training accuracy with emerging memories
  publication-title: Proc Design Autom Testing of Europe (DATE)
– ident: ref25
  doi: 10.1109/LED.2016.2582859
– ident: ref12
  doi: 10.1109/TCAD.2018.2789723
– ident: ref6
  doi: 10.1109/IEDM.2017.8268338
– ident: ref15
  doi: 10.1109/TC.2020.2980533
– ident: ref16
  doi: 10.1109/TCSI.2019.2958568
– ident: ref5
  doi: 10.1109/IEDM.2018.8614551
– year: 2016
  ident: ref11
  publication-title: ASU PTM Model
– ident: ref20
  doi: 10.1109/ESSDERC.2016.7599680
– ident: ref3
  doi: 10.23919/VLSIT.2019.8776551
– ident: ref21
  doi: 10.1109/ICRC.2016.7738684
– ident: ref2
  doi: 10.1109/VLSIT.2018.8510690
– start-page: 1
  year: 2011
  ident: ref18
  article-title: A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons
  publication-title: Proc IEEE Custom Integr Circuits Conf (CICC)
SSID ssj0014529
Score 2.6475348
Snippet DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2306
SubjectTerms Accelerators
Algorithms
Analog to digital conversion
Analog to digital converters
Artificial neural networks
Benchmark testing
Circuit design
Common Information Model (computing)
Computer architecture
Computer memory
Deep learning
emerging nonvolatile memory (eNVM)
Hardware
hardware accelerator
in-memory computing
Inference
Integrated circuit modeling
Machine learning
Microprocessors
on-chip training
System-on-chip
Training
Weight
Title DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for On-Chip Training
URI https://ieeexplore.ieee.org/document/9292971
https://www.proquest.com/docview/2583639692
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELaAEz1QHkVsC8gHTqVe4kecmNvyWKFKuz2wVNwix5loV5QsKtlD-fWMvd5VaRHiFB_GUaJvkpnxzHxDyFGthZKQG5bJWjCVcstsIhXLS-GMzWrBKx8oDob66kZ9v01vV8i3ZS8MAITiM-j6ZcjlV1M380dlJ2jKhfEN46sYuM17tZYZA59ADOcpnjEW9ThmMHliTkb4UhgJCgxQA5MPf2GDwlCV__7Ewbz0P5LB4sHmVSV33Vlbdt3TP5yN733yTbIR_UzamyvGFlmBZpt8-It9cIdML4bD40DOcT25pz9FNzmlvYZeNhVrpwwv9AxVeHxvw3E67S_KuCj6uTROg2CThg18se4f2nMOTVjI2j8GkR8NOx9PHugoTqH4RG76l6PzKxbnLzCHTkDLhOClqU2aKHA8N7nTVSVqwJhSZqBAO1mnuqqVzQXwHDS4TFktMyuzLKmAy12y1kwb2CPUlDwpUciIMle4tMJwpzPABd4dbIckC0QKF8nJ_YyMX0UIUhJTeBALD2IRQeyQr8stD3NmjreEdzwoS8GIR4fsL2Av4rf7WIg0l-i3aSM-v77rC1kXvrIldCTuk7X29wwO0DVpy8Ogk88j_d1h
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAceBXUQIE9cAI29T689nILpVGAJhxIUW_Wej1WI6hTUecAv57ZzSbiJcTJe5i1bH1jz8zOzDcAz1ojtcLS8kK1kutcOO4ypXlZS29d0UrRhEBxOjOTU_3uLD_bgZfbXhhEjMVnOAzLmMtvln4VjsoOyZRLGxrGr-WhGXfdrbXNGYQUYjxRCZyxpMkphykyezin16JYUFKIGrl8xC9WKI5V-eNfHA3M-DZMN4-2riv5PFz19dB__4218X-f_Q7cSp4mG61V4y7sYHcPbv7EP7gHyzez2YtIz_FxccE-yWH2io06dtw1vF9yurDXpMTnFy4eqLPxppCLkafL0jwIvuj4NJTrfmMj78mIxbz9VRT50PGj88Ulm6c5FPfhdHw8P5rwNIGBe3IDei6lqG1r80yjF6UtvWka2SJFlapAjcarNjdNq10pUZRo0BfaGVU4VRRZg0I9gN1u2eE-MFuLrCYhK-tS09JJK7wpkBZ0d3QDyDaIVD7Rk4cpGV-qGKZktgogVgHEKoE4gOfbLZdrbo5_Ce8FULaCCY8BHGxgr9LXe1XJvFTkuRkrH_5911O4PplPT6qTt7P3j-CGDHUusT_xAHb7ryt8TI5KXz-J-vkD2F3gqQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNN%2BNeuroSim+V2.0%3A+An+End-to-End+Benchmarking+Framework+for+Compute-in-Memory+Accelerators+for+On-Chip+Training&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Peng%2C+Xiaochen&rft.au=Huang%2C+Shanshi&rft.au=Jiang%2C+Hongwu&rft.au=Lu%2C+Anni&rft.date=2021-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=40&rft.issue=11&rft.spage=2306&rft.epage=2319&rft_id=info:doi/10.1109%2FTCAD.2020.3043731&rft.externalDocID=9292971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon