A One-Step Physiological Status Assessment Method Fusing Subject-Variant Information

The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 20; no. 3; pp. 1621 - 1632
Main Authors An, Yu, Chen, Shanen, Zhang, Xi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and multi-channel physiological data. Specifically, we consider the information similarity of the information matrixes from the tensor decomposition while introducing the subject-variant information, and form a tensor-based optimization problem to achieve the goal of physiological status assessment. To well solve this problem, a tailored alternating direction method of multipliers (ADMM) embedded block coordinate descent (BCD) algorithm has been proposed. Four real-case datasets from different scenarios have been employed to validate our proposed approach, and the performance indicates the superiority compared to several existing methods. Note to Practitioners -The proposed method aims to assess the physiological status by fusing multi-channel physiological data and subject-variant information. To better implement this method, three things are noteworthy. First, the dataset used in the proposed method should contain aligned multi-channel physiological data and subject-variant data, that is, the multi-channel physiological data and the subject-variant data should be correspondingly related. Second, the size of physiological data segments should be moderate due to the limited number of physiological data channels. Third, the initial value of the rank of CANDECOMP/PARAFAC (CP) tensor decomposition, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, should be carefully chosen with the contextual knowledge. The value of <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> is suggested not higher than the number of channels.
AbstractList The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and multi-channel physiological data. Specifically, we consider the information similarity of the information matrixes from the tensor decomposition while introducing the subject-variant information, and form a tensor-based optimization problem to achieve the goal of physiological status assessment. To well solve this problem, a tailored alternating direction method of multipliers (ADMM) embedded block coordinate descent (BCD) algorithm has been proposed. Four real-case datasets from different scenarios have been employed to validate our proposed approach, and the performance indicates the superiority compared to several existing methods. Note to Practitioners —The proposed method aims to assess the physiological status by fusing multi-channel physiological data and subject-variant information. To better implement this method, three things are noteworthy. First, the dataset used in the proposed method should contain aligned multi-channel physiological data and subject-variant data, that is, the multi-channel physiological data and the subject-variant data should be correspondingly related. Second, the size of physiological data segments should be moderate due to the limited number of physiological data channels. Third, the initial value of the rank of CANDECOMP/PARAFAC (CP) tensor decomposition, [Formula Omitted], should be carefully chosen with the contextual knowledge. The value of [Formula Omitted] is suggested not higher than the number of channels.
The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and multi-channel physiological data. Specifically, we consider the information similarity of the information matrixes from the tensor decomposition while introducing the subject-variant information, and form a tensor-based optimization problem to achieve the goal of physiological status assessment. To well solve this problem, a tailored alternating direction method of multipliers (ADMM) embedded block coordinate descent (BCD) algorithm has been proposed. Four real-case datasets from different scenarios have been employed to validate our proposed approach, and the performance indicates the superiority compared to several existing methods. Note to Practitioners -The proposed method aims to assess the physiological status by fusing multi-channel physiological data and subject-variant information. To better implement this method, three things are noteworthy. First, the dataset used in the proposed method should contain aligned multi-channel physiological data and subject-variant data, that is, the multi-channel physiological data and the subject-variant data should be correspondingly related. Second, the size of physiological data segments should be moderate due to the limited number of physiological data channels. Third, the initial value of the rank of CANDECOMP/PARAFAC (CP) tensor decomposition, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, should be carefully chosen with the contextual knowledge. The value of <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> is suggested not higher than the number of channels.
Author An, Yu
Chen, Shanen
Zhang, Xi
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0001-9052-4526
  surname: An
  fullname: An, Yu
  organization: Department of Industrial Engineering and Management, Peking University, Beijing, China
– sequence: 2
  givenname: Shanen
  orcidid: 0000-0003-2735-5162
  surname: Chen
  fullname: Chen, Shanen
  organization: Department of Industrial Engineering and Management, Peking University, Beijing, China
– sequence: 3
  givenname: Xi
  orcidid: 0000-0003-3415-5345
  surname: Zhang
  fullname: Zhang, Xi
  email: xi.zhang@pku.edu.cn
  organization: Department of Industrial Engineering and Management, Peking University, Beijing, China
BookMark eNp9kE9PwkAQxTcGEwH9AMZLE8_F_dNtd4-EoJJgMCl6bbZlFpaULu5uD3x7WyEePHiZmWTeb-bljdCgsQ0gdE_whBAsn9bTfD6hmNIJI4JxIa_QkHAuYpYJNujnhMdccn6DRt7vMaaJkHiI1tNo1UCcBzhG77uTN7a2W1OpOsqDCq2Ppt6D9wdoQvQGYWc30XPrTbON8rbcQxXiT-WM6raLRlt3UMHY5hZda1V7uLv0Mfp4nq9nr_Fy9bKYTZdxRSULMdEqzcpSyzRLscAkAWAgGMkk7cqmM6sxVoRXBFJOkhILUInkUpMNk1Wp2Rg9nu8enf1qwYdib1vXdC8L2t3hlAghOlV2VlXOeu9AF5UJPz6DU6YuCC76CIs-wqKPsLhE2JHkD3l05qDc6V_m4cwYAPjVS0EwxZx9A0Apfec
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2023_3322298
Cites_doi 10.1016/j.neunet.2017.01.013
10.1109/JBHI.2019.2952285
10.1007/s10107-012-0584-1
10.1080/00401706.2018.1529628
10.3389/fnins.2020.591777
10.1109/TCYB.2019.2946914
10.1137/07070111X
10.1080/01431160412331269698
10.1109/TSMC.1985.6313426
10.1016/j.neunet.2014.05.012
10.1038/nature06803
10.1016/j.inffus.2018.11.001
10.1137/1.9781611974973.22
10.1007/s11571-020-09592-8
10.1109/CASE48305.2020.9217045
10.1109/JBHI.2020.3025865
10.1080/00401706.2019.1708463
10.3390/data4010014
10.1016/j.future.2019.06.027
10.1109/TNSRE.2019.2943362
10.1109/TASE.2021.3054741
10.1016/j.inffus.2020.01.008
10.1109/JBHI.2018.2842919
10.1145/2661829.2661996
10.1080/24725854.2018.1491075
10.1088/1741-2552/ab5247
10.1016/j.future.2021.01.010
10.1016/j.bspc.2021.103023
10.1016/j.physa.2004.06.144
10.1109/TSP.2017.2690524
10.1214/aos/1176345513
10.1109/TNNLS.2019.2946869
10.1609/aaai.v34i04.5915
10.1109/JBHI.2017.2768534
10.1007/BF00994018
10.1111/2041-210X.13480
10.3390/pr8070846
10.1109/TNSRE.2018.2810332
10.1109/JBHI.2018.2832538
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3183589
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1632
ExternalDocumentID 10_1109_TASE_2022_3183589
9810205
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 71932006; 71771004
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1fa67bbf967608014ee3e831792317d955f00a15c1e6514b08ea4959f1d39cbf3
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Mon Jun 30 06:34:06 EDT 2025
Tue Jul 01 02:56:32 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Wed Aug 27 02:14:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1fa67bbf967608014ee3e831792317d955f00a15c1e6514b08ea4959f1d39cbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3415-5345
0000-0003-2735-5162
0000-0001-9052-4526
PQID 2831521888
PQPubID 27623
PageCount 12
ParticipantIDs proquest_journals_2831521888
crossref_primary_10_1109_TASE_2022_3183589
crossref_citationtrail_10_1109_TASE_2022_3183589
ieee_primary_9810205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
brunner (ref40) 2008; 16
ref30
ref11
ref33
ref10
balakrishnama (ref38) 1998; 18
ref2
ref1
ref17
ref39
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
cortes (ref34) 1995; 20
ref7
ref9
ref4
ref3
tomioka (ref32) 2011; 24
ref6
ref5
References_xml – ident: ref17
  doi: 10.1016/j.neunet.2017.01.013
– ident: ref16
  doi: 10.1109/JBHI.2019.2952285
– ident: ref33
  doi: 10.1007/s10107-012-0584-1
– ident: ref25
  doi: 10.1080/00401706.2018.1529628
– ident: ref41
  doi: 10.3389/fnins.2020.591777
– ident: ref30
  doi: 10.1109/TCYB.2019.2946914
– volume: 18
  start-page: 1
  year: 1998
  ident: ref38
  article-title: Linear discriminant analysis-a brief tutorial
  publication-title: Inst Signal Inf Process
– ident: ref12
  doi: 10.1137/07070111X
– ident: ref37
  doi: 10.1080/01431160412331269698
– ident: ref36
  doi: 10.1109/TSMC.1985.6313426
– ident: ref5
  doi: 10.1016/j.neunet.2014.05.012
– ident: ref1
  doi: 10.1038/nature06803
– ident: ref18
  doi: 10.1016/j.inffus.2018.11.001
– ident: ref29
  doi: 10.1137/1.9781611974973.22
– ident: ref7
  doi: 10.1007/s11571-020-09592-8
– ident: ref3
  doi: 10.1109/CASE48305.2020.9217045
– ident: ref9
  doi: 10.1109/JBHI.2020.3025865
– ident: ref26
  doi: 10.1080/00401706.2019.1708463
– ident: ref42
  doi: 10.3390/data4010014
– ident: ref23
  doi: 10.1016/j.future.2019.06.027
– ident: ref22
  doi: 10.1109/TNSRE.2019.2943362
– ident: ref4
  doi: 10.1109/TASE.2021.3054741
– ident: ref6
  doi: 10.1016/j.inffus.2020.01.008
– ident: ref14
  doi: 10.1109/JBHI.2018.2842919
– ident: ref11
  doi: 10.1145/2661829.2661996
– ident: ref2
  doi: 10.1080/24725854.2018.1491075
– ident: ref10
  doi: 10.1088/1741-2552/ab5247
– volume: 24
  start-page: 972
  year: 2011
  ident: ref32
  article-title: Statistical performance of convex tensor decomposition
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref19
  doi: 10.1016/j.future.2021.01.010
– ident: ref20
  doi: 10.1016/j.bspc.2021.103023
– volume: 16
  start-page: 1
  year: 2008
  ident: ref40
  article-title: BCI competition 2008-Graz data set a
– ident: ref31
  doi: 10.1016/j.physa.2004.06.144
– ident: ref13
  doi: 10.1109/TSP.2017.2690524
– ident: ref35
  doi: 10.1214/aos/1176345513
– ident: ref24
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref27
  doi: 10.1609/aaai.v34i04.5915
– ident: ref15
  doi: 10.1109/JBHI.2017.2768534
– volume: 20
  start-page: 273
  year: 1995
  ident: ref34
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– ident: ref28
  doi: 10.1111/2041-210X.13480
– ident: ref39
  doi: 10.3390/pr8070846
– ident: ref21
  doi: 10.1109/TNSRE.2018.2810332
– ident: ref8
  doi: 10.1109/JBHI.2018.2832538
SSID ssj0024890
Score 2.3589828
Snippet The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1621
SubjectTerms Algorithms
Brain modeling
Channels
data fusion
Datasets
Decomposition
Electroencephalography
Feature extraction
Mathematical analysis
Matrix decomposition
Modelling
Optimization
Physiological status assessment
Physiology
subject-independence
subject-variant information
Tensors
Title A One-Step Physiological Status Assessment Method Fusing Subject-Variant Information
URI https://ieeexplore.ieee.org/document/9810205
https://www.proquest.com/docview/2831521888
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJxj4KohCQR6YEE6dDyfOGCGqCqkw0KJuUew4DKAU0WTh1-NznFABQmwZbMm6c3zv7Lv3ELoMaRbk0pdEFJySIIgEEWEGjcCerwGB9EIjBzS7D6eL4G7Jlj103fXCKKVM8Zly4NO85ecrWcNV2TjmOhwCYemWTtyaXq0vXj1u7lMAERAWM2ZfMF0aj-fJ463OBD3PgQ3MQNF9IwYZUZUfJ7EJL5M9NGsX1lSVvDh1JRz58Y2z8b8r30e7FmfipNkYB6inykO0s8E-OEDzBD-UikCdFzaFoO05iAGB1mucdKydeGaEpvEEyuSfsT5t4PqGPOlEW3sG254m8PERWkxu5zdTYkUWiNSRviJukYWREEWsnUKBSkYpX3GNKgD5Rbm2ZEFp5jLpqlCDK0G5ynRSFRdu7sdSFP4x6perUp0gzBWNPBkBR1gW8EDwgAnl0sxjgud-wYaItmZPpWUgByGM19RkIjROwVMpeCq1nhqiq27KW0O_8dfgAVi-G2iNPkSj1rep_UHXqUZVgFx0_n_6-6wztA3K8k1l7gj1q_danWv8UYkLs_E-Ab5C1Mw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VZQAGvgqiUMADE8Kt8-HEGSvUqkBbBlrULYodhwGUItou_Hp8TloqQIgtgy1Zd47vnX33HsBlwBI_VZ6iMhOM-n4oqQwSbAR2PQMIlBtYOaDBMOiN_bsJn1TgetULo7W2xWe6iZ_2LT-dqgVelbUiYcIhEpZumLjPnaJb64tZT9gbFcQElEecl2-YDotao_Zjx-SCrtvELcxR030tCllZlR9nsQ0w3V0YLJdW1JW8NBdz2VQf31gb_7v2PdgpkSZpF1tjHyo6P4DtNf7BGoza5CHXFCu9iC0FXZ6EBDHoYkbaK95OMrBS06SLhfLPxJw3eIFDn0yqbXxDyq4m9PIhjLud0U2PljILVJlYP6dOlgShlFlk3MKQTEZrTwuDKxD7hamxZMZY4nDl6MDAK8mETkxaFWVO6kVKZt4RVPNpro-BCM1CV4XIEpb4wpfC51I7LHG5FKmX8TqwpdljVXKQoxTGa2xzERbF6KkYPRWXnqrD1WrKW0HA8dfgGlp-NbA0eh0aS9_G5S86iw2uQuwihDj5fdYFbPZGg37cvx3en8IW6swXdboNqM7fF_rMoJG5PLeb8BMDzdgV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Step+Physiological+Status+Assessment+Method+Fusing+Subject-Variant+Information&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yu%2C+An&rft.au=Chen%2C+Shanen&rft.au=Zhang%2C+Xi&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=20&rft.issue=3&rft.spage=1621&rft_id=info:doi/10.1109%2FTASE.2022.3183589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon