A One-Step Physiological Status Assessment Method Fusing Subject-Variant Information
The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 20; no. 3; pp. 1621 - 1632 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and multi-channel physiological data. Specifically, we consider the information similarity of the information matrixes from the tensor decomposition while introducing the subject-variant information, and form a tensor-based optimization problem to achieve the goal of physiological status assessment. To well solve this problem, a tailored alternating direction method of multipliers (ADMM) embedded block coordinate descent (BCD) algorithm has been proposed. Four real-case datasets from different scenarios have been employed to validate our proposed approach, and the performance indicates the superiority compared to several existing methods. Note to Practitioners -The proposed method aims to assess the physiological status by fusing multi-channel physiological data and subject-variant information. To better implement this method, three things are noteworthy. First, the dataset used in the proposed method should contain aligned multi-channel physiological data and subject-variant data, that is, the multi-channel physiological data and the subject-variant data should be correspondingly related. Second, the size of physiological data segments should be moderate due to the limited number of physiological data channels. Third, the initial value of the rank of CANDECOMP/PARAFAC (CP) tensor decomposition, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, should be carefully chosen with the contextual knowledge. The value of <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> is suggested not higher than the number of channels. |
---|---|
AbstractList | The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and multi-channel physiological data. Specifically, we consider the information similarity of the information matrixes from the tensor decomposition while introducing the subject-variant information, and form a tensor-based optimization problem to achieve the goal of physiological status assessment. To well solve this problem, a tailored alternating direction method of multipliers (ADMM) embedded block coordinate descent (BCD) algorithm has been proposed. Four real-case datasets from different scenarios have been employed to validate our proposed approach, and the performance indicates the superiority compared to several existing methods. Note to Practitioners —The proposed method aims to assess the physiological status by fusing multi-channel physiological data and subject-variant information. To better implement this method, three things are noteworthy. First, the dataset used in the proposed method should contain aligned multi-channel physiological data and subject-variant data, that is, the multi-channel physiological data and the subject-variant data should be correspondingly related. Second, the size of physiological data segments should be moderate due to the limited number of physiological data channels. Third, the initial value of the rank of CANDECOMP/PARAFAC (CP) tensor decomposition, [Formula Omitted], should be carefully chosen with the contextual knowledge. The value of [Formula Omitted] is suggested not higher than the number of channels. The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling and fusion techniques. To address this issue, we propose a one-step tensor-based modeling procedure to fuse the subject-variant information and multi-channel physiological data. Specifically, we consider the information similarity of the information matrixes from the tensor decomposition while introducing the subject-variant information, and form a tensor-based optimization problem to achieve the goal of physiological status assessment. To well solve this problem, a tailored alternating direction method of multipliers (ADMM) embedded block coordinate descent (BCD) algorithm has been proposed. Four real-case datasets from different scenarios have been employed to validate our proposed approach, and the performance indicates the superiority compared to several existing methods. Note to Practitioners -The proposed method aims to assess the physiological status by fusing multi-channel physiological data and subject-variant information. To better implement this method, three things are noteworthy. First, the dataset used in the proposed method should contain aligned multi-channel physiological data and subject-variant data, that is, the multi-channel physiological data and the subject-variant data should be correspondingly related. Second, the size of physiological data segments should be moderate due to the limited number of physiological data channels. Third, the initial value of the rank of CANDECOMP/PARAFAC (CP) tensor decomposition, <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>, should be carefully chosen with the contextual knowledge. The value of <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> is suggested not higher than the number of channels. |
Author | An, Yu Chen, Shanen Zhang, Xi |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0001-9052-4526 surname: An fullname: An, Yu organization: Department of Industrial Engineering and Management, Peking University, Beijing, China – sequence: 2 givenname: Shanen orcidid: 0000-0003-2735-5162 surname: Chen fullname: Chen, Shanen organization: Department of Industrial Engineering and Management, Peking University, Beijing, China – sequence: 3 givenname: Xi orcidid: 0000-0003-3415-5345 surname: Zhang fullname: Zhang, Xi email: xi.zhang@pku.edu.cn organization: Department of Industrial Engineering and Management, Peking University, Beijing, China |
BookMark | eNp9kE9PwkAQxTcGEwH9AMZLE8_F_dNtd4-EoJJgMCl6bbZlFpaULu5uD3x7WyEePHiZmWTeb-bljdCgsQ0gdE_whBAsn9bTfD6hmNIJI4JxIa_QkHAuYpYJNujnhMdccn6DRt7vMaaJkHiI1tNo1UCcBzhG77uTN7a2W1OpOsqDCq2Ppt6D9wdoQvQGYWc30XPrTbON8rbcQxXiT-WM6raLRlt3UMHY5hZda1V7uLv0Mfp4nq9nr_Fy9bKYTZdxRSULMdEqzcpSyzRLscAkAWAgGMkk7cqmM6sxVoRXBFJOkhILUInkUpMNk1Wp2Rg9nu8enf1qwYdib1vXdC8L2t3hlAghOlV2VlXOeu9AF5UJPz6DU6YuCC76CIs-wqKPsLhE2JHkD3l05qDc6V_m4cwYAPjVS0EwxZx9A0Apfec |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_TASE_2023_3322298 |
Cites_doi | 10.1016/j.neunet.2017.01.013 10.1109/JBHI.2019.2952285 10.1007/s10107-012-0584-1 10.1080/00401706.2018.1529628 10.3389/fnins.2020.591777 10.1109/TCYB.2019.2946914 10.1137/07070111X 10.1080/01431160412331269698 10.1109/TSMC.1985.6313426 10.1016/j.neunet.2014.05.012 10.1038/nature06803 10.1016/j.inffus.2018.11.001 10.1137/1.9781611974973.22 10.1007/s11571-020-09592-8 10.1109/CASE48305.2020.9217045 10.1109/JBHI.2020.3025865 10.1080/00401706.2019.1708463 10.3390/data4010014 10.1016/j.future.2019.06.027 10.1109/TNSRE.2019.2943362 10.1109/TASE.2021.3054741 10.1016/j.inffus.2020.01.008 10.1109/JBHI.2018.2842919 10.1145/2661829.2661996 10.1080/24725854.2018.1491075 10.1088/1741-2552/ab5247 10.1016/j.future.2021.01.010 10.1016/j.bspc.2021.103023 10.1016/j.physa.2004.06.144 10.1109/TSP.2017.2690524 10.1214/aos/1176345513 10.1109/TNNLS.2019.2946869 10.1609/aaai.v34i04.5915 10.1109/JBHI.2017.2768534 10.1007/BF00994018 10.1111/2041-210X.13480 10.3390/pr8070846 10.1109/TNSRE.2018.2810332 10.1109/JBHI.2018.2832538 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2022.3183589 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 1632 |
ExternalDocumentID | 10_1109_TASE_2022_3183589 9810205 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 71932006; 71771004 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-1fa67bbf967608014ee3e831792317d955f00a15c1e6514b08ea4959f1d39cbf3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Mon Jun 30 06:34:06 EDT 2025 Tue Jul 01 02:56:32 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Wed Aug 27 02:14:45 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-1fa67bbf967608014ee3e831792317d955f00a15c1e6514b08ea4959f1d39cbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3415-5345 0000-0003-2735-5162 0000-0001-9052-4526 |
PQID | 2831521888 |
PQPubID | 27623 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2831521888 crossref_primary_10_1109_TASE_2022_3183589 crossref_citationtrail_10_1109_TASE_2022_3183589 ieee_primary_9810205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 brunner (ref40) 2008; 16 ref30 ref11 ref33 ref10 balakrishnama (ref38) 1998; 18 ref2 ref1 ref17 ref39 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 cortes (ref34) 1995; 20 ref7 ref9 ref4 ref3 tomioka (ref32) 2011; 24 ref6 ref5 |
References_xml | – ident: ref17 doi: 10.1016/j.neunet.2017.01.013 – ident: ref16 doi: 10.1109/JBHI.2019.2952285 – ident: ref33 doi: 10.1007/s10107-012-0584-1 – ident: ref25 doi: 10.1080/00401706.2018.1529628 – ident: ref41 doi: 10.3389/fnins.2020.591777 – ident: ref30 doi: 10.1109/TCYB.2019.2946914 – volume: 18 start-page: 1 year: 1998 ident: ref38 article-title: Linear discriminant analysis-a brief tutorial publication-title: Inst Signal Inf Process – ident: ref12 doi: 10.1137/07070111X – ident: ref37 doi: 10.1080/01431160412331269698 – ident: ref36 doi: 10.1109/TSMC.1985.6313426 – ident: ref5 doi: 10.1016/j.neunet.2014.05.012 – ident: ref1 doi: 10.1038/nature06803 – ident: ref18 doi: 10.1016/j.inffus.2018.11.001 – ident: ref29 doi: 10.1137/1.9781611974973.22 – ident: ref7 doi: 10.1007/s11571-020-09592-8 – ident: ref3 doi: 10.1109/CASE48305.2020.9217045 – ident: ref9 doi: 10.1109/JBHI.2020.3025865 – ident: ref26 doi: 10.1080/00401706.2019.1708463 – ident: ref42 doi: 10.3390/data4010014 – ident: ref23 doi: 10.1016/j.future.2019.06.027 – ident: ref22 doi: 10.1109/TNSRE.2019.2943362 – ident: ref4 doi: 10.1109/TASE.2021.3054741 – ident: ref6 doi: 10.1016/j.inffus.2020.01.008 – ident: ref14 doi: 10.1109/JBHI.2018.2842919 – ident: ref11 doi: 10.1145/2661829.2661996 – ident: ref2 doi: 10.1080/24725854.2018.1491075 – ident: ref10 doi: 10.1088/1741-2552/ab5247 – volume: 24 start-page: 972 year: 2011 ident: ref32 article-title: Statistical performance of convex tensor decomposition publication-title: Proc Adv Neural Inf Process Syst – ident: ref19 doi: 10.1016/j.future.2021.01.010 – ident: ref20 doi: 10.1016/j.bspc.2021.103023 – volume: 16 start-page: 1 year: 2008 ident: ref40 article-title: BCI competition 2008-Graz data set a – ident: ref31 doi: 10.1016/j.physa.2004.06.144 – ident: ref13 doi: 10.1109/TSP.2017.2690524 – ident: ref35 doi: 10.1214/aos/1176345513 – ident: ref24 doi: 10.1109/TNNLS.2019.2946869 – ident: ref27 doi: 10.1609/aaai.v34i04.5915 – ident: ref15 doi: 10.1109/JBHI.2017.2768534 – volume: 20 start-page: 273 year: 1995 ident: ref34 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – ident: ref28 doi: 10.1111/2041-210X.13480 – ident: ref39 doi: 10.3390/pr8070846 – ident: ref21 doi: 10.1109/TNSRE.2018.2810332 – ident: ref8 doi: 10.1109/JBHI.2018.2832538 |
SSID | ssj0024890 |
Score | 2.3589828 |
Snippet | The individual physiological difference has been recognized as one of the major problems while assessing subjects using multiple physiological data modeling... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1621 |
SubjectTerms | Algorithms Brain modeling Channels data fusion Datasets Decomposition Electroencephalography Feature extraction Mathematical analysis Matrix decomposition Modelling Optimization Physiological status assessment Physiology subject-independence subject-variant information Tensors |
Title | A One-Step Physiological Status Assessment Method Fusing Subject-Variant Information |
URI | https://ieeexplore.ieee.org/document/9810205 https://www.proquest.com/docview/2831521888 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJxj4KohCQR6YEE6dDyfOGCGqCqkw0KJuUew4DKAU0WTh1-NznFABQmwZbMm6c3zv7Lv3ELoMaRbk0pdEFJySIIgEEWEGjcCerwGB9EIjBzS7D6eL4G7Jlj103fXCKKVM8Zly4NO85ecrWcNV2TjmOhwCYemWTtyaXq0vXj1u7lMAERAWM2ZfMF0aj-fJ463OBD3PgQ3MQNF9IwYZUZUfJ7EJL5M9NGsX1lSVvDh1JRz58Y2z8b8r30e7FmfipNkYB6inykO0s8E-OEDzBD-UikCdFzaFoO05iAGB1mucdKydeGaEpvEEyuSfsT5t4PqGPOlEW3sG254m8PERWkxu5zdTYkUWiNSRviJukYWREEWsnUKBSkYpX3GNKgD5Rbm2ZEFp5jLpqlCDK0G5ynRSFRdu7sdSFP4x6perUp0gzBWNPBkBR1gW8EDwgAnl0sxjgud-wYaItmZPpWUgByGM19RkIjROwVMpeCq1nhqiq27KW0O_8dfgAVi-G2iNPkSj1rep_UHXqUZVgFx0_n_6-6wztA3K8k1l7gj1q_danWv8UYkLs_E-Ab5C1Mw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VZQAGvgqiUMADE8Kt8-HEGSvUqkBbBlrULYodhwGUItou_Hp8TloqQIgtgy1Zd47vnX33HsBlwBI_VZ6iMhOM-n4oqQwSbAR2PQMIlBtYOaDBMOiN_bsJn1TgetULo7W2xWe6iZ_2LT-dqgVelbUiYcIhEpZumLjPnaJb64tZT9gbFcQElEecl2-YDotao_Zjx-SCrtvELcxR030tCllZlR9nsQ0w3V0YLJdW1JW8NBdz2VQf31gb_7v2PdgpkSZpF1tjHyo6P4DtNf7BGoza5CHXFCu9iC0FXZ6EBDHoYkbaK95OMrBS06SLhfLPxJw3eIFDn0yqbXxDyq4m9PIhjLud0U2PljILVJlYP6dOlgShlFlk3MKQTEZrTwuDKxD7hamxZMZY4nDl6MDAK8mETkxaFWVO6kVKZt4RVPNpro-BCM1CV4XIEpb4wpfC51I7LHG5FKmX8TqwpdljVXKQoxTGa2xzERbF6KkYPRWXnqrD1WrKW0HA8dfgGlp-NbA0eh0aS9_G5S86iw2uQuwihDj5fdYFbPZGg37cvx3en8IW6swXdboNqM7fF_rMoJG5PLeb8BMDzdgV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+One-Step+Physiological+Status+Assessment+Method+Fusing+Subject-Variant+Information&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yu%2C+An&rft.au=Chen%2C+Shanen&rft.au=Zhang%2C+Xi&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=20&rft.issue=3&rft.spage=1621&rft_id=info:doi/10.1109%2FTASE.2022.3183589&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |