Infrared Precipitation Estimation Using Convolutional Neural Network
Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipit...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 58; no. 12; pp. 8612 - 8625 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipitation estimation using a convolutional neural network (IPEC). Based on the five-channel IR data, the IPEC first identifies the precipitation occurrence and then estimates the precipitation rates at hourly and <inline-formula> <tex-math notation="LaTeX">0.04^{\circ } \times 0.04^{\circ } </tex-math></inline-formula> resolutions. The performance of the IPEC is validated using the Stage-IV radar-gauge-combined data and compared to the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) in three subregions over the continental United States (CONUS). The results show that the five-channel input is more efficient in precipitation estimation than the commonly used one-channel input. The IPEC estimates based on the five-channel input show better statistical performance than the PERSIANN-CCS with 34.9% gain in Pearson's correlation coefficient (CC), 38.0% gain in relative bias (BIAS), and 45.2% gain in mean squared error (MSE) during the testing period from June to August 2014 over the central CONUS. Furthermore, the optimized IPEC model is applied in totally independent periods and regions, and still achieves significantly better performance than the PERSIANN-CCS, indicating that the IPEC has a stronger generalization capability. On the whole, this article proves the effectiveness of the convolutional neural network (CNN) combined with the physical multichannel inputs in IR precipitation retrieval. This end-to-end deep learning algorithm shows the potential for serving as an operational technique that can be applied globally and provides a new perspective for the future development of satellite precipitation retrievals. |
---|---|
AbstractList | Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipitation estimation using a convolutional neural network (IPEC). Based on the five-channel IR data, the IPEC first identifies the precipitation occurrence and then estimates the precipitation rates at hourly and <inline-formula> <tex-math notation="LaTeX">0.04^{\circ } \times 0.04^{\circ } </tex-math></inline-formula> resolutions. The performance of the IPEC is validated using the Stage-IV radar-gauge-combined data and compared to the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) in three subregions over the continental United States (CONUS). The results show that the five-channel input is more efficient in precipitation estimation than the commonly used one-channel input. The IPEC estimates based on the five-channel input show better statistical performance than the PERSIANN-CCS with 34.9% gain in Pearson's correlation coefficient (CC), 38.0% gain in relative bias (BIAS), and 45.2% gain in mean squared error (MSE) during the testing period from June to August 2014 over the central CONUS. Furthermore, the optimized IPEC model is applied in totally independent periods and regions, and still achieves significantly better performance than the PERSIANN-CCS, indicating that the IPEC has a stronger generalization capability. On the whole, this article proves the effectiveness of the convolutional neural network (CNN) combined with the physical multichannel inputs in IR precipitation retrieval. This end-to-end deep learning algorithm shows the potential for serving as an operational technique that can be applied globally and provides a new perspective for the future development of satellite precipitation retrievals. Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipitation estimation using a convolutional neural network (IPEC). Based on the five-channel IR data, the IPEC first identifies the precipitation occurrence and then estimates the precipitation rates at hourly and [Formula Omitted] resolutions. The performance of the IPEC is validated using the Stage-IV radar–gauge-combined data and compared to the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) in three subregions over the continental United States (CONUS). The results show that the five-channel input is more efficient in precipitation estimation than the commonly used one-channel input. The IPEC estimates based on the five-channel input show better statistical performance than the PERSIANN-CCS with 34.9% gain in Pearson’s correlation coefficient (CC), 38.0% gain in relative bias (BIAS), and 45.2% gain in mean squared error (MSE) during the testing period from June to August 2014 over the central CONUS. Furthermore, the optimized IPEC model is applied in totally independent periods and regions, and still achieves significantly better performance than the PERSIANN-CCS, indicating that the IPEC has a stronger generalization capability. On the whole, this article proves the effectiveness of the convolutional neural network (CNN) combined with the physical multichannel inputs in IR precipitation retrieval. This end-to-end deep learning algorithm shows the potential for serving as an operational technique that can be applied globally and provides a new perspective for the future development of satellite precipitation retrievals. |
Author | Xu, Jing Tang, Guoqiang Hong, Yang Wang, Cunguang Yang, Yi |
Author_xml | – sequence: 1 givenname: Cunguang orcidid: 0000-0002-5532-1931 surname: Wang fullname: Wang, Cunguang email: cunguangwang@gmail.com organization: Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Jing surname: Xu fullname: Xu, Jing email: xujing@cma.gov.cn organization: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China – sequence: 3 givenname: Guoqiang orcidid: 0000-0002-0923-583X surname: Tang fullname: Tang, Guoqiang email: guoqiang.tang@usask.ca organization: Coldwater Laboratory, University of Saskatchewan, Canmore, AB, Canada – sequence: 4 givenname: Yi surname: Yang fullname: Yang, Yi email: yiy12@illinois.edu organization: Department of Hydraulic Engineering, Tsinghua University, Beijing, China – sequence: 5 givenname: Yang orcidid: 0000-0001-8720-242X surname: Hong fullname: Hong, Yang email: yanghong@ou.edu organization: School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA |
BookMark | eNo9kEFPwzAMhSM0JLbBD0BcKnFucZymTY5ojDFpAgTjHHVpgjpGM5IWxL-nXSdOtuz3rOdvQka1qw0hlxQSSkHerBcvrwkCQoJSSCrYCRlTzkUMWZqOyBiozGIUEs_IJIQtAE05zcfkbllbX3hTRs_e6GpfNUVTuTqah6b6HNq3UNXv0czV327X9pNiFz2a1h9K8-P8xzk5tcUumItjnZL1_Xw9e4hXT4vl7HYVa5SsiakpU12CkLlAKe0GUGKB1ggmrZWFLsVGoEZTHjaCcthkaFLGGAdNNZuS6-Hs3ruv1oRGbV3ruzhBYZrxlOWQ805FB5X2LgRvrNr77hX_qyionpXqWamelTqy6jxXg6cyxvzrJQje5WB_Q5VnQQ |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_atmos15070763 crossref_primary_10_1109_ACCESS_2020_3032430 crossref_primary_10_1016_j_jhydrol_2021_127113 crossref_primary_10_1080_01431161_2024_2349267 crossref_primary_10_1109_TGRS_2022_3159036 crossref_primary_10_3390_rs14122925 crossref_primary_10_1007_s10661_023_11148_2 crossref_primary_10_3390_rs13163330 crossref_primary_10_1007_s00521_023_09397_w crossref_primary_10_3390_s23156832 crossref_primary_10_3390_meteorology2040025 crossref_primary_10_1016_j_jhydrol_2022_127718 crossref_primary_10_1109_TGRS_2021_3126419 crossref_primary_10_1109_TGRS_2023_3270204 crossref_primary_10_1109_LGRS_2022_3152847 crossref_primary_10_22430_22565337_3017 crossref_primary_10_3390_rs15123065 crossref_primary_10_1016_j_isprsjprs_2022_03_007 crossref_primary_10_1029_2020EA001423 crossref_primary_10_3390_atmos13081286 crossref_primary_10_1109_TGRS_2021_3105438 crossref_primary_10_3390_rs15184536 crossref_primary_10_3390_s22020551 crossref_primary_10_1016_j_atmosres_2022_106037 crossref_primary_10_3390_rs14061467 crossref_primary_10_1109_LGRS_2022_3200756 crossref_primary_10_1080_01431161_2024_2359731 crossref_primary_10_3390_atmos13122048 crossref_primary_10_3390_rs15245662 crossref_primary_10_1029_2020GL092032 crossref_primary_10_3390_atmos14010025 crossref_primary_10_1029_2023EA003311 crossref_primary_10_1111_coin_12684 crossref_primary_10_1109_LGRS_2022_3213618 crossref_primary_10_3390_rs13122310 crossref_primary_10_1109_TGRS_2023_3267840 crossref_primary_10_1016_j_rse_2022_113234 |
Cites_doi | 10.1175/BAMS-88-1-47 10.1016/j.jhydrol.2018.06.064 10.1109/TGRS.2018.2810208 10.1016/j.asr.2016.11.042 10.1145/2647868.2654889 10.1175/2007JAMC1525.1 10.1109/5.726791 10.1029/2018GL078202 10.1029/2018WR024090 10.1016/j.jhydrol.2015.12.008 10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2 10.1109/LGRS.2017.2657778 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 10.1175/JHM-D-15-0186.1 10.1175/JHM-D-17-0077.1 10.1109/CEC.2016.7743945 10.1016/j.ijmachtools.2004.09.004 10.1016/j.rse.2013.10.026 10.3390/rs9050498 10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2 10.1109/ICCV.2017.322 10.1109/TGRS.2018.2874950 10.1109/CVPRW.2016.90 10.1016/j.atmosres.2017.11.006 10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2 10.1002/env.1004 10.5194/adgeo-16-63-2008 10.1002/met.56 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2 10.1175/2010JAMC2284.1 10.1002/met.284 10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2 10.1175/JHM-D-16-0079.1 10.1029/2010JD014741 10.1175/JHM-D-16-0176.1 10.1109/36.536538 10.1175/JAM2173.1 10.1109/TGRS.2012.2189406 10.1175/JHM560.1 10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2 10.1127/0941-2948/2007/0210 10.3390/rs71114680 10.1175/2009JHM1077.1 10.1175/BAMS-D-13-00068.1 10.1109/TGRS.2012.2226733 10.1109/CVPR.2016.90 10.1016/j.advwatres.2008.04.007 10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2 10.1109/ICASSP.2007.366913 10.1016/j.atmosres.2013.11.011 10.1002/joc.5131 10.1175/JHM-D-15-0075.1 10.1175/BAMS-D-13-00164.1 10.1029/2018WR023830 10.1109/TPAMI.2017.2699184 10.1002/hyp.10846 10.1029/2008JD010464 10.1002/2017GL075619 10.1007/978-90-481-2915-7_3 10.5194/hess-21-6201-2017 10.1175/2009JHM1139.1 10.1109/TGRS.2016.2612821 10.1029/2018GL077787 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2020.2989183 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 8625 |
ExternalDocumentID | 10_1109_TGRS_2020_2989183 9085928 |
Genre | orig-research |
GrantInformation_xml | – fundername: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences grantid: 2015LASW-A09 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China grantid: 7146101701 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-1ed4cd08978299fb0292a2fe839ff9acd8b82c2edb02928150b62e433350c1c3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Oct 10 19:06:16 EDT 2024 Fri Aug 23 02:58:47 EDT 2024 Wed Jun 26 19:26:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-1ed4cd08978299fb0292a2fe839ff9acd8b82c2edb02928150b62e433350c1c3 |
ORCID | 0000-0001-8720-242X 0000-0002-0923-583X 0000-0002-5532-1931 |
PQID | 2465437075 |
PQPubID | 85465 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2020_2989183 ieee_primary_9085928 proquest_journals_2465437075 |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref12 ref59 ref58 ref14 ref53 (ref51) 2001 ref52 ref11 ref10 cire?an (ref71) 2012 ref17 lecun (ref38) 1990 ref16 ref19 ref18 huffman (ref15) 2015; 4 ref50 houze (ref57) 2014; 104 ref46 ref45 ref48 ref47 ref41 ref44 ref43 tjemkes (ref66) 1997; 70 kullback (ref75) 1997 ref49 lin (ref54) 2011 ref8 ref7 ref9 ref4 ref6 ref5 ref40 krizhevsky (ref42) 2012 goodfellow (ref72) 2016 ref79 ref35 ref34 ref37 ref36 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 yao (ref80) 2018 ref70 ref68 ref24 ref67 ref23 weinreb (ref55) 2011 ref26 ref69 ref25 ref64 ref20 bastani (ref78) 2016 ref63 ref22 ref65 ref21 ref28 brock (ref73) 2018 ref27 ref29 hong (ref3) 2018 ref60 ref62 ref61 |
References_xml | – ident: ref58 doi: 10.1175/BAMS-88-1-47 – ident: ref6 doi: 10.1016/j.jhydrol.2018.06.064 – ident: ref74 doi: 10.1109/TGRS.2018.2810208 – ident: ref20 doi: 10.1016/j.asr.2016.11.042 – year: 2011 ident: ref55 article-title: Conversion of GVAR infrared data to scene radiance or temperature contributor: fullname: weinreb – ident: ref77 doi: 10.1145/2647868.2654889 – ident: ref63 doi: 10.1175/2007JAMC1525.1 – ident: ref70 doi: 10.1109/5.726791 – ident: ref26 doi: 10.1029/2018GL078202 – ident: ref48 doi: 10.1029/2018WR024090 – ident: ref4 doi: 10.1016/j.jhydrol.2015.12.008 – ident: ref11 doi: 10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2 – ident: ref43 doi: 10.1109/LGRS.2017.2657778 – ident: ref13 doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 – ident: ref49 doi: 10.1175/JHM-D-15-0186.1 – ident: ref27 doi: 10.1175/JHM-D-17-0077.1 – ident: ref29 doi: 10.1109/CEC.2016.7743945 – year: 2012 ident: ref71 article-title: Multi-column deep neural networks for image classification publication-title: arXiv 1202 2745 contributor: fullname: cire?an – ident: ref79 doi: 10.1016/j.ijmachtools.2004.09.004 – ident: ref18 doi: 10.1016/j.rse.2013.10.026 – ident: ref44 doi: 10.3390/rs9050498 – start-page: 1 year: 2018 ident: ref3 article-title: Remote sensing precipitation: Sensors, retrievals, validations, and applications publication-title: Observation and Measurement of Ecohydrological Processes contributor: fullname: hong – ident: ref22 doi: 10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2 – ident: ref41 doi: 10.1109/ICCV.2017.322 – ident: ref19 doi: 10.1109/TGRS.2018.2874950 – ident: ref46 doi: 10.1109/CVPRW.2016.90 – ident: ref35 doi: 10.1016/j.atmosres.2017.11.006 – ident: ref53 doi: 10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2 – ident: ref56 doi: 10.1002/env.1004 – ident: ref67 doi: 10.5194/adgeo-16-63-2008 – volume: 4 start-page: 30 year: 2015 ident: ref15 article-title: NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) publication-title: Algorithm Theoretical Basis Document Version 2 2 contributor: fullname: huffman – ident: ref62 doi: 10.1002/met.56 – ident: ref34 doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 – ident: ref8 doi: 10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2 – year: 1997 ident: ref75 publication-title: Information Theory and Statistics contributor: fullname: kullback – ident: ref60 doi: 10.1175/2010JAMC2284.1 – ident: ref1 doi: 10.1002/met.284 – volume: 104 year: 2014 ident: ref57 publication-title: Cloud Dynamics contributor: fullname: houze – ident: ref12 doi: 10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2 – year: 2018 ident: ref73 article-title: Large scale GAN training for high fidelity natural image synthesis publication-title: arXiv 1809 11096 contributor: fullname: brock – start-page: 2613 year: 2016 ident: ref78 article-title: Measuring neural net robustness with constraints publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: bastani – ident: ref37 doi: 10.1175/JHM-D-16-0079.1 – ident: ref30 doi: 10.1029/2010JD014741 – year: 2011 ident: ref54 publication-title: GCIP/EOP Surface Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data Version 1 0 contributor: fullname: lin – ident: ref65 doi: 10.1175/JHM-D-16-0176.1 – ident: ref10 doi: 10.1109/36.536538 – ident: ref16 doi: 10.1175/JAM2173.1 – ident: ref50 doi: 10.1109/TGRS.2012.2189406 – ident: ref14 doi: 10.1175/JHM560.1 – start-page: 4949 year: 2018 ident: ref80 article-title: Hessian-based analysis of large batch training and robustness to adversaries publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: yao – ident: ref68 doi: 10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2 – volume: 70 start-page: 15 year: 1997 ident: ref66 article-title: Warm water vapour pixels over high clouds as observed by Meteosat publication-title: Beitrage Zur Physik Der Atmosphare-Contrib to Atmos Phys contributor: fullname: tjemkes – ident: ref59 doi: 10.1127/0941-2948/2007/0210 – start-page: 1097 year: 2012 ident: ref42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: krizhevsky – ident: ref45 doi: 10.3390/rs71114680 – ident: ref7 doi: 10.1175/2009JHM1077.1 – ident: ref21 doi: 10.1175/BAMS-D-13-00068.1 – ident: ref64 doi: 10.1109/TGRS.2012.2226733 – ident: ref40 doi: 10.1109/CVPR.2016.90 – ident: ref5 doi: 10.1016/j.advwatres.2008.04.007 – ident: ref52 doi: 10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2 – ident: ref17 doi: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2 – ident: ref76 doi: 10.1109/ICASSP.2007.366913 – ident: ref33 doi: 10.1016/j.atmosres.2013.11.011 – ident: ref31 doi: 10.1002/joc.5131 – ident: ref28 doi: 10.1175/JHM-D-15-0075.1 – ident: ref2 doi: 10.1175/BAMS-D-13-00164.1 – ident: ref25 doi: 10.1029/2018WR023830 – ident: ref39 doi: 10.1109/TPAMI.2017.2699184 – ident: ref36 doi: 10.1002/hyp.10846 – ident: ref61 doi: 10.1029/2008JD010464 – ident: ref24 doi: 10.1002/2017GL075619 – ident: ref23 doi: 10.1007/978-90-481-2915-7_3 – ident: ref32 doi: 10.5194/hess-21-6201-2017 – ident: ref9 doi: 10.1175/2009JHM1139.1 – start-page: 396 year: 1990 ident: ref38 article-title: Handwritten digit recognition with a back-propagation network publication-title: Proc Adv Neural Inf Process Syst contributor: fullname: lecun – year: 2016 ident: ref72 publication-title: Deep Learning contributor: fullname: goodfellow – ident: ref69 doi: 10.1109/TGRS.2016.2612821 – year: 2001 ident: ref51 publication-title: Climate Change Impacts on the United States The Potential Consequences of Climate Variability and Change Foundation – ident: ref47 doi: 10.1029/2018GL077787 |
SSID | ssj0014517 |
Score | 2.5506442 |
Snippet | Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 8612 |
SubjectTerms | Algorithms Artificial neural networks Bias Clouds Continental United States (CONUS) convolutional neural network (CNN) Correlation coefficient Correlation coefficients Deep learning Estimation Feature extraction Hydrologic data Image retrieval infrared (IR) precipitation estimation Infrared imaging Machine learning Meteorology Neural networks Precipitation Radar Rain Remote sensing Satellites |
Title | Infrared Precipitation Estimation Using Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/9085928 https://www.proquest.com/docview/2465437075 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61lZBg4NGCKBSUgQmR1LHzsEdUKAWpCEGRukWJHwtSWrUpA78e23ErXgNTIiW2rDvbd-f77jPAhWIC5ULlvojS2I9oqHwqdNSaRgWJUK44U6ZQePyYjF6jh2k8bcDVphZGSmnBZzIwrzaXL2Z8ZY7K-sywcWHahGbKWF2rtckYRHHoSqMTXwcR2GUwQ8T6k7vnFx0JYhQYuvGQkm82yF6q8msntuZluAfj9cBqVMlbsKqKgH_84Gz878j3Ydf5md51PTEOoCHLNux8YR9sw5ZFf_JlB27uS7UwSHTvyZBdzB1vt3er139d2uhZaIE3mJXvbq7qzg2xh31YJPkhTIa3k8HId9cr-Fzb-MoPpYi4QFTHkdomqQJhhnOspHaZlGI5F7SgmGMp7BeqPcciwTIihMSIh5wcQauclfIYvDhXcW7yn1TpPaDIC92MJHGouA44EVJduFzLO5vXJBqZDT4Qy4xyMqOczCmnCx0jv82PTnRd6K01lLlltsywYYMjqXZ7Tv5udQrbpu8af9KDVrVYyTPtRVTFuZ0-n1vKxC4 |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gxqgHH6ARRe3Bk7Flu32wPRoEQYEYrQm3pt3HxaQQKB789e5uF-Lr4KlN2m03M9t5dL75FuBKRAylTKQ289uB7RNX2ITJrLXtZ56PUkEjoRqFR-Ow_-o_TIJJBW7WvTCccw0-44461bV8NqVL9ausFSk2Lkw2YFPG1SQsu7XWNQM_cE1zdGjLNAKbGqaLolZ8__wic0GMHEU47hLvmxfS26r8ssXawfT2YbSaWokreXOWRebQjx-sjf-d-wHsmUjTui2XxiFUeF6D3S_8gzXY0vhPuqjD3SAXc4VFt54U3cXMMHdbXWkByuZGS4MLrM40fzerVT5cUXvog8aSH0Hc68advm02WLCp9PKF7XLmU4aIzCSlVxIZwhFOseAyaBIiSikjGcEUc6avEBk7ZiHmvud5AaIu9Y6hmk9zfgJWkIogVRVQIqQVyNJMDvPCwBVUppwIiQZcr-SdzEoajUSnHyhKlHISpZzEKKcBdSW_9Y1GdA1orjSUmA9tkWDFB-e1ZeBz-veoS9jux6NhMhyMH89gR72nRKM0oVrMl_xcxhRFdqGX0ifLZMd5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared+Precipitation+Estimation+Using+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Cunguang&rft.au=Xu%2C+Jing&rft.au=Tang%2C+Guoqiang&rft.au=Yang%2C+Yi&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=12&rft.spage=8612&rft.epage=8625&rft_id=info:doi/10.1109%2FTGRS.2020.2989183&rft.externalDocID=9085928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |