Infrared Precipitation Estimation Using Convolutional Neural Network

Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 58; no. 12; pp. 8612 - 8625
Main Authors Wang, Cunguang, Xu, Jing, Tang, Guoqiang, Yang, Yi, Hong, Yang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipitation estimation using a convolutional neural network (IPEC). Based on the five-channel IR data, the IPEC first identifies the precipitation occurrence and then estimates the precipitation rates at hourly and <inline-formula> <tex-math notation="LaTeX">0.04^{\circ } \times 0.04^{\circ } </tex-math></inline-formula> resolutions. The performance of the IPEC is validated using the Stage-IV radar-gauge-combined data and compared to the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) in three subregions over the continental United States (CONUS). The results show that the five-channel input is more efficient in precipitation estimation than the commonly used one-channel input. The IPEC estimates based on the five-channel input show better statistical performance than the PERSIANN-CCS with 34.9% gain in Pearson's correlation coefficient (CC), 38.0% gain in relative bias (BIAS), and 45.2% gain in mean squared error (MSE) during the testing period from June to August 2014 over the central CONUS. Furthermore, the optimized IPEC model is applied in totally independent periods and regions, and still achieves significantly better performance than the PERSIANN-CCS, indicating that the IPEC has a stronger generalization capability. On the whole, this article proves the effectiveness of the convolutional neural network (CNN) combined with the physical multichannel inputs in IR precipitation retrieval. This end-to-end deep learning algorithm shows the potential for serving as an operational technique that can be applied globally and provides a new perspective for the future development of satellite precipitation retrievals.
AbstractList Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipitation estimation using a convolutional neural network (IPEC). Based on the five-channel IR data, the IPEC first identifies the precipitation occurrence and then estimates the precipitation rates at hourly and <inline-formula> <tex-math notation="LaTeX">0.04^{\circ } \times 0.04^{\circ } </tex-math></inline-formula> resolutions. The performance of the IPEC is validated using the Stage-IV radar-gauge-combined data and compared to the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) in three subregions over the continental United States (CONUS). The results show that the five-channel input is more efficient in precipitation estimation than the commonly used one-channel input. The IPEC estimates based on the five-channel input show better statistical performance than the PERSIANN-CCS with 34.9% gain in Pearson's correlation coefficient (CC), 38.0% gain in relative bias (BIAS), and 45.2% gain in mean squared error (MSE) during the testing period from June to August 2014 over the central CONUS. Furthermore, the optimized IPEC model is applied in totally independent periods and regions, and still achieves significantly better performance than the PERSIANN-CCS, indicating that the IPEC has a stronger generalization capability. On the whole, this article proves the effectiveness of the convolutional neural network (CNN) combined with the physical multichannel inputs in IR precipitation retrieval. This end-to-end deep learning algorithm shows the potential for serving as an operational technique that can be applied globally and provides a new perspective for the future development of satellite precipitation retrievals.
Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there is still plenty of scope for promoting their accuracy. This article develops a novel deep learning-based algorithm entitled infrared precipitation estimation using a convolutional neural network (IPEC). Based on the five-channel IR data, the IPEC first identifies the precipitation occurrence and then estimates the precipitation rates at hourly and [Formula Omitted] resolutions. The performance of the IPEC is validated using the Stage-IV radar–gauge-combined data and compared to the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) in three subregions over the continental United States (CONUS). The results show that the five-channel input is more efficient in precipitation estimation than the commonly used one-channel input. The IPEC estimates based on the five-channel input show better statistical performance than the PERSIANN-CCS with 34.9% gain in Pearson’s correlation coefficient (CC), 38.0% gain in relative bias (BIAS), and 45.2% gain in mean squared error (MSE) during the testing period from June to August 2014 over the central CONUS. Furthermore, the optimized IPEC model is applied in totally independent periods and regions, and still achieves significantly better performance than the PERSIANN-CCS, indicating that the IPEC has a stronger generalization capability. On the whole, this article proves the effectiveness of the convolutional neural network (CNN) combined with the physical multichannel inputs in IR precipitation retrieval. This end-to-end deep learning algorithm shows the potential for serving as an operational technique that can be applied globally and provides a new perspective for the future development of satellite precipitation retrievals.
Author Xu, Jing
Tang, Guoqiang
Hong, Yang
Wang, Cunguang
Yang, Yi
Author_xml – sequence: 1
  givenname: Cunguang
  orcidid: 0000-0002-5532-1931
  surname: Wang
  fullname: Wang, Cunguang
  email: cunguangwang@gmail.com
  organization: Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Jing
  surname: Xu
  fullname: Xu, Jing
  email: xujing@cma.gov.cn
  organization: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
– sequence: 3
  givenname: Guoqiang
  orcidid: 0000-0002-0923-583X
  surname: Tang
  fullname: Tang, Guoqiang
  email: guoqiang.tang@usask.ca
  organization: Coldwater Laboratory, University of Saskatchewan, Canmore, AB, Canada
– sequence: 4
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  email: yiy12@illinois.edu
  organization: Department of Hydraulic Engineering, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0001-8720-242X
  surname: Hong
  fullname: Hong, Yang
  email: yanghong@ou.edu
  organization: School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA
BookMark eNo9kEFPwzAMhSM0JLbBD0BcKnFucZymTY5ojDFpAgTjHHVpgjpGM5IWxL-nXSdOtuz3rOdvQka1qw0hlxQSSkHerBcvrwkCQoJSSCrYCRlTzkUMWZqOyBiozGIUEs_IJIQtAE05zcfkbllbX3hTRs_e6GpfNUVTuTqah6b6HNq3UNXv0czV327X9pNiFz2a1h9K8-P8xzk5tcUumItjnZL1_Xw9e4hXT4vl7HYVa5SsiakpU12CkLlAKe0GUGKB1ggmrZWFLsVGoEZTHjaCcthkaFLGGAdNNZuS6-Hs3ruv1oRGbV3ruzhBYZrxlOWQ805FB5X2LgRvrNr77hX_qyionpXqWamelTqy6jxXg6cyxvzrJQje5WB_Q5VnQQ
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_atmos15070763
crossref_primary_10_1109_ACCESS_2020_3032430
crossref_primary_10_1016_j_jhydrol_2021_127113
crossref_primary_10_1080_01431161_2024_2349267
crossref_primary_10_1109_TGRS_2022_3159036
crossref_primary_10_3390_rs14122925
crossref_primary_10_1007_s10661_023_11148_2
crossref_primary_10_3390_rs13163330
crossref_primary_10_1007_s00521_023_09397_w
crossref_primary_10_3390_s23156832
crossref_primary_10_3390_meteorology2040025
crossref_primary_10_1016_j_jhydrol_2022_127718
crossref_primary_10_1109_TGRS_2021_3126419
crossref_primary_10_1109_TGRS_2023_3270204
crossref_primary_10_1109_LGRS_2022_3152847
crossref_primary_10_22430_22565337_3017
crossref_primary_10_3390_rs15123065
crossref_primary_10_1016_j_isprsjprs_2022_03_007
crossref_primary_10_1029_2020EA001423
crossref_primary_10_3390_atmos13081286
crossref_primary_10_1109_TGRS_2021_3105438
crossref_primary_10_3390_rs15184536
crossref_primary_10_3390_s22020551
crossref_primary_10_1016_j_atmosres_2022_106037
crossref_primary_10_3390_rs14061467
crossref_primary_10_1109_LGRS_2022_3200756
crossref_primary_10_1080_01431161_2024_2359731
crossref_primary_10_3390_atmos13122048
crossref_primary_10_3390_rs15245662
crossref_primary_10_1029_2020GL092032
crossref_primary_10_3390_atmos14010025
crossref_primary_10_1029_2023EA003311
crossref_primary_10_1111_coin_12684
crossref_primary_10_1109_LGRS_2022_3213618
crossref_primary_10_3390_rs13122310
crossref_primary_10_1109_TGRS_2023_3267840
crossref_primary_10_1016_j_rse_2022_113234
Cites_doi 10.1175/BAMS-88-1-47
10.1016/j.jhydrol.2018.06.064
10.1109/TGRS.2018.2810208
10.1016/j.asr.2016.11.042
10.1145/2647868.2654889
10.1175/2007JAMC1525.1
10.1109/5.726791
10.1029/2018GL078202
10.1029/2018WR024090
10.1016/j.jhydrol.2015.12.008
10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2
10.1109/LGRS.2017.2657778
10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
10.1175/JHM-D-15-0186.1
10.1175/JHM-D-17-0077.1
10.1109/CEC.2016.7743945
10.1016/j.ijmachtools.2004.09.004
10.1016/j.rse.2013.10.026
10.3390/rs9050498
10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2
10.1109/ICCV.2017.322
10.1109/TGRS.2018.2874950
10.1109/CVPRW.2016.90
10.1016/j.atmosres.2017.11.006
10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2
10.1002/env.1004
10.5194/adgeo-16-63-2008
10.1002/met.56
10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
10.1175/2010JAMC2284.1
10.1002/met.284
10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
10.1175/JHM-D-16-0079.1
10.1029/2010JD014741
10.1175/JHM-D-16-0176.1
10.1109/36.536538
10.1175/JAM2173.1
10.1109/TGRS.2012.2189406
10.1175/JHM560.1
10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2
10.1127/0941-2948/2007/0210
10.3390/rs71114680
10.1175/2009JHM1077.1
10.1175/BAMS-D-13-00068.1
10.1109/TGRS.2012.2226733
10.1109/CVPR.2016.90
10.1016/j.advwatres.2008.04.007
10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2
10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
10.1109/ICASSP.2007.366913
10.1016/j.atmosres.2013.11.011
10.1002/joc.5131
10.1175/JHM-D-15-0075.1
10.1175/BAMS-D-13-00164.1
10.1029/2018WR023830
10.1109/TPAMI.2017.2699184
10.1002/hyp.10846
10.1029/2008JD010464
10.1002/2017GL075619
10.1007/978-90-481-2915-7_3
10.5194/hess-21-6201-2017
10.1175/2009JHM1139.1
10.1109/TGRS.2016.2612821
10.1029/2018GL077787
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.2989183
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 8625
ExternalDocumentID 10_1109_TGRS_2020_2989183
9085928
Genre orig-research
GrantInformation_xml – fundername: State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences
  grantid: 2015LASW-A09
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 7146101701
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-1ed4cd08978299fb0292a2fe839ff9acd8b82c2edb02928150b62e433350c1c3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Oct 10 19:06:16 EDT 2024
Fri Aug 23 02:58:47 EDT 2024
Wed Jun 26 19:26:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1ed4cd08978299fb0292a2fe839ff9acd8b82c2edb02928150b62e433350c1c3
ORCID 0000-0001-8720-242X
0000-0002-0923-583X
0000-0002-5532-1931
PQID 2465437075
PQPubID 85465
PageCount 14
ParticipantIDs crossref_primary_10_1109_TGRS_2020_2989183
ieee_primary_9085928
proquest_journals_2465437075
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref58
ref14
ref53
(ref51) 2001
ref52
ref11
ref10
cire?an (ref71) 2012
ref17
lecun (ref38) 1990
ref16
ref19
ref18
huffman (ref15) 2015; 4
ref50
houze (ref57) 2014; 104
ref46
ref45
ref48
ref47
ref41
ref44
ref43
tjemkes (ref66) 1997; 70
kullback (ref75) 1997
ref49
lin (ref54) 2011
ref8
ref7
ref9
ref4
ref6
ref5
ref40
krizhevsky (ref42) 2012
goodfellow (ref72) 2016
ref79
ref35
ref34
ref37
ref36
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
yao (ref80) 2018
ref70
ref68
ref24
ref67
ref23
weinreb (ref55) 2011
ref26
ref69
ref25
ref64
ref20
bastani (ref78) 2016
ref63
ref22
ref65
ref21
ref28
brock (ref73) 2018
ref27
ref29
hong (ref3) 2018
ref60
ref62
ref61
References_xml – ident: ref58
  doi: 10.1175/BAMS-88-1-47
– ident: ref6
  doi: 10.1016/j.jhydrol.2018.06.064
– ident: ref74
  doi: 10.1109/TGRS.2018.2810208
– ident: ref20
  doi: 10.1016/j.asr.2016.11.042
– year: 2011
  ident: ref55
  article-title: Conversion of GVAR infrared data to scene radiance or temperature
  contributor:
    fullname: weinreb
– ident: ref77
  doi: 10.1145/2647868.2654889
– ident: ref63
  doi: 10.1175/2007JAMC1525.1
– ident: ref70
  doi: 10.1109/5.726791
– ident: ref26
  doi: 10.1029/2018GL078202
– ident: ref48
  doi: 10.1029/2018WR024090
– ident: ref4
  doi: 10.1016/j.jhydrol.2015.12.008
– ident: ref11
  doi: 10.1175/1520-0450(2002)041<0384:ROICPU>2.0.CO;2
– ident: ref43
  doi: 10.1109/LGRS.2017.2657778
– ident: ref13
  doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
– ident: ref49
  doi: 10.1175/JHM-D-15-0186.1
– ident: ref27
  doi: 10.1175/JHM-D-17-0077.1
– ident: ref29
  doi: 10.1109/CEC.2016.7743945
– year: 2012
  ident: ref71
  article-title: Multi-column deep neural networks for image classification
  publication-title: arXiv 1202 2745
  contributor:
    fullname: cire?an
– ident: ref79
  doi: 10.1016/j.ijmachtools.2004.09.004
– ident: ref18
  doi: 10.1016/j.rse.2013.10.026
– ident: ref44
  doi: 10.3390/rs9050498
– start-page: 1
  year: 2018
  ident: ref3
  article-title: Remote sensing precipitation: Sensors, retrievals, validations, and applications
  publication-title: Observation and Measurement of Ecohydrological Processes
  contributor:
    fullname: hong
– ident: ref22
  doi: 10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2
– ident: ref41
  doi: 10.1109/ICCV.2017.322
– ident: ref19
  doi: 10.1109/TGRS.2018.2874950
– ident: ref46
  doi: 10.1109/CVPRW.2016.90
– ident: ref35
  doi: 10.1016/j.atmosres.2017.11.006
– ident: ref53
  doi: 10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2
– ident: ref56
  doi: 10.1002/env.1004
– ident: ref67
  doi: 10.5194/adgeo-16-63-2008
– volume: 4
  start-page: 30
  year: 2015
  ident: ref15
  article-title: NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG)
  publication-title: Algorithm Theoretical Basis Document Version 2 2
  contributor:
    fullname: huffman
– ident: ref62
  doi: 10.1002/met.56
– ident: ref34
  doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
– ident: ref8
  doi: 10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
– year: 1997
  ident: ref75
  publication-title: Information Theory and Statistics
  contributor:
    fullname: kullback
– ident: ref60
  doi: 10.1175/2010JAMC2284.1
– ident: ref1
  doi: 10.1002/met.284
– volume: 104
  year: 2014
  ident: ref57
  publication-title: Cloud Dynamics
  contributor:
    fullname: houze
– ident: ref12
  doi: 10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
– year: 2018
  ident: ref73
  article-title: Large scale GAN training for high fidelity natural image synthesis
  publication-title: arXiv 1809 11096
  contributor:
    fullname: brock
– start-page: 2613
  year: 2016
  ident: ref78
  article-title: Measuring neural net robustness with constraints
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: bastani
– ident: ref37
  doi: 10.1175/JHM-D-16-0079.1
– ident: ref30
  doi: 10.1029/2010JD014741
– year: 2011
  ident: ref54
  publication-title: GCIP/EOP Surface Precipitation NCEP/EMC 4KM Gridded Data (GRIB) Stage IV Data Version 1 0
  contributor:
    fullname: lin
– ident: ref65
  doi: 10.1175/JHM-D-16-0176.1
– ident: ref10
  doi: 10.1109/36.536538
– ident: ref16
  doi: 10.1175/JAM2173.1
– ident: ref50
  doi: 10.1109/TGRS.2012.2189406
– ident: ref14
  doi: 10.1175/JHM560.1
– start-page: 4949
  year: 2018
  ident: ref80
  article-title: Hessian-based analysis of large batch training and robustness to adversaries
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: yao
– ident: ref68
  doi: 10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2
– volume: 70
  start-page: 15
  year: 1997
  ident: ref66
  article-title: Warm water vapour pixels over high clouds as observed by Meteosat
  publication-title: Beitrage Zur Physik Der Atmosphare-Contrib to Atmos Phys
  contributor:
    fullname: tjemkes
– ident: ref59
  doi: 10.1127/0941-2948/2007/0210
– start-page: 1097
  year: 2012
  ident: ref42
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: krizhevsky
– ident: ref45
  doi: 10.3390/rs71114680
– ident: ref7
  doi: 10.1175/2009JHM1077.1
– ident: ref21
  doi: 10.1175/BAMS-D-13-00068.1
– ident: ref64
  doi: 10.1109/TGRS.2012.2226733
– ident: ref40
  doi: 10.1109/CVPR.2016.90
– ident: ref5
  doi: 10.1016/j.advwatres.2008.04.007
– ident: ref52
  doi: 10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2
– ident: ref17
  doi: 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
– ident: ref76
  doi: 10.1109/ICASSP.2007.366913
– ident: ref33
  doi: 10.1016/j.atmosres.2013.11.011
– ident: ref31
  doi: 10.1002/joc.5131
– ident: ref28
  doi: 10.1175/JHM-D-15-0075.1
– ident: ref2
  doi: 10.1175/BAMS-D-13-00164.1
– ident: ref25
  doi: 10.1029/2018WR023830
– ident: ref39
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref36
  doi: 10.1002/hyp.10846
– ident: ref61
  doi: 10.1029/2008JD010464
– ident: ref24
  doi: 10.1002/2017GL075619
– ident: ref23
  doi: 10.1007/978-90-481-2915-7_3
– ident: ref32
  doi: 10.5194/hess-21-6201-2017
– ident: ref9
  doi: 10.1175/2009JHM1139.1
– start-page: 396
  year: 1990
  ident: ref38
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Proc Adv Neural Inf Process Syst
  contributor:
    fullname: lecun
– year: 2016
  ident: ref72
  publication-title: Deep Learning
  contributor:
    fullname: goodfellow
– ident: ref69
  doi: 10.1109/TGRS.2016.2612821
– year: 2001
  ident: ref51
  publication-title: Climate Change Impacts on the United States The Potential Consequences of Climate Variability and Change Foundation
– ident: ref47
  doi: 10.1029/2018GL077787
SSID ssj0014517
Score 2.5506442
Snippet Infrared (IR) information is fundamental to global precipitation estimation. Although researchers have developed numerous IR-based retrieval algorithms, there...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 8612
SubjectTerms Algorithms
Artificial neural networks
Bias
Clouds
Continental United States (CONUS)
convolutional neural network (CNN)
Correlation coefficient
Correlation coefficients
Deep learning
Estimation
Feature extraction
Hydrologic data
Image retrieval
infrared (IR) precipitation estimation
Infrared imaging
Machine learning
Meteorology
Neural networks
Precipitation
Radar
Rain
Remote sensing
Satellites
Title Infrared Precipitation Estimation Using Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/9085928
https://www.proquest.com/docview/2465437075
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61lZBg4NGCKBSUgQmR1LHzsEdUKAWpCEGRukWJHwtSWrUpA78e23ErXgNTIiW2rDvbd-f77jPAhWIC5ULlvojS2I9oqHwqdNSaRgWJUK44U6ZQePyYjF6jh2k8bcDVphZGSmnBZzIwrzaXL2Z8ZY7K-sywcWHahGbKWF2rtckYRHHoSqMTXwcR2GUwQ8T6k7vnFx0JYhQYuvGQkm82yF6q8msntuZluAfj9cBqVMlbsKqKgH_84Gz878j3Ydf5md51PTEOoCHLNux8YR9sw5ZFf_JlB27uS7UwSHTvyZBdzB1vt3er139d2uhZaIE3mJXvbq7qzg2xh31YJPkhTIa3k8HId9cr-Fzb-MoPpYi4QFTHkdomqQJhhnOspHaZlGI5F7SgmGMp7BeqPcciwTIihMSIh5wcQauclfIYvDhXcW7yn1TpPaDIC92MJHGouA44EVJduFzLO5vXJBqZDT4Qy4xyMqOczCmnCx0jv82PTnRd6K01lLlltsywYYMjqXZ7Tv5udQrbpu8af9KDVrVYyTPtRVTFuZ0-n1vKxC4
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gxqgHH6ARRe3Bk7Flu32wPRoEQYEYrQm3pt3HxaQQKB789e5uF-Lr4KlN2m03M9t5dL75FuBKRAylTKQ289uB7RNX2ITJrLXtZ56PUkEjoRqFR-Ow_-o_TIJJBW7WvTCccw0-44461bV8NqVL9ausFSk2Lkw2YFPG1SQsu7XWNQM_cE1zdGjLNAKbGqaLolZ8__wic0GMHEU47hLvmxfS26r8ssXawfT2YbSaWokreXOWRebQjx-sjf-d-wHsmUjTui2XxiFUeF6D3S_8gzXY0vhPuqjD3SAXc4VFt54U3cXMMHdbXWkByuZGS4MLrM40fzerVT5cUXvog8aSH0Hc68advm02WLCp9PKF7XLmU4aIzCSlVxIZwhFOseAyaBIiSikjGcEUc6avEBk7ZiHmvud5AaIu9Y6hmk9zfgJWkIogVRVQIqQVyNJMDvPCwBVUppwIiQZcr-SdzEoajUSnHyhKlHISpZzEKKcBdSW_9Y1GdA1orjSUmA9tkWDFB-e1ZeBz-veoS9jux6NhMhyMH89gR72nRKM0oVrMl_xcxhRFdqGX0ifLZMd5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared+Precipitation+Estimation+Using+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wang%2C+Cunguang&rft.au=Xu%2C+Jing&rft.au=Tang%2C+Guoqiang&rft.au=Yang%2C+Yi&rft.date=2020-12-01&rft.pub=IEEE&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=12&rft.spage=8612&rft.epage=8625&rft_id=info:doi/10.1109%2FTGRS.2020.2989183&rft.externalDocID=9085928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon