Achieving Efficient and Privacy-Preserving Neural Network Training and Prediction in Cloud Environments
The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To produce more accurate models, powerful third parties (e.g., clouds) are usually employed to collect data from a large number of users, which howe...
Saved in:
Published in | IEEE transactions on dependable and secure computing Vol. 20; no. 5; pp. 1 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
IEEE
01.09.2023
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To produce more accurate models, powerful third parties (e.g., clouds) are usually employed to collect data from a large number of users, which however may raise concerns about user privacy. In this paper, we propose an Efficient and Privacy-preserving Neural Network scheme, named EPNN, to deal with the privacy issues in cloud-based neural networks. EPNN is designed based on a two-cloud model and techniques of data perturbation and additively homomorphic cryptosystem. This scheme enables two clouds to cooperatively perform neural network training and prediction in a privacy-preserving manner and significantly reduces the computation and communication overhead among participating entities. Through a detailed analysis, we demonstrate the security of EPNN. Extensive experiments based on real-world datasets show EPNN is more efficient than existing schemes in terms of computational costs and communication overhead. |
---|---|
AbstractList | The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To produce more accurate models, powerful third parties (e.g., clouds) are usually employed to collect data from a large number of users, which however may raise concerns about user privacy. In this paper, we propose an Efficient and Privacy-preserving Neural Network scheme, named EPNN, to deal with the privacy issues in cloud-based neural networks. EPNN is designed based on a two-cloud model and techniques of data perturbation and additively homomorphic cryptosystem. This scheme enables two clouds to cooperatively perform neural network training and prediction in a privacy-preserving manner and significantly reduces the computation and communication overhead among participating entities. Through a detailed analysis, we demonstrate the security of EPNN. Extensive experiments based on real-world datasets show EPNN is more efficient than existing schemes in terms of computational costs and communication overhead. |
Author | Wu, Tong Zhang, Chuan Hu, Chenfei Liu, Ximeng Zhu, Liehuang |
Author_xml | – sequence: 1 givenname: Chuan orcidid: 0000-0001-7684-8540 surname: Zhang fullname: Zhang, Chuan organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Chenfei surname: Hu fullname: Hu, Chenfei organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Tong orcidid: 0000-0001-5164-527X surname: Wu fullname: Wu, Tong organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Liehuang orcidid: 0000-0003-3277-3887 surname: Zhu fullname: Zhu, Liehuang organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Ximeng orcidid: 0000-0002-4238-3295 surname: Liu fullname: Liu, Ximeng organization: School of Information Systems, Singapore Management University, College of Mathematics and Computer Science, Singapore |
BookMark | eNp9kM1OwzAQhC0EEm3hARCXSJxT1k6c2McqlB-pgkqUc-Q4dnFJ7eIkRX17ElJx4MBpV6tvdndmjE6tswqhKwxTjIHfru5esykBQqYRAZZCcoJGmMc4BMDstOtpTEPKU3yOxnW9ASAx4_EIrWfy3ai9setgrrWRRtkmELYMlt7shTyES69q5X-AZ9V6UXWl-XL-I1h5YWw_H3BVGtkYZwNjg6xybRnM7d54Z7fdyvoCnWlR1eryWCfo7X6-yh7DxcvDUzZbhJLwqAlxSeOCaw5YyTKRGiChSQGRIBozISKIaIl1wUpaUCYTmQiuIKYiigsCQrJogm6GvTvvPltVN_nGtd52J3PCev8pA9xR6UBJ7-raK51L04j--6YzVeUY8j7VvE8171PNj6l2SvxHufNmK_zhX831oDFKqV-eM85TkkTfiQSF5w |
CODEN | ITDSCM |
CitedBy_id | crossref_primary_10_1109_TNSM_2025_3529471 crossref_primary_10_1109_TIFS_2023_3283104 crossref_primary_10_32604_cmc_2024_047340 crossref_primary_10_1109_TMC_2024_3373501 crossref_primary_10_3390_electronics14050985 crossref_primary_10_1007_s12083_024_01820_w crossref_primary_10_1016_j_bcra_2023_100174 crossref_primary_10_1016_j_sysarc_2024_103281 crossref_primary_10_3390_electronics13081553 crossref_primary_10_3390_electronics12153318 crossref_primary_10_1016_j_neunet_2024_106135 crossref_primary_10_1016_j_eswa_2024_123770 crossref_primary_10_1109_JIOT_2024_3417315 crossref_primary_10_3390_s23094346 crossref_primary_10_1109_TVT_2024_3397818 crossref_primary_10_1109_JIOT_2024_3359757 crossref_primary_10_32604_cmc_2024_052846 crossref_primary_10_3390_electronics13071256 crossref_primary_10_3390_electronics12234777 crossref_primary_10_1016_j_comnet_2024_110196 crossref_primary_10_3390_electronics12224700 crossref_primary_10_3390_math12192961 crossref_primary_10_3390_math12152304 crossref_primary_10_32604_cmc_2024_054777 crossref_primary_10_3390_e25071058 crossref_primary_10_3390_electronics13040788 crossref_primary_10_1109_JIOT_2024_3378329 crossref_primary_10_3390_electronics12183984 crossref_primary_10_3390_electronics13163154 crossref_primary_10_3390_math12233751 crossref_primary_10_1038_s41598_024_58505_w crossref_primary_10_1007_s11042_023_17270_0 crossref_primary_10_3390_electronics12234745 crossref_primary_10_3390_electronics12143016 crossref_primary_10_32604_cmc_2023_047087 crossref_primary_10_3390_electronics12163416 crossref_primary_10_3390_electronics13010133 crossref_primary_10_1109_JIOT_2023_3344577 crossref_primary_10_1109_COMST_2024_3399612 crossref_primary_10_3390_electronics12204326 crossref_primary_10_32604_cmc_2023_046907 crossref_primary_10_1016_j_knosys_2024_112267 crossref_primary_10_1007_s41060_024_00633_7 crossref_primary_10_3390_electronics12204285 crossref_primary_10_1109_TIFS_2023_3324747 crossref_primary_10_1007_s12083_024_01743_6 crossref_primary_10_32604_cmc_2023_047079 crossref_primary_10_3390_electronics12183754 crossref_primary_10_23919_cje_2023_00_305 crossref_primary_10_3390_math11173783 crossref_primary_10_1145_3708505 crossref_primary_10_3390_app14031280 crossref_primary_10_1016_j_comnet_2023_110079 crossref_primary_10_1007_s11042_024_19766_9 crossref_primary_10_1109_IOTM_001_2300075 |
Cites_doi | 10.1109/TIFS.2021.3138611 10.1007/s10623-012-9720-4 10.1109/TNSE.2021.3074185 10.1109/SP.2017.12 10.1016/j.ins.2018.12.015 10.1007/978-3-642-13601-6_17 10.1145/3243734.3243855 10.1109/JPROC.2016.2622218 10.1109/TII.2021.3052183 10.1145/3319535.3339819 10.1109/TDSC.2020.2971598 10.24963/ijcai.2019/671 10.1145/1315245.1315306 10.1145/1161366.1161393 10.24963/ijcai.2019/660 10.1109/TDSC.2019.2919517 10.1007/978-3-540-30576-7_18 10.1145/1014052.1014139 10.1109/CVPRW.2019.00011 10.1109/INFOCOM.2017.8057114 10.1145/1409620.1409624 10.1609/aaai.v32i1.11841 10.14778/3407790.3407794 10.1145/2810103.2813687 10.1145/2810103.2813677 10.24963/ijcai.2018/547 10.1145/2213977.2214086 10.1137/1.9781611972740.21 10.1109/TPDS.2013.18 10.1016/j.future.2017.02.006 10.1109/TIFS.2019.2939713 10.24963/ijcai.2019/542 10.1109/TKDE.2010.226 10.1109/JIOT.2020.3022911 10.1145/3133956.3134056 10.1109/TDSC.2020.3029899 10.24963/ijcai.2017/456 10.1109/TC.2016.2543220 10.1007/978-3-642-45239-0_4 |
ContentType | Journal Article |
Copyright | Copyright IEEE Computer Society 2023 |
Copyright_xml | – notice: Copyright IEEE Computer Society 2023 |
DBID | 97E RIA RIE AAYXX CITATION JQ2 |
DOI | 10.1109/TDSC.2022.3208706 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-0018 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TDSC_2022_3208706 9899726 |
Genre | orig-research |
GroupedDBID | .4S .DC 0R~ 29I 4.4 5GY 5VS 6IK 7WY 8FE 8FG 8FL 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJCF ABQJQ ABUWG ABVLG ACGFO ACIWK AENEX AETIX AFKRA AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BPEOZ BPHCQ CCPQU CS3 DU5 DWQXO EBS EDO EJD FRNLG GNUQQ HCIFZ HZ~ IEDLZ IFIPE IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M43 M7S O9- OCL P2P P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PUEGO Q2X RIA RIE RNI RNS RZB AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c293t-1d54b9f901ecd6cf00656b03a2f18aa3035d1fb8d5b58c6c6a9e045a34b20ac83 |
IEDL.DBID | RIE |
ISSN | 1545-5971 |
IngestDate | Mon Aug 04 13:40:38 EDT 2025 Tue Jul 01 02:32:21 EDT 2025 Thu Apr 24 23:03:18 EDT 2025 Wed Aug 27 02:10:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-1d54b9f901ecd6cf00656b03a2f18aa3035d1fb8d5b58c6c6a9e045a34b20ac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7684-8540 0000-0001-5164-527X 0000-0002-4238-3295 0000-0003-3277-3887 0000-0002-8285-9374 |
PQID | 2859717801 |
PQPubID | 27603 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TDSC_2022_3208706 ieee_primary_9899726 crossref_primary_10_1109_TDSC_2022_3208706 proquest_journals_2859717801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | IEEE transactions on dependable and secure computing |
PublicationTitleAbbrev | TDSC |
PublicationYear | 2023 |
Publisher | IEEE IEEE Computer Society |
Publisher_xml | – name: IEEE – name: IEEE Computer Society |
References | ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Mohassel (ref13) Xie (ref8) 2014 ref24 ref23 ref45 ref26 ref25 ref20 Chaudhuri (ref29) ref42 ref41 ref44 ref21 ref43 Zheng (ref34) 2020 ref28 Gilad-Bachrach (ref39) ref27 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Ge (ref22) |
References_xml | – ident: ref18 doi: 10.1109/TIFS.2021.3138611 – ident: ref41 doi: 10.1007/s10623-012-9720-4 – ident: ref44 doi: 10.1109/TNSE.2021.3074185 – ident: ref12 doi: 10.1109/SP.2017.12 – ident: ref17 doi: 10.1016/j.ins.2018.12.015 – ident: ref22 article-title: Practical two-party privacy-preserving neural network based on secret sharing – ident: ref24 doi: 10.1007/978-3-642-13601-6_17 – ident: ref5 doi: 10.1145/3243734.3243855 – ident: ref36 doi: 10.1109/JPROC.2016.2622218 – ident: ref45 doi: 10.1109/TII.2021.3052183 – ident: ref14 doi: 10.1145/3319535.3339819 – ident: ref15 doi: 10.1109/TDSC.2020.2971598 – ident: ref16 doi: 10.24963/ijcai.2019/671 – ident: ref23 doi: 10.1145/1315245.1315306 – ident: ref35 doi: 10.1145/1161366.1161393 – year: 2014 ident: ref8 article-title: Crypto-nets: Neural networks over encrypted data – ident: ref6 doi: 10.24963/ijcai.2019/660 – ident: ref20 doi: 10.1109/TDSC.2019.2919517 – ident: ref11 doi: 10.1007/978-3-540-30576-7_18 – ident: ref28 doi: 10.1145/1014052.1014139 – ident: ref32 doi: 10.1109/CVPRW.2019.00011 – ident: ref19 doi: 10.1109/INFOCOM.2017.8057114 – ident: ref25 doi: 10.1145/1409620.1409624 – ident: ref1 doi: 10.1609/aaai.v32i1.11841 – ident: ref33 doi: 10.14778/3407790.3407794 – ident: ref30 doi: 10.1145/2810103.2813687 – start-page: 201 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref39 article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy – ident: ref7 doi: 10.1145/2810103.2813677 – ident: ref4 doi: 10.24963/ijcai.2018/547 – ident: ref38 doi: 10.1145/2213977.2214086 – year: 2020 ident: ref34 article-title: Industrial scale privacy preserving deep neural network – ident: ref27 doi: 10.1137/1.9781611972740.21 – ident: ref10 doi: 10.1109/TPDS.2013.18 – start-page: 35 volume-title: Proc. ACM SIGSAC Conf. Comput. Commun. Secur. ident: ref13 article-title: ABY3: A mixed protocol framework for machine learning – start-page: 289 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref29 article-title: Privacy-preserving logistic regression – ident: ref9 doi: 10.1016/j.future.2017.02.006 – ident: ref31 doi: 10.1109/TIFS.2019.2939713 – ident: ref3 doi: 10.24963/ijcai.2019/542 – ident: ref26 doi: 10.1109/TKDE.2010.226 – ident: ref43 doi: 10.1109/JIOT.2020.3022911 – ident: ref40 doi: 10.1145/3133956.3134056 – ident: ref42 doi: 10.1109/TDSC.2020.3029899 – ident: ref2 doi: 10.24963/ijcai.2017/456 – ident: ref21 doi: 10.1109/TC.2016.2543220 – ident: ref37 doi: 10.1007/978-3-642-45239-0_4 |
SSID | ssj0024894 |
Score | 2.6744678 |
Snippet | The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Additively homomorphic cryptosystem Cloud computing cloud environments Computational modeling Computer privacy Cryptography Data collection Data models data perturbation Data privacy Face recognition Image processing neural network Neural networks Perturbation Prediction models Predictions Predictive models Privacy privacy-preserving Training |
Title | Achieving Efficient and Privacy-Preserving Neural Network Training and Prediction in Cloud Environments |
URI | https://ieeexplore.ieee.org/document/9899726 https://www.proquest.com/docview/2859717801 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC7Uk5d1fSyOq5KDJzFjv5JOjjKOiKAIjuCtSdIZHVZ6RGcW1l9vVTozPpG9NXQlBL4k9VXqBbBni7LUzioudZnxQgnHtS8LLpWx0nvKYg4Bshfy9Lo4uxE3C3Awz4Xx3ofgM9-lz-DLr8duSk9lh1pRmqdchEU03Npcrde6eio0PSRGwJEkp9GDmSb6cHB81UNLMMu6eZaQX--dDgpNVT7dxEG9nKzA-WxhbVTJn-50Yrvu-UPNxv9d-U_4EXkmO2o3xios-GYNVmY9HFg80utwe-TuRp5eFVg_VJPAeZhpanb5OPpr3D9OMRp0n6AAFfLAOS_ayHE2iN0lojh5fAhlNmpY7348rVn_TRLdBlyf9Ae9Ux6bL3CHDGDC01oUVg-RLnhXSzckriJtkptsmCpjUPOJOh1aVQsrlJNOGo3ICpMXNkuMU_kvWGrGjd8EllsExCWqLkWJf7X1wnpUmVnpjEW-14FkBkflYmVyapBxXwULJdEVIVgRglVEsAP78yEPbVmO74TXCZG5YASjA9szzKt4cJ8qqueHFi7q7a2vR_2GZeo434aZbcPS5HHqd5CXTOxu2JAvvpXfFQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROLQXHqVVQ3n40BOqw77stY8oBAUKUSWCxG1le502KtogSCq1v54Zr5O-UMVtpR1blj7b843nBfDBFmWpnVVc6jLjhRKOa18WXCpjpfeUxRwCZIdycF2c34ibFfi4zIXx3ofgM9-lz-DLr6duTk9lR1pRmqd8AWuo90XWZmv9qqynQttD4gQcaXIafZhpoo9GJ1c9tAWzrJtnCXn2_tBCoa3KP3dxUDCnG3C5WFobV_KtO5_Zrvv5V9XG5659E9Yj02TH7dbYghXfvIaNRRcHFg_1Nnw5dl8nnt4VWD_Uk8B5mGlq9vl-8t24H5yiNOhGQQEq5YFzDtvYcTaK_SWiOPl8CGc2aVjvdjqvWf-3NLo3cH3aH_UGPLZf4A45wIyntSisHiNh8K6WbkxsRdokN9k4Vcag7hN1OraqFlYoJ500GrEVJi9slhin8rew2kwb_w5YbhEQl6i6FCX-1dYL61FpZqUzFhlfB5IFHJWLtcmpRcZtFWyURFeEYEUIVhHBDhwuh9y1hTn-J7xNiCwFIxgd2F1gXsWj-1BRRT-0cVFz7zw96gBeDkaXF9XF2fDTe3hF_efboLNdWJ3dz_0espSZ3Q-b8xGLOuJf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Efficient+and+Privacy-Preserving+Neural+Network+Training+and+Prediction+in+Cloud+Environments&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Zhang%2C+Chuan&rft.au=Hu%2C+Chenfei&rft.au=Wu%2C+Tong&rft.au=Zhu%2C+Liehuang&rft.date=2023-09-01&rft.pub=IEEE+Computer+Society&rft.issn=1545-5971&rft.eissn=1941-0018&rft.volume=20&rft.issue=5&rft.spage=4245&rft_id=info:doi/10.1109%2FTDSC.2022.3208706&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon |