Achieving Efficient and Privacy-Preserving Neural Network Training and Prediction in Cloud Environments

The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To produce more accurate models, powerful third parties (e.g., clouds) are usually employed to collect data from a large number of users, which howe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on dependable and secure computing Vol. 20; no. 5; pp. 1 - 12
Main Authors Zhang, Chuan, Hu, Chenfei, Wu, Tong, Zhu, Liehuang, Liu, Ximeng
Format Journal Article
LanguageEnglish
Published Washington IEEE 01.09.2023
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To produce more accurate models, powerful third parties (e.g., clouds) are usually employed to collect data from a large number of users, which however may raise concerns about user privacy. In this paper, we propose an Efficient and Privacy-preserving Neural Network scheme, named EPNN, to deal with the privacy issues in cloud-based neural networks. EPNN is designed based on a two-cloud model and techniques of data perturbation and additively homomorphic cryptosystem. This scheme enables two clouds to cooperatively perform neural network training and prediction in a privacy-preserving manner and significantly reduces the computation and communication overhead among participating entities. Through a detailed analysis, we demonstrate the security of EPNN. Extensive experiments based on real-world datasets show EPNN is more efficient than existing schemes in terms of computational costs and communication overhead.
AbstractList The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To produce more accurate models, powerful third parties (e.g., clouds) are usually employed to collect data from a large number of users, which however may raise concerns about user privacy. In this paper, we propose an Efficient and Privacy-preserving Neural Network scheme, named EPNN, to deal with the privacy issues in cloud-based neural networks. EPNN is designed based on a two-cloud model and techniques of data perturbation and additively homomorphic cryptosystem. This scheme enables two clouds to cooperatively perform neural network training and prediction in a privacy-preserving manner and significantly reduces the computation and communication overhead among participating entities. Through a detailed analysis, we demonstrate the security of EPNN. Extensive experiments based on real-world datasets show EPNN is more efficient than existing schemes in terms of computational costs and communication overhead.
Author Wu, Tong
Zhang, Chuan
Hu, Chenfei
Liu, Ximeng
Zhu, Liehuang
Author_xml – sequence: 1
  givenname: Chuan
  orcidid: 0000-0001-7684-8540
  surname: Zhang
  fullname: Zhang, Chuan
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Chenfei
  surname: Hu
  fullname: Hu, Chenfei
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Tong
  orcidid: 0000-0001-5164-527X
  surname: Wu
  fullname: Wu, Tong
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Liehuang
  orcidid: 0000-0003-3277-3887
  surname: Zhu
  fullname: Zhu, Liehuang
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Ximeng
  orcidid: 0000-0002-4238-3295
  surname: Liu
  fullname: Liu, Ximeng
  organization: School of Information Systems, Singapore Management University, College of Mathematics and Computer Science, Singapore
BookMark eNp9kM1OwzAQhC0EEm3hARCXSJxT1k6c2McqlB-pgkqUc-Q4dnFJ7eIkRX17ElJx4MBpV6tvdndmjE6tswqhKwxTjIHfru5esykBQqYRAZZCcoJGmMc4BMDstOtpTEPKU3yOxnW9ASAx4_EIrWfy3ai9setgrrWRRtkmELYMlt7shTyES69q5X-AZ9V6UXWl-XL-I1h5YWw_H3BVGtkYZwNjg6xybRnM7d54Z7fdyvoCnWlR1eryWCfo7X6-yh7DxcvDUzZbhJLwqAlxSeOCaw5YyTKRGiChSQGRIBozISKIaIl1wUpaUCYTmQiuIKYiigsCQrJogm6GvTvvPltVN_nGtd52J3PCev8pA9xR6UBJ7-raK51L04j--6YzVeUY8j7VvE8171PNj6l2SvxHufNmK_zhX831oDFKqV-eM85TkkTfiQSF5w
CODEN ITDSCM
CitedBy_id crossref_primary_10_1109_TNSM_2025_3529471
crossref_primary_10_1109_TIFS_2023_3283104
crossref_primary_10_32604_cmc_2024_047340
crossref_primary_10_1109_TMC_2024_3373501
crossref_primary_10_3390_electronics14050985
crossref_primary_10_1007_s12083_024_01820_w
crossref_primary_10_1016_j_bcra_2023_100174
crossref_primary_10_1016_j_sysarc_2024_103281
crossref_primary_10_3390_electronics13081553
crossref_primary_10_3390_electronics12153318
crossref_primary_10_1016_j_neunet_2024_106135
crossref_primary_10_1016_j_eswa_2024_123770
crossref_primary_10_1109_JIOT_2024_3417315
crossref_primary_10_3390_s23094346
crossref_primary_10_1109_TVT_2024_3397818
crossref_primary_10_1109_JIOT_2024_3359757
crossref_primary_10_32604_cmc_2024_052846
crossref_primary_10_3390_electronics13071256
crossref_primary_10_3390_electronics12234777
crossref_primary_10_1016_j_comnet_2024_110196
crossref_primary_10_3390_electronics12224700
crossref_primary_10_3390_math12192961
crossref_primary_10_3390_math12152304
crossref_primary_10_32604_cmc_2024_054777
crossref_primary_10_3390_e25071058
crossref_primary_10_3390_electronics13040788
crossref_primary_10_1109_JIOT_2024_3378329
crossref_primary_10_3390_electronics12183984
crossref_primary_10_3390_electronics13163154
crossref_primary_10_3390_math12233751
crossref_primary_10_1038_s41598_024_58505_w
crossref_primary_10_1007_s11042_023_17270_0
crossref_primary_10_3390_electronics12234745
crossref_primary_10_3390_electronics12143016
crossref_primary_10_32604_cmc_2023_047087
crossref_primary_10_3390_electronics12163416
crossref_primary_10_3390_electronics13010133
crossref_primary_10_1109_JIOT_2023_3344577
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_3390_electronics12204326
crossref_primary_10_32604_cmc_2023_046907
crossref_primary_10_1016_j_knosys_2024_112267
crossref_primary_10_1007_s41060_024_00633_7
crossref_primary_10_3390_electronics12204285
crossref_primary_10_1109_TIFS_2023_3324747
crossref_primary_10_1007_s12083_024_01743_6
crossref_primary_10_32604_cmc_2023_047079
crossref_primary_10_3390_electronics12183754
crossref_primary_10_23919_cje_2023_00_305
crossref_primary_10_3390_math11173783
crossref_primary_10_1145_3708505
crossref_primary_10_3390_app14031280
crossref_primary_10_1016_j_comnet_2023_110079
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1109_IOTM_001_2300075
Cites_doi 10.1109/TIFS.2021.3138611
10.1007/s10623-012-9720-4
10.1109/TNSE.2021.3074185
10.1109/SP.2017.12
10.1016/j.ins.2018.12.015
10.1007/978-3-642-13601-6_17
10.1145/3243734.3243855
10.1109/JPROC.2016.2622218
10.1109/TII.2021.3052183
10.1145/3319535.3339819
10.1109/TDSC.2020.2971598
10.24963/ijcai.2019/671
10.1145/1315245.1315306
10.1145/1161366.1161393
10.24963/ijcai.2019/660
10.1109/TDSC.2019.2919517
10.1007/978-3-540-30576-7_18
10.1145/1014052.1014139
10.1109/CVPRW.2019.00011
10.1109/INFOCOM.2017.8057114
10.1145/1409620.1409624
10.1609/aaai.v32i1.11841
10.14778/3407790.3407794
10.1145/2810103.2813687
10.1145/2810103.2813677
10.24963/ijcai.2018/547
10.1145/2213977.2214086
10.1137/1.9781611972740.21
10.1109/TPDS.2013.18
10.1016/j.future.2017.02.006
10.1109/TIFS.2019.2939713
10.24963/ijcai.2019/542
10.1109/TKDE.2010.226
10.1109/JIOT.2020.3022911
10.1145/3133956.3134056
10.1109/TDSC.2020.3029899
10.24963/ijcai.2017/456
10.1109/TC.2016.2543220
10.1007/978-3-642-45239-0_4
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2023
Copyright_xml – notice: Copyright IEEE Computer Society 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
DOI 10.1109/TDSC.2022.3208706
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-0018
EndPage 12
ExternalDocumentID 10_1109_TDSC_2022_3208706
9899726
Genre orig-research
GroupedDBID .4S
.DC
0R~
29I
4.4
5GY
5VS
6IK
7WY
8FE
8FG
8FL
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJCF
ABQJQ
ABUWG
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFKRA
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
ATWAV
AZQEC
BEFXN
BENPR
BEZIV
BFFAM
BGLVJ
BGNUA
BKEBE
BPEOZ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EDO
EJD
FRNLG
GNUQQ
HCIFZ
HZ~
IEDLZ
IFIPE
IPLJI
ITG
ITH
JAVBF
K60
K6V
K6~
K7-
L6V
LAI
M0C
M43
M7S
O9-
OCL
P2P
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RIA
RIE
RNI
RNS
RZB
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c293t-1d54b9f901ecd6cf00656b03a2f18aa3035d1fb8d5b58c6c6a9e045a34b20ac83
IEDL.DBID RIE
ISSN 1545-5971
IngestDate Mon Aug 04 13:40:38 EDT 2025
Tue Jul 01 02:32:21 EDT 2025
Thu Apr 24 23:03:18 EDT 2025
Wed Aug 27 02:10:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1d54b9f901ecd6cf00656b03a2f18aa3035d1fb8d5b58c6c6a9e045a34b20ac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7684-8540
0000-0001-5164-527X
0000-0002-4238-3295
0000-0003-3277-3887
0000-0002-8285-9374
PQID 2859717801
PQPubID 27603
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TDSC_2022_3208706
ieee_primary_9899726
crossref_primary_10_1109_TDSC_2022_3208706
proquest_journals_2859717801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle IEEE transactions on dependable and secure computing
PublicationTitleAbbrev TDSC
PublicationYear 2023
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Mohassel (ref13)
Xie (ref8) 2014
ref24
ref23
ref45
ref26
ref25
ref20
Chaudhuri (ref29)
ref42
ref41
ref44
ref21
ref43
Zheng (ref34) 2020
ref28
Gilad-Bachrach (ref39)
ref27
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Ge (ref22)
References_xml – ident: ref18
  doi: 10.1109/TIFS.2021.3138611
– ident: ref41
  doi: 10.1007/s10623-012-9720-4
– ident: ref44
  doi: 10.1109/TNSE.2021.3074185
– ident: ref12
  doi: 10.1109/SP.2017.12
– ident: ref17
  doi: 10.1016/j.ins.2018.12.015
– ident: ref22
  article-title: Practical two-party privacy-preserving neural network based on secret sharing
– ident: ref24
  doi: 10.1007/978-3-642-13601-6_17
– ident: ref5
  doi: 10.1145/3243734.3243855
– ident: ref36
  doi: 10.1109/JPROC.2016.2622218
– ident: ref45
  doi: 10.1109/TII.2021.3052183
– ident: ref14
  doi: 10.1145/3319535.3339819
– ident: ref15
  doi: 10.1109/TDSC.2020.2971598
– ident: ref16
  doi: 10.24963/ijcai.2019/671
– ident: ref23
  doi: 10.1145/1315245.1315306
– ident: ref35
  doi: 10.1145/1161366.1161393
– year: 2014
  ident: ref8
  article-title: Crypto-nets: Neural networks over encrypted data
– ident: ref6
  doi: 10.24963/ijcai.2019/660
– ident: ref20
  doi: 10.1109/TDSC.2019.2919517
– ident: ref11
  doi: 10.1007/978-3-540-30576-7_18
– ident: ref28
  doi: 10.1145/1014052.1014139
– ident: ref32
  doi: 10.1109/CVPRW.2019.00011
– ident: ref19
  doi: 10.1109/INFOCOM.2017.8057114
– ident: ref25
  doi: 10.1145/1409620.1409624
– ident: ref1
  doi: 10.1609/aaai.v32i1.11841
– ident: ref33
  doi: 10.14778/3407790.3407794
– ident: ref30
  doi: 10.1145/2810103.2813687
– start-page: 201
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref39
  article-title: CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy
– ident: ref7
  doi: 10.1145/2810103.2813677
– ident: ref4
  doi: 10.24963/ijcai.2018/547
– ident: ref38
  doi: 10.1145/2213977.2214086
– year: 2020
  ident: ref34
  article-title: Industrial scale privacy preserving deep neural network
– ident: ref27
  doi: 10.1137/1.9781611972740.21
– ident: ref10
  doi: 10.1109/TPDS.2013.18
– start-page: 35
  volume-title: Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
  ident: ref13
  article-title: ABY3: A mixed protocol framework for machine learning
– start-page: 289
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Privacy-preserving logistic regression
– ident: ref9
  doi: 10.1016/j.future.2017.02.006
– ident: ref31
  doi: 10.1109/TIFS.2019.2939713
– ident: ref3
  doi: 10.24963/ijcai.2019/542
– ident: ref26
  doi: 10.1109/TKDE.2010.226
– ident: ref43
  doi: 10.1109/JIOT.2020.3022911
– ident: ref40
  doi: 10.1145/3133956.3134056
– ident: ref42
  doi: 10.1109/TDSC.2020.3029899
– ident: ref2
  doi: 10.24963/ijcai.2017/456
– ident: ref21
  doi: 10.1109/TC.2016.2543220
– ident: ref37
  doi: 10.1007/978-3-642-45239-0_4
SSID ssj0024894
Score 2.6744678
Snippet The neural network has been widely used to train predictive models for applications such as image processing, disease prediction, and face recognition. To...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Additively homomorphic cryptosystem
Cloud computing
cloud environments
Computational modeling
Computer privacy
Cryptography
Data collection
Data models
data perturbation
Data privacy
Face recognition
Image processing
neural network
Neural networks
Perturbation
Prediction models
Predictions
Predictive models
Privacy
privacy-preserving
Training
Title Achieving Efficient and Privacy-Preserving Neural Network Training and Prediction in Cloud Environments
URI https://ieeexplore.ieee.org/document/9899726
https://www.proquest.com/docview/2859717801
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEC7Uk5d1fSyOq5KDJzFjv5JOjjKOiKAIjuCtSdIZHVZ6RGcW1l9vVTozPpG9NXQlBL4k9VXqBbBni7LUzioudZnxQgnHtS8LLpWx0nvKYg4Bshfy9Lo4uxE3C3Awz4Xx3ofgM9-lz-DLr8duSk9lh1pRmqdchEU03Npcrde6eio0PSRGwJEkp9GDmSb6cHB81UNLMMu6eZaQX--dDgpNVT7dxEG9nKzA-WxhbVTJn-50Yrvu-UPNxv9d-U_4EXkmO2o3xios-GYNVmY9HFg80utwe-TuRp5eFVg_VJPAeZhpanb5OPpr3D9OMRp0n6AAFfLAOS_ayHE2iN0lojh5fAhlNmpY7348rVn_TRLdBlyf9Ae9Ux6bL3CHDGDC01oUVg-RLnhXSzckriJtkptsmCpjUPOJOh1aVQsrlJNOGo3ICpMXNkuMU_kvWGrGjd8EllsExCWqLkWJf7X1wnpUmVnpjEW-14FkBkflYmVyapBxXwULJdEVIVgRglVEsAP78yEPbVmO74TXCZG5YASjA9szzKt4cJ8qqueHFi7q7a2vR_2GZeo434aZbcPS5HHqd5CXTOxu2JAvvpXfFQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROLQXHqVVQ3n40BOqw77stY8oBAUKUSWCxG1le502KtogSCq1v54Zr5O-UMVtpR1blj7b843nBfDBFmWpnVVc6jLjhRKOa18WXCpjpfeUxRwCZIdycF2c34ibFfi4zIXx3ofgM9-lz-DLr6duTk9lR1pRmqd8AWuo90XWZmv9qqynQttD4gQcaXIafZhpoo9GJ1c9tAWzrJtnCXn2_tBCoa3KP3dxUDCnG3C5WFobV_KtO5_Zrvv5V9XG5659E9Yj02TH7dbYghXfvIaNRRcHFg_1Nnw5dl8nnt4VWD_Uk8B5mGlq9vl-8t24H5yiNOhGQQEq5YFzDtvYcTaK_SWiOPl8CGc2aVjvdjqvWf-3NLo3cH3aH_UGPLZf4A45wIyntSisHiNh8K6WbkxsRdokN9k4Vcag7hN1OraqFlYoJ500GrEVJi9slhin8rew2kwb_w5YbhEQl6i6FCX-1dYL61FpZqUzFhlfB5IFHJWLtcmpRcZtFWyURFeEYEUIVhHBDhwuh9y1hTn-J7xNiCwFIxgd2F1gXsWj-1BRRT-0cVFz7zw96gBeDkaXF9XF2fDTe3hF_efboLNdWJ3dz_0espSZ3Q-b8xGLOuJf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+Efficient+and+Privacy-Preserving+Neural+Network+Training+and+Prediction+in+Cloud+Environments&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Zhang%2C+Chuan&rft.au=Hu%2C+Chenfei&rft.au=Wu%2C+Tong&rft.au=Zhu%2C+Liehuang&rft.date=2023-09-01&rft.pub=IEEE+Computer+Society&rft.issn=1545-5971&rft.eissn=1941-0018&rft.volume=20&rft.issue=5&rft.spage=4245&rft_id=info:doi/10.1109%2FTDSC.2022.3208706&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon