An Efficient Hybrid Sampling Method for Neural Network-Based Microwave Component Modeling and Optimization

In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses samples from global and local samples to form a data set. The local samples are obtained using a greedy-like sampling method to exploit potential o...

Full description

Saved in:
Bibliographic Details
Published inIEEE microwave and wireless components letters Vol. 30; no. 7; pp. 625 - 628
Main Authors Zhang, Zhen, Cheng, Qingsha S., Chen, Hongcai, Jiang, Fan
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses samples from global and local samples to form a data set. The local samples are obtained using a greedy-like sampling method to exploit potential optimal solutions. The global samples are chosen using random sampling with minimum distance rejection to ensure the uniformity of the samples in the design space. The obtained data set is used to establish a surrogate model using the artificial neural networks (ANNs), and the optimal design parameters are obtained by optimizing the ANN model. A bandstop microstrip filter is taken as an example to verify the performance of the sampling method. The results show that the ANN model based on the proposed method achieves better modeling performance and yields better optimal design than the ANN model based on conventional sampling methods.
AbstractList In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses samples from global and local samples to form a data set. The local samples are obtained using a greedy-like sampling method to exploit potential optimal solutions. The global samples are chosen using random sampling with minimum distance rejection to ensure the uniformity of the samples in the design space. The obtained data set is used to establish a surrogate model using the artificial neural networks (ANNs), and the optimal design parameters are obtained by optimizing the ANN model. A bandstop microstrip filter is taken as an example to verify the performance of the sampling method. The results show that the ANN model based on the proposed method achieves better modeling performance and yields better optimal design than the ANN model based on conventional sampling methods.
Author Chen, Hongcai
Cheng, Qingsha S.
Jiang, Fan
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  orcidid: 0000-0003-4698-8125
  surname: Zhang
  fullname: Zhang, Zhen
  email: 11849553@mail.sustech.edu.cn
  organization: Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Qingsha S.
  orcidid: 0000-0003-3869-3378
  surname: Cheng
  fullname: Cheng, Qingsha S.
  email: chengqs@sustech.edu.cn
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Hongcai
  orcidid: 0000-0001-5418-4122
  surname: Chen
  fullname: Chen, Hongcai
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
– sequence: 4
  givenname: Fan
  orcidid: 0000-0002-9867-7639
  surname: Jiang
  fullname: Jiang, Fan
  organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kLFOwzAQhi1UJNrCAyAWv0CKHV_seCxRoUgtDIAYIyd2wCWJIydQlacnaSsGBqa74b7_fn0TNKpdbRC6pGRGKZHXq_VrMgtJSGahlFEcxSdoTKMoDqjgMBp2RgPKiDxDk7bdEEIhBjpGm3mNF0Vhc2vqDi93mbcaP6mqKW39hteme3caF87jB_PpVdmPbuv8R3CjWqPx2ubebdWXwYmrmr5Rn7F22uxhVWv82HS2st-qs64-R6eFKltzcZxT9HK7eE6Wwerx7j6Zr4I8lKzrC2eS55kACEFmDHIAlnGljQASs1BDZHJQIDIQYAoeM6FjyVXGtBJF1B9PET3k9t3a1psibbytlN-llKSDrHSQlQ6y0qOsnhF_mNx2-9adV7b8l7w6kNYY8_tJUgKcc_YD4kB6bA
CODEN IMWCBJ
CitedBy_id crossref_primary_10_3390_electronics12173560
crossref_primary_10_1002_jnm_2886
crossref_primary_10_1109_JMW_2020_3033780
crossref_primary_10_1038_s41598_022_04810_1
crossref_primary_10_1002_jnm_3102
crossref_primary_10_1109_LMWT_2023_3329783
crossref_primary_10_1109_TMTT_2024_3359703
crossref_primary_10_1002_mop_33295
crossref_primary_10_1002_mop_33691
crossref_primary_10_1038_s41598_021_03095_0
crossref_primary_10_1038_s41598_024_82701_3
crossref_primary_10_1109_LMWT_2024_3486160
crossref_primary_10_1038_s41598_022_17661_7
crossref_primary_10_1109_ACCESS_2024_3407978
crossref_primary_10_1038_s41598_023_27532_4
crossref_primary_10_1038_s41598_023_34414_2
crossref_primary_10_1109_TCSII_2022_3170894
crossref_primary_10_1109_TMTT_2023_3341584
crossref_primary_10_1088_1742_6596_2245_1_012005
crossref_primary_10_1109_TMTT_2022_3230587
crossref_primary_10_1109_LMWC_2021_3087163
crossref_primary_10_1109_LMWC_2022_3153058
crossref_primary_10_1109_TMTT_2023_3318702
crossref_primary_10_3390_electronics11223705
crossref_primary_10_1016_j_ins_2020_12_058
crossref_primary_10_1109_ACCESS_2023_3248961
crossref_primary_10_1109_ACCESS_2022_3202019
crossref_primary_10_1109_ACCESS_2021_3078432
crossref_primary_10_1038_s41598_024_73323_w
crossref_primary_10_1038_s41598_024_56823_7
crossref_primary_10_1109_TMTT_2021_3112156
crossref_primary_10_1109_TMTT_2022_3199756
crossref_primary_10_1109_ACCESS_2021_3105811
crossref_primary_10_3390_electronics10212689
crossref_primary_10_1155_2024_5524054
crossref_primary_10_1016_j_knosys_2023_111296
crossref_primary_10_1109_LMWC_2022_3214467
crossref_primary_10_1109_LMWT_2024_3353066
crossref_primary_10_1109_ACCESS_2020_3036600
crossref_primary_10_1109_TMTT_2022_3191327
crossref_primary_10_1109_ACCESS_2020_3033892
crossref_primary_10_1109_LMWC_2022_3201123
crossref_primary_10_1038_s41598_024_59512_7
crossref_primary_10_1002_jnm_3157
crossref_primary_10_1109_LMWT_2023_3276746
crossref_primary_10_1109_TMTT_2022_3197751
crossref_primary_10_1109_TMTT_2022_3208898
crossref_primary_10_1155_2022_1119059
crossref_primary_10_1109_TMTT_2022_3189655
Cites_doi 10.1007/978-3-642-20859-1
10.1109/TMTT.2016.2623902
10.1023/A:1008202821328
10.1109/TMTT.2014.2315781
10.1109/MWSYM.2013.6697547
10.1109/TMTT.2016.2630059
10.1109/TMTT.2017.2772855
10.1109/TMTT.2018.2841889
10.1109/TAP.2007.891564
10.1109/TMTT.2003.820897
10.1007/s11222-011-9242-3
10.2307/1268522
10.1109/TAP.2012.2220513
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LMWC.2020.2995858
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-1764
EndPage 628
ExternalDocumentID 10_1109_LMWC_2020_2995858
9104666
Genre orig-research
GrantInformation_xml – fundername: University Key Research Project of Guangdong Province
  grantid: 2018KZDXM063
– fundername: Shenzhen Science and Technology Innovation Commission under the Peacock Technology Innovation
  grantid: KQJSCX20170328153625
  funderid: 10.13039/501100010877
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFFNX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c293t-17b96cb744249b34c443b6ade740832d45ec4a47b474ef6837d896ab3da7f5443
IEDL.DBID RIE
ISSN 1531-1309
IngestDate Thu Apr 24 22:57:17 EDT 2025
Tue Jul 01 01:00:42 EDT 2025
Wed Aug 27 02:36:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-17b96cb744249b34c443b6ade740832d45ec4a47b474ef6837d896ab3da7f5443
ORCID 0000-0001-5418-4122
0000-0003-4698-8125
0000-0003-3869-3378
0000-0002-9867-7639
PageCount 4
ParticipantIDs crossref_primary_10_1109_LMWC_2020_2995858
ieee_primary_9104666
crossref_citationtrail_10_1109_LMWC_2020_2995858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE microwave and wireless components letters
PublicationTitleAbbrev LMWC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
(ref13) 2018
ref6
ref5
References_xml – ident: ref10
  doi: 10.1007/978-3-642-20859-1
– ident: ref1
  doi: 10.1109/TMTT.2016.2623902
– ident: ref14
  doi: 10.1023/A:1008202821328
– ident: ref12
  doi: 10.1109/TMTT.2014.2315781
– ident: ref9
  doi: 10.1109/MWSYM.2013.6697547
– ident: ref11
  doi: 10.1109/TMTT.2016.2630059
– ident: ref6
  doi: 10.1109/TMTT.2017.2772855
– ident: ref4
  doi: 10.1109/TMTT.2018.2841889
– ident: ref3
  doi: 10.1109/TAP.2007.891564
– year: 2018
  ident: ref13
  publication-title: CST Microwave Studio
– ident: ref5
  doi: 10.1109/TMTT.2003.820897
– ident: ref7
  doi: 10.1007/s11222-011-9242-3
– ident: ref8
  doi: 10.2307/1268522
– ident: ref2
  doi: 10.1109/TAP.2012.2220513
SSID ssj0014841
Score 2.5216386
Snippet In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 625
SubjectTerms Adaptation models
Artificial neural networks (ANNs)
Computational modeling
microwave component
Microwave theory and techniques
modeling and optimization
Neural networks
Optimization
sampling method
Sampling methods
Testing
Title An Efficient Hybrid Sampling Method for Neural Network-Based Microwave Component Modeling and Optimization
URI https://ieeexplore.ieee.org/document/9104666
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5UEPTgq4pv9uBJ3Jo0m2xz1FIpYvSgxd7CviL4iKKtor_emU0sVUS8LSGzWZhlHplvvgHYk8ZI1SraXDobcfRQluswjLgpXNzCVREk1CicnSe9vjgdxIMpOBj3wjjnPPjMNWnpa_n20YzoV9lhSgXJJJmGaUzcql6tccVAtEXNjRpytMtpXcEMg_TwLLvuYCbYCppoezE8bn_zQRNDVbxPOVmE7Os0FZTkrjka6qb5-EHU-N_jLsFCHVyyo-o2LMOUK1dgfoJycAVmPeTTvDTg9qhkXU8ggbuw3ju1brFLRQjz8oZlfrI0w5CWEX8H7npeAcb5Mfo9yzIC8r2pV8fIojyWtAfNVfPCqrTsAm3RQ93kuQr9k-5Vp8fryQvcoPsf8lDqNDFaCoHZmY6EESLSibJOCgzZWlbEzgglpBZSuCLBJNe200TpyCpZEKPeGsyU-Ol1YGFkImNdrCKLYoFJY4lumYacYwpstd6A4EsXualpyWk6xn3u05MgzUl9Oakvr9W3AftjkaeKk-OvlxukmfGLtVI2f3-8BXMkXOFxt2Fm-DxyOxh1DPWuv26fiYjUCg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RECo9lPIS0FJ8aC-VvOThxJtDD0BBS9lsDwWVW_ArSNAGVHZB9Lf0r_S_MeOYFUVVb0jcrCiexPHIM5P55huAd9IYqZK6y6WzKUcLZbmO45Sb2mUJjuoop0LhcpD3DsXno-xoAn6Pa2Gccx585jo09Ll8e25G9Ktso6CEZJ4HCOW-u7nGAO3y494n3M33SbK7c7Dd46GHADdoyIY8lrrIjZZCYJyhU2GESHWurJMCnY_EiswZoYTUQgpX5xiu2W6RK51aJWvihkO5z2AK_YwsaavDxjkK0RWBjTXmaAmKkDONo2KjX37bxtgziTp42qND3v3L6t1r4-Kt2O4s_LlbfwteOeuMhrpjfj2ghnyqH-gVvAzuM9ts9X0OJlwzDy_ukSrOw7QHtZrLBTjdbNiOp8jAt2a9GypOY18VYeibE1b63tkMnXZGDCUoddBC4vkWWnbLSoIqXqsrx-jMPG9IBnWO85NVY9kXPG1_hDLWRTh8lGUvwWSDj14GFqcmNdZlKrU4LTJFJtHxoDbuGORbrVcgutv7ygTider_8b3yAVhUVKQuFalLFdRlBT6Mp1y0rCP_u3mBNGF8Y1CC1X9fXofnvYOyX_X3BvuvYYYEtejjNzA5_Dlya-hjDfVbr-oMjh9bdW4Bb5AwXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Sampling+Method+for+Neural+Network-Based+Microwave+Component+Modeling+and+Optimization&rft.jtitle=IEEE+microwave+and+wireless+components+letters&rft.au=Zhang%2C+Zhen&rft.au=Cheng%2C+Qingsha+S.&rft.au=Chen%2C+Hongcai&rft.au=Jiang%2C+Fan&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=1531-1309&rft.volume=30&rft.issue=7&rft.spage=625&rft.epage=628&rft_id=info:doi/10.1109%2FLMWC.2020.2995858&rft.externalDocID=9104666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-1309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-1309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-1309&client=summon