An Efficient Hybrid Sampling Method for Neural Network-Based Microwave Component Modeling and Optimization
In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses samples from global and local samples to form a data set. The local samples are obtained using a greedy-like sampling method to exploit potential o...
Saved in:
Published in | IEEE microwave and wireless components letters Vol. 30; no. 7; pp. 625 - 628 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses samples from global and local samples to form a data set. The local samples are obtained using a greedy-like sampling method to exploit potential optimal solutions. The global samples are chosen using random sampling with minimum distance rejection to ensure the uniformity of the samples in the design space. The obtained data set is used to establish a surrogate model using the artificial neural networks (ANNs), and the optimal design parameters are obtained by optimizing the ANN model. A bandstop microstrip filter is taken as an example to verify the performance of the sampling method. The results show that the ANN model based on the proposed method achieves better modeling performance and yields better optimal design than the ANN model based on conventional sampling methods. |
---|---|
AbstractList | In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses samples from global and local samples to form a data set. The local samples are obtained using a greedy-like sampling method to exploit potential optimal solutions. The global samples are chosen using random sampling with minimum distance rejection to ensure the uniformity of the samples in the design space. The obtained data set is used to establish a surrogate model using the artificial neural networks (ANNs), and the optimal design parameters are obtained by optimizing the ANN model. A bandstop microstrip filter is taken as an example to verify the performance of the sampling method. The results show that the ANN model based on the proposed method achieves better modeling performance and yields better optimal design than the ANN model based on conventional sampling methods. |
Author | Chen, Hongcai Cheng, Qingsha S. Jiang, Fan Zhang, Zhen |
Author_xml | – sequence: 1 givenname: Zhen orcidid: 0000-0003-4698-8125 surname: Zhang fullname: Zhang, Zhen email: 11849553@mail.sustech.edu.cn organization: Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Qingsha S. orcidid: 0000-0003-3869-3378 surname: Cheng fullname: Cheng, Qingsha S. email: chengqs@sustech.edu.cn organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Hongcai orcidid: 0000-0001-5418-4122 surname: Chen fullname: Chen, Hongcai organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China – sequence: 4 givenname: Fan orcidid: 0000-0002-9867-7639 surname: Jiang fullname: Jiang, Fan organization: Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China |
BookMark | eNp9kLFOwzAQhi1UJNrCAyAWv0CKHV_seCxRoUgtDIAYIyd2wCWJIydQlacnaSsGBqa74b7_fn0TNKpdbRC6pGRGKZHXq_VrMgtJSGahlFEcxSdoTKMoDqjgMBp2RgPKiDxDk7bdEEIhBjpGm3mNF0Vhc2vqDi93mbcaP6mqKW39hteme3caF87jB_PpVdmPbuv8R3CjWqPx2ubebdWXwYmrmr5Rn7F22uxhVWv82HS2st-qs64-R6eFKltzcZxT9HK7eE6Wwerx7j6Zr4I8lKzrC2eS55kACEFmDHIAlnGljQASs1BDZHJQIDIQYAoeM6FjyVXGtBJF1B9PET3k9t3a1psibbytlN-llKSDrHSQlQ6y0qOsnhF_mNx2-9adV7b8l7w6kNYY8_tJUgKcc_YD4kB6bA |
CODEN | IMWCBJ |
CitedBy_id | crossref_primary_10_3390_electronics12173560 crossref_primary_10_1002_jnm_2886 crossref_primary_10_1109_JMW_2020_3033780 crossref_primary_10_1038_s41598_022_04810_1 crossref_primary_10_1002_jnm_3102 crossref_primary_10_1109_LMWT_2023_3329783 crossref_primary_10_1109_TMTT_2024_3359703 crossref_primary_10_1002_mop_33295 crossref_primary_10_1002_mop_33691 crossref_primary_10_1038_s41598_021_03095_0 crossref_primary_10_1038_s41598_024_82701_3 crossref_primary_10_1109_LMWT_2024_3486160 crossref_primary_10_1038_s41598_022_17661_7 crossref_primary_10_1109_ACCESS_2024_3407978 crossref_primary_10_1038_s41598_023_27532_4 crossref_primary_10_1038_s41598_023_34414_2 crossref_primary_10_1109_TCSII_2022_3170894 crossref_primary_10_1109_TMTT_2023_3341584 crossref_primary_10_1088_1742_6596_2245_1_012005 crossref_primary_10_1109_TMTT_2022_3230587 crossref_primary_10_1109_LMWC_2021_3087163 crossref_primary_10_1109_LMWC_2022_3153058 crossref_primary_10_1109_TMTT_2023_3318702 crossref_primary_10_3390_electronics11223705 crossref_primary_10_1016_j_ins_2020_12_058 crossref_primary_10_1109_ACCESS_2023_3248961 crossref_primary_10_1109_ACCESS_2022_3202019 crossref_primary_10_1109_ACCESS_2021_3078432 crossref_primary_10_1038_s41598_024_73323_w crossref_primary_10_1038_s41598_024_56823_7 crossref_primary_10_1109_TMTT_2021_3112156 crossref_primary_10_1109_TMTT_2022_3199756 crossref_primary_10_1109_ACCESS_2021_3105811 crossref_primary_10_3390_electronics10212689 crossref_primary_10_1155_2024_5524054 crossref_primary_10_1016_j_knosys_2023_111296 crossref_primary_10_1109_LMWC_2022_3214467 crossref_primary_10_1109_LMWT_2024_3353066 crossref_primary_10_1109_ACCESS_2020_3036600 crossref_primary_10_1109_TMTT_2022_3191327 crossref_primary_10_1109_ACCESS_2020_3033892 crossref_primary_10_1109_LMWC_2022_3201123 crossref_primary_10_1038_s41598_024_59512_7 crossref_primary_10_1002_jnm_3157 crossref_primary_10_1109_LMWT_2023_3276746 crossref_primary_10_1109_TMTT_2022_3197751 crossref_primary_10_1109_TMTT_2022_3208898 crossref_primary_10_1155_2022_1119059 crossref_primary_10_1109_TMTT_2022_3189655 |
Cites_doi | 10.1007/978-3-642-20859-1 10.1109/TMTT.2016.2623902 10.1023/A:1008202821328 10.1109/TMTT.2014.2315781 10.1109/MWSYM.2013.6697547 10.1109/TMTT.2016.2630059 10.1109/TMTT.2017.2772855 10.1109/TMTT.2018.2841889 10.1109/TAP.2007.891564 10.1109/TMTT.2003.820897 10.1007/s11222-011-9242-3 10.2307/1268522 10.1109/TAP.2012.2220513 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LMWC.2020.2995858 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-1764 |
EndPage | 628 |
ExternalDocumentID | 10_1109_LMWC_2020_2995858 9104666 |
Genre | orig-research |
GrantInformation_xml | – fundername: University Key Research Project of Guangdong Province grantid: 2018KZDXM063 – fundername: Shenzhen Science and Technology Innovation Commission under the Peacock Technology Innovation grantid: KQJSCX20170328153625 funderid: 10.13039/501100010877 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c293t-17b96cb744249b34c443b6ade740832d45ec4a47b474ef6837d896ab3da7f5443 |
IEDL.DBID | RIE |
ISSN | 1531-1309 |
IngestDate | Thu Apr 24 22:57:17 EDT 2025 Tue Jul 01 01:00:42 EDT 2025 Wed Aug 27 02:36:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-17b96cb744249b34c443b6ade740832d45ec4a47b474ef6837d896ab3da7f5443 |
ORCID | 0000-0001-5418-4122 0000-0003-4698-8125 0000-0003-3869-3378 0000-0002-9867-7639 |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_1109_LMWC_2020_2995858 ieee_primary_9104666 crossref_citationtrail_10_1109_LMWC_2020_2995858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE microwave and wireless components letters |
PublicationTitleAbbrev | LMWC |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 (ref13) 2018 ref6 ref5 |
References_xml | – ident: ref10 doi: 10.1007/978-3-642-20859-1 – ident: ref1 doi: 10.1109/TMTT.2016.2623902 – ident: ref14 doi: 10.1023/A:1008202821328 – ident: ref12 doi: 10.1109/TMTT.2014.2315781 – ident: ref9 doi: 10.1109/MWSYM.2013.6697547 – ident: ref11 doi: 10.1109/TMTT.2016.2630059 – ident: ref6 doi: 10.1109/TMTT.2017.2772855 – ident: ref4 doi: 10.1109/TMTT.2018.2841889 – ident: ref3 doi: 10.1109/TAP.2007.891564 – year: 2018 ident: ref13 publication-title: CST Microwave Studio – ident: ref5 doi: 10.1109/TMTT.2003.820897 – ident: ref7 doi: 10.1007/s11222-011-9242-3 – ident: ref8 doi: 10.2307/1268522 – ident: ref2 doi: 10.1109/TAP.2012.2220513 |
SSID | ssj0014841 |
Score | 2.5216386 |
Snippet | In this letter, we propose an efficient hybrid sampling method for microwave component modeling and optimization. The sampling method adaptively chooses... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 625 |
SubjectTerms | Adaptation models Artificial neural networks (ANNs) Computational modeling microwave component Microwave theory and techniques modeling and optimization Neural networks Optimization sampling method Sampling methods Testing |
Title | An Efficient Hybrid Sampling Method for Neural Network-Based Microwave Component Modeling and Optimization |
URI | https://ieeexplore.ieee.org/document/9104666 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5UEPTgq4pv9uBJ3Jo0m2xz1FIpYvSgxd7CviL4iKKtor_emU0sVUS8LSGzWZhlHplvvgHYk8ZI1SraXDobcfRQluswjLgpXNzCVREk1CicnSe9vjgdxIMpOBj3wjjnPPjMNWnpa_n20YzoV9lhSgXJJJmGaUzcql6tccVAtEXNjRpytMtpXcEMg_TwLLvuYCbYCppoezE8bn_zQRNDVbxPOVmE7Os0FZTkrjka6qb5-EHU-N_jLsFCHVyyo-o2LMOUK1dgfoJycAVmPeTTvDTg9qhkXU8ggbuw3ju1brFLRQjz8oZlfrI0w5CWEX8H7npeAcb5Mfo9yzIC8r2pV8fIojyWtAfNVfPCqrTsAm3RQ93kuQr9k-5Vp8fryQvcoPsf8lDqNDFaCoHZmY6EESLSibJOCgzZWlbEzgglpBZSuCLBJNe200TpyCpZEKPeGsyU-Ol1YGFkImNdrCKLYoFJY4lumYacYwpstd6A4EsXualpyWk6xn3u05MgzUl9Oakvr9W3AftjkaeKk-OvlxukmfGLtVI2f3-8BXMkXOFxt2Fm-DxyOxh1DPWuv26fiYjUCg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB5RECo9lPIS0FJ8aC-VvOThxJtDD0BBS9lsDwWVW_ArSNAGVHZB9Lf0r_S_MeOYFUVVb0jcrCiexPHIM5P55huAd9IYqZK6y6WzKUcLZbmO45Sb2mUJjuoop0LhcpD3DsXno-xoAn6Pa2Gccx585jo09Ll8e25G9Ktso6CEZJ4HCOW-u7nGAO3y494n3M33SbK7c7Dd46GHADdoyIY8lrrIjZZCYJyhU2GESHWurJMCnY_EiswZoYTUQgpX5xiu2W6RK51aJWvihkO5z2AK_YwsaavDxjkK0RWBjTXmaAmKkDONo2KjX37bxtgziTp42qND3v3L6t1r4-Kt2O4s_LlbfwteOeuMhrpjfj2ghnyqH-gVvAzuM9ts9X0OJlwzDy_ukSrOw7QHtZrLBTjdbNiOp8jAt2a9GypOY18VYeibE1b63tkMnXZGDCUoddBC4vkWWnbLSoIqXqsrx-jMPG9IBnWO85NVY9kXPG1_hDLWRTh8lGUvwWSDj14GFqcmNdZlKrU4LTJFJtHxoDbuGORbrVcgutv7ygTider_8b3yAVhUVKQuFalLFdRlBT6Mp1y0rCP_u3mBNGF8Y1CC1X9fXofnvYOyX_X3BvuvYYYEtejjNzA5_Dlya-hjDfVbr-oMjh9bdW4Bb5AwXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Sampling+Method+for+Neural+Network-Based+Microwave+Component+Modeling+and+Optimization&rft.jtitle=IEEE+microwave+and+wireless+components+letters&rft.au=Zhang%2C+Zhen&rft.au=Cheng%2C+Qingsha+S.&rft.au=Chen%2C+Hongcai&rft.au=Jiang%2C+Fan&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=1531-1309&rft.volume=30&rft.issue=7&rft.spage=625&rft.epage=628&rft_id=info:doi/10.1109%2FLMWC.2020.2995858&rft.externalDocID=9104666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-1309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-1309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-1309&client=summon |