Network-Wide Traffic State Estimation and Rolling Horizon-Based Signal Control Optimization in a Connected Vehicle Environment
This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information of various penetration rates of Connected Vehicles (CVs). The network-wide signal control problem is formulated as a linear optimization pro...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 6; pp. 5840 - 5858 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2021.3059705 |
Cover
Loading…
Abstract | This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information of various penetration rates of Connected Vehicles (CVs). The network-wide signal control problem is formulated as a linear optimization problem. Moreover, we develop a Kalman filter (KF) and Neural Network (NN) algorithms to predict and update the traffic situation under mixed non-connected and connected vehicles environment. To capture the dynamic of the traffic flow, we employ the cell transmission model synched with the Vissim traffic simulator. The methodology is tested using a challenging network of six intersections. We test our model for various Penetration Rates (PR) of the CV to provide a comparative analysis. The performance of the method is also compared with a conventional actuated-coordinated traffic signal plan. The results show that with a bare minimum PR (say more than 30%), our proposed methodology outperforms the actuated traffic signal plan. (note that the minimum PR is subject to further ongoing research in the literature, to the extent that lower PRs might be plausible). Though a 100% PR is highly desirable, our method can fetch the maximum benefit just by 60% PR. |
---|---|
AbstractList | This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information of various penetration rates of Connected Vehicles (CVs). The network-wide signal control problem is formulated as a linear optimization problem. Moreover, we develop a Kalman filter (KF) and Neural Network (NN) algorithms to predict and update the traffic situation under mixed non-connected and connected vehicles environment. To capture the dynamic of the traffic flow, we employ the cell transmission model synched with the Vissim traffic simulator. The methodology is tested using a challenging network of six intersections. We test our model for various Penetration Rates (PR) of the CV to provide a comparative analysis. The performance of the method is also compared with a conventional actuated-coordinated traffic signal plan. The results show that with a bare minimum PR (say more than 30%), our proposed methodology outperforms the actuated traffic signal plan. (note that the minimum PR is subject to further ongoing research in the literature, to the extent that lower PRs might be plausible). Though a 100% PR is highly desirable, our method can fetch the maximum benefit just by 60% PR. |
Author | Emami, Azadeh Sarvi, Majid Bagloee, Saeed Asadi |
Author_xml | – sequence: 1 givenname: Azadeh orcidid: 0000-0003-1903-1862 surname: Emami fullname: Emami, Azadeh email: aemami@student.unimelb.edu.au organization: Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia – sequence: 2 givenname: Majid surname: Sarvi fullname: Sarvi, Majid organization: Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia – sequence: 3 givenname: Saeed Asadi surname: Bagloee fullname: Bagloee, Saeed Asadi organization: Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia |
BookMark | eNp9kM1u3CAUhVGVSM3fA0TZIHXtCdcY2yzbUX5GGjVSx0qWFjaXhNSBKZBWyaLPXpyJuuiiKxCc7-je75DsOe-QkFNgCwAmz7tVt1mUrIQFZ0I2THwgByBEWzAG9d58L6tCMsE-ksMYH_NrJQAOyO-vmH758L24sxppF5QxdqSbpBLSi5jsk0rWO6qcpt_8NFl3T699sK_eFV9URE039t6piS69S8FP9GabGfu6o2wG5x-HY8rRW3yw45R73U8bvHtCl47JvlFTxJP384h0lxfd8rpY31ytlp_XxVhKngqoWkBgwnDBKwMcK1E1IIfRDJqxWnGtFW9HqGWj1YAKh0aWmpd8ENoYzY_Ip13tNvgfzxhT_-ifQ5479mXdlKxtRFPlVLNLjcHHGND0o01vm6Sg7NQD62fX_ey6n133764zCf-Q25DVhZf_Mmc7xiLi37zktYRW8j9AZY5O |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_7717_peerj_cs_2625 crossref_primary_10_1016_j_eswa_2023_120421 crossref_primary_10_1080_21680566_2023_2185496 crossref_primary_10_1109_TVT_2022_3176620 |
Cites_doi | 10.1016/j.ifacol.2018.07.047 10.3390/s18020368 10.1111/j.1467-8667.2004.00362.x 10.1007/s40534-019-00200-y 10.1109/ITSC.2009.5309870 10.1016/0191-2615(94)90002-7 10.1002/atr.182 10.1109/TVT.2013.2241460 10.3141/2619-01 10.1631/FITEE.1500355 10.3141/2381-08 10.1016/j.trb.2018.10.005 10.1016/S0965-8564(00)00035-5 10.1016/j.trc.2012.11.004 10.1016/j.trc.2018.05.002 10.1016/j.trc.2011.01.002 10.1016/j.simpat.2019.102025 10.1007/s40534-019-0193-2 10.1016/j.trc.2011.05.007 10.1016/S0167-8655(99)00040-9 10.1109/TITS.2016.2515023 10.1109/ITSC.2008.4732534 10.1016/j.sbspro.2013.08.224 10.1111/mice.12261 10.3141/2558-02 10.1109/VETECS.2007.17 10.1016/j.trb.2012.05.001 10.1109/FISTS.2011.5973659 10.1049/iet-its.2018.5287 10.1016/j.trc.2019.04.023 10.1109/CACSD.2004.1393890 10.1016/j.trc.2017.03.007 10.1109/MITS.2019.2907680 10.1016/j.trc.2014.12.005 10.1016/j.adhoc.2012.02.013 10.1016/s0965-8564(98)00049-4 10.1109/ITSC.2007.4357755 10.1109/TVT.2015.2472367 10.1016/0968-090X(95)00005-4 10.1080/19427867.2020.1759852 10.1016/j.trc.2017.04.017 10.3141/1651-06 10.1016/j.trc.2014.02.006 10.1109/ACC.2013.6580568 10.1109/TITS.2008.2006812 10.1016/j.procs.2012.06.069 10.1109/VETECS.2011.5956305 10.3390/info8030101 10.1287/trsc.34.1.37.12281 10.1016/j.trc.2017.11.012 10.1109/TITS.2014.2337238 10.1007/s00521-020-05196-9 10.1016/j.trc.2014.05.008 10.1007/978-3-319-66972-4_18 10.1109/ITSC.2017.8317635 10.1049/iet-its.2018.5469 10.1007/BF01586088 10.1016/j.trc.2015.01.007 10.1061/(ASCE)TE.1943-5436.0000587 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2021.3059705 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 5858 |
ExternalDocumentID | 10_1109_TITS_2021_3059705 9369189 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-1481e105f3534f13e454719bcfbd006a3dda38c1697dabeaeb792d323b5dffd3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 04:16:45 EDT 2025 Tue Jul 01 04:29:05 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 Wed Aug 27 02:24:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-1481e105f3534f13e454719bcfbd006a3dda38c1697dabeaeb792d323b5dffd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1903-1862 |
PQID | 2672087574 |
PQPubID | 75735 |
PageCount | 19 |
ParticipantIDs | ieee_primary_9369189 crossref_citationtrail_10_1109_TITS_2021_3059705 proquest_journals_2672087574 crossref_primary_10_1109_TITS_2021_3059705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Saveyn (ref5) 2018 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Wänsch (ref24) 2008 ref43 ref49 ref8 ref7 Trafficware (ref60) 2014; 281 ref9 ref4 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 Volpe (ref11) 2008 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 ref62 ref61 |
References_xml | – ident: ref29 doi: 10.1016/j.ifacol.2018.07.047 – ident: ref41 doi: 10.3390/s18020368 – ident: ref4 doi: 10.1111/j.1467-8667.2004.00362.x – ident: ref54 doi: 10.1007/s40534-019-00200-y – ident: ref22 doi: 10.1109/ITSC.2009.5309870 – ident: ref42 doi: 10.1016/0191-2615(94)90002-7 – ident: ref63 doi: 10.1002/atr.182 – volume-title: Coordination of Traffic Signals in Networks and Related Graph Theoretical Problems on Spanning Trees year: 2008 ident: ref24 – ident: ref15 doi: 10.1109/TVT.2013.2241460 – ident: ref18 doi: 10.3141/2619-01 – ident: ref23 doi: 10.1631/FITEE.1500355 – ident: ref40 doi: 10.3141/2381-08 – ident: ref43 doi: 10.1016/j.trb.2018.10.005 – ident: ref49 doi: 10.1016/S0965-8564(00)00035-5 – ident: ref13 doi: 10.1016/j.trc.2012.11.004 – ident: ref27 doi: 10.1016/j.trc.2018.05.002 – ident: ref36 doi: 10.1016/j.trc.2011.01.002 – ident: ref62 doi: 10.1016/j.simpat.2019.102025 – ident: ref53 doi: 10.1007/s40534-019-0193-2 – ident: ref20 doi: 10.1016/j.trc.2011.05.007 – ident: ref48 doi: 10.1016/S0167-8655(99)00040-9 – ident: ref3 doi: 10.1109/TITS.2016.2515023 – year: 2018 ident: ref5 article-title: An analysis of possible socio-economic effects of a Cooperative, Connected and Automated Mobility (CCAM) in Europe—Effects of automated driving on the economy, employment and skills – ident: ref8 doi: 10.1109/ITSC.2008.4732534 – ident: ref33 doi: 10.1016/j.sbspro.2013.08.224 – ident: ref12 doi: 10.1111/mice.12261 – year: 2008 ident: ref11 article-title: Vehicle-infrastructure integration (VII) initiative benefit-cost analysis version 2.3 (draft) – ident: ref19 doi: 10.3141/2558-02 – ident: ref31 doi: 10.1109/VETECS.2007.17 – ident: ref58 doi: 10.1016/j.trb.2012.05.001 – ident: ref39 doi: 10.1109/FISTS.2011.5973659 – ident: ref6 doi: 10.1049/iet-its.2018.5287 – ident: ref34 doi: 10.1016/j.trc.2019.04.023 – ident: ref59 doi: 10.1109/CACSD.2004.1393890 – ident: ref35 doi: 10.1016/j.trc.2017.03.007 – ident: ref2 doi: 10.1109/MITS.2019.2907680 – ident: ref21 doi: 10.1016/j.trc.2014.12.005 – ident: ref9 doi: 10.1016/j.adhoc.2012.02.013 – ident: ref56 doi: 10.1016/s0965-8564(98)00049-4 – ident: ref52 doi: 10.1109/ITSC.2007.4357755 – ident: ref16 doi: 10.1109/TVT.2015.2472367 – ident: ref45 doi: 10.1016/0968-090X(95)00005-4 – ident: ref55 doi: 10.1080/19427867.2020.1759852 – ident: ref10 doi: 10.1016/j.trc.2017.04.017 – ident: ref46 doi: 10.3141/1651-06 – ident: ref50 doi: 10.1016/j.trc.2014.02.006 – ident: ref51 doi: 10.1109/ACC.2013.6580568 – ident: ref1 doi: 10.1109/TITS.2008.2006812 – ident: ref17 doi: 10.1016/j.procs.2012.06.069 – volume: 281 start-page: 7233 year: 2014 ident: ref60 article-title: Synchro studio 9 user guide publication-title: Trafficware – ident: ref32 doi: 10.1109/VETECS.2011.5956305 – ident: ref38 doi: 10.3390/info8030101 – ident: ref57 doi: 10.1287/trsc.34.1.37.12281 – ident: ref44 doi: 10.1016/j.trc.2017.11.012 – ident: ref7 doi: 10.1109/TITS.2014.2337238 – ident: ref47 doi: 10.1007/s00521-020-05196-9 – ident: ref14 doi: 10.1016/j.trc.2014.05.008 – ident: ref30 doi: 10.1007/978-3-319-66972-4_18 – ident: ref28 doi: 10.1109/ITSC.2017.8317635 – ident: ref61 doi: 10.1049/iet-its.2018.5469 – ident: ref26 doi: 10.1007/BF01586088 – ident: ref25 doi: 10.1016/j.trc.2015.01.007 – ident: ref37 doi: 10.1061/(ASCE)TE.1943-5436.0000587 |
SSID | ssj0014511 |
Score | 2.4209163 |
Snippet | This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5840 |
SubjectTerms | adaptive traffic signal control Algorithms Artificial neural networks connected transport system Connected vehicles Estimation Kalman filter Kalman filters Model testing neural network Neural networks Optimization Penetration penetration rate Prediction algorithms Sensors State estimation Traffic control Traffic flow Traffic information Traffic planning Traffic signals |
Title | Network-Wide Traffic State Estimation and Rolling Horizon-Based Signal Control Optimization in a Connected Vehicle Environment |
URI | https://ieeexplore.ieee.org/document/9369189 https://www.proquest.com/docview/2672087574 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TgMxEB0BFRTciHDJBRXCYW3vkS0BBQUkoCAc3conRMAGhaSh4NsZezcBAUJ0W9haSzP2vLHnvQHYTWwrdUp6inJmaOyMoMqxhGqNUC5l0lgXqi0u0s51fHaX3E3B_oQLY60NxWe26T_DW77p65G_KjvwzedYK5-GaUzcKq7W5MXA62wFbVQe0zxKxi-YLMoPuqfdK8wEOWuic-eZ71T3JQaFpio_TuIQXk4W4Hy8sKqq5LE5Gqqmfvum2fjflS_CfI0zyWHlGEswZctlmPuiPrgC7xdVCTi97RlLMGh5NQkS0Cdp486vSI1ElobU0t2k0x_03volPcLYZ8hV797_47iqdieXePo817RO0sOJJFTRaMS05MY--HWQ9ievbhW6J-3ucYfW7RioRkwwpJg4MYtwzIlExI4J67XAWK60Uwb3rhTGSNHSLM0zI5WVVmU5N4ILlRiHTrAGM2W_tOtAEOXJSCJ00NzGzknFfGcWFwspE5ca3oBobJ9C11LlvmPGUxFSligvvEkLb9KiNmkD9iZTXiqdjr8Gr3gTTQbW1mnA1tgJinonvxY8zXhQ_Y83fp-1CbPcUyLCzcwWzAwHI7uNQGWodoKHfgBKSudb |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROLQcgBYQ4dH60FNVh7W9j-wRUFBoIT2wBW4rPyECNigkFw78dsbeTUBQod72YGstzYznsz3fNwDfE9tJnZKeopwZGjsjqHIsoVojlEuZNNaFaot-2vsb_7pILubg54wLY60NxWe27T_DW74Z6om_Ktv1zedYJ_8AC5j3E1aztWZvBl5pK6ij8pjmUTJ9w2RRvlscFad4FuSsje6dZ75X3YssFNqqvNmLQ4I5XIaT6dLqupLr9mSs2vrhlWrj_659BZYapEn2atf4DHO2-gKLL_QHV-GxXxeB0_OBsQTTlteTIAF_ki7Gfk1rJLIypBHvJr3haPAwrOg-Zj9DTgeX_h8Hdb07-YP7z21D7CQDnEhCHY1GVEvO7JVfB-k-M-vWoDjsFgc92jRkoBpRwZji0YlZBGROJCJ2TFivBsZypZ0yGL1SGCNFR7M0z4xUVlqV5dwILlRiHLrBOsxXw8puAEGcJyOJ4EFzGzsnFfO9WVwspExcangLoql9St2IlfueGTdlOLREeelNWnqTlo1JW_BjNuWuVup4b_CqN9FsYGOdFmxPnaBsYvm-5GnGg-5_vPnvWd_gY684OS6Pj_q_t-AT9wSJcE-zDfPj0cTuIGwZq6_BW58AgALqpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-Wide+Traffic+State+Estimation+and+Rolling+Horizon-Based+Signal+Control+Optimization+in+a+Connected+Vehicle+Environment&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Emami%2C+Azadeh&rft.au=Sarvi%2C+Majid&rft.au=Saeed+Asadi+Bagloee&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=6&rft.spage=5840&rft_id=info:doi/10.1109%2FTITS.2021.3059705&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |