Network-Wide Traffic State Estimation and Rolling Horizon-Based Signal Control Optimization in a Connected Vehicle Environment

This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information of various penetration rates of Connected Vehicles (CVs). The network-wide signal control problem is formulated as a linear optimization pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 6; pp. 5840 - 5858
Main Authors Emami, Azadeh, Sarvi, Majid, Bagloee, Saeed Asadi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2021.3059705

Cover

Loading…
Abstract This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information of various penetration rates of Connected Vehicles (CVs). The network-wide signal control problem is formulated as a linear optimization problem. Moreover, we develop a Kalman filter (KF) and Neural Network (NN) algorithms to predict and update the traffic situation under mixed non-connected and connected vehicles environment. To capture the dynamic of the traffic flow, we employ the cell transmission model synched with the Vissim traffic simulator. The methodology is tested using a challenging network of six intersections. We test our model for various Penetration Rates (PR) of the CV to provide a comparative analysis. The performance of the method is also compared with a conventional actuated-coordinated traffic signal plan. The results show that with a bare minimum PR (say more than 30%), our proposed methodology outperforms the actuated traffic signal plan. (note that the minimum PR is subject to further ongoing research in the literature, to the extent that lower PRs might be plausible). Though a 100% PR is highly desirable, our method can fetch the maximum benefit just by 60% PR.
AbstractList This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information of various penetration rates of Connected Vehicles (CVs). The network-wide signal control problem is formulated as a linear optimization problem. Moreover, we develop a Kalman filter (KF) and Neural Network (NN) algorithms to predict and update the traffic situation under mixed non-connected and connected vehicles environment. To capture the dynamic of the traffic flow, we employ the cell transmission model synched with the Vissim traffic simulator. The methodology is tested using a challenging network of six intersections. We test our model for various Penetration Rates (PR) of the CV to provide a comparative analysis. The performance of the method is also compared with a conventional actuated-coordinated traffic signal plan. The results show that with a bare minimum PR (say more than 30%), our proposed methodology outperforms the actuated traffic signal plan. (note that the minimum PR is subject to further ongoing research in the literature, to the extent that lower PRs might be plausible). Though a 100% PR is highly desirable, our method can fetch the maximum benefit just by 60% PR.
Author Emami, Azadeh
Sarvi, Majid
Bagloee, Saeed Asadi
Author_xml – sequence: 1
  givenname: Azadeh
  orcidid: 0000-0003-1903-1862
  surname: Emami
  fullname: Emami, Azadeh
  email: aemami@student.unimelb.edu.au
  organization: Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
– sequence: 2
  givenname: Majid
  surname: Sarvi
  fullname: Sarvi, Majid
  organization: Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
– sequence: 3
  givenname: Saeed Asadi
  surname: Bagloee
  fullname: Bagloee, Saeed Asadi
  organization: Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
BookMark eNp9kM1u3CAUhVGVSM3fA0TZIHXtCdcY2yzbUX5GGjVSx0qWFjaXhNSBKZBWyaLPXpyJuuiiKxCc7-je75DsOe-QkFNgCwAmz7tVt1mUrIQFZ0I2THwgByBEWzAG9d58L6tCMsE-ksMYH_NrJQAOyO-vmH758L24sxppF5QxdqSbpBLSi5jsk0rWO6qcpt_8NFl3T699sK_eFV9URE039t6piS69S8FP9GabGfu6o2wG5x-HY8rRW3yw45R73U8bvHtCl47JvlFTxJP384h0lxfd8rpY31ytlp_XxVhKngqoWkBgwnDBKwMcK1E1IIfRDJqxWnGtFW9HqGWj1YAKh0aWmpd8ENoYzY_Ip13tNvgfzxhT_-ifQ5479mXdlKxtRFPlVLNLjcHHGND0o01vm6Sg7NQD62fX_ey6n133764zCf-Q25DVhZf_Mmc7xiLi37zktYRW8j9AZY5O
CODEN ITISFG
CitedBy_id crossref_primary_10_7717_peerj_cs_2625
crossref_primary_10_1016_j_eswa_2023_120421
crossref_primary_10_1080_21680566_2023_2185496
crossref_primary_10_1109_TVT_2022_3176620
Cites_doi 10.1016/j.ifacol.2018.07.047
10.3390/s18020368
10.1111/j.1467-8667.2004.00362.x
10.1007/s40534-019-00200-y
10.1109/ITSC.2009.5309870
10.1016/0191-2615(94)90002-7
10.1002/atr.182
10.1109/TVT.2013.2241460
10.3141/2619-01
10.1631/FITEE.1500355
10.3141/2381-08
10.1016/j.trb.2018.10.005
10.1016/S0965-8564(00)00035-5
10.1016/j.trc.2012.11.004
10.1016/j.trc.2018.05.002
10.1016/j.trc.2011.01.002
10.1016/j.simpat.2019.102025
10.1007/s40534-019-0193-2
10.1016/j.trc.2011.05.007
10.1016/S0167-8655(99)00040-9
10.1109/TITS.2016.2515023
10.1109/ITSC.2008.4732534
10.1016/j.sbspro.2013.08.224
10.1111/mice.12261
10.3141/2558-02
10.1109/VETECS.2007.17
10.1016/j.trb.2012.05.001
10.1109/FISTS.2011.5973659
10.1049/iet-its.2018.5287
10.1016/j.trc.2019.04.023
10.1109/CACSD.2004.1393890
10.1016/j.trc.2017.03.007
10.1109/MITS.2019.2907680
10.1016/j.trc.2014.12.005
10.1016/j.adhoc.2012.02.013
10.1016/s0965-8564(98)00049-4
10.1109/ITSC.2007.4357755
10.1109/TVT.2015.2472367
10.1016/0968-090X(95)00005-4
10.1080/19427867.2020.1759852
10.1016/j.trc.2017.04.017
10.3141/1651-06
10.1016/j.trc.2014.02.006
10.1109/ACC.2013.6580568
10.1109/TITS.2008.2006812
10.1016/j.procs.2012.06.069
10.1109/VETECS.2011.5956305
10.3390/info8030101
10.1287/trsc.34.1.37.12281
10.1016/j.trc.2017.11.012
10.1109/TITS.2014.2337238
10.1007/s00521-020-05196-9
10.1016/j.trc.2014.05.008
10.1007/978-3-319-66972-4_18
10.1109/ITSC.2017.8317635
10.1049/iet-its.2018.5469
10.1007/BF01586088
10.1016/j.trc.2015.01.007
10.1061/(ASCE)TE.1943-5436.0000587
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3059705
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 5858
ExternalDocumentID 10_1109_TITS_2021_3059705
9369189
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-1481e105f3534f13e454719bcfbd006a3dda38c1697dabeaeb792d323b5dffd3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 04:16:45 EDT 2025
Tue Jul 01 04:29:05 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Wed Aug 27 02:24:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-1481e105f3534f13e454719bcfbd006a3dda38c1697dabeaeb792d323b5dffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1903-1862
PQID 2672087574
PQPubID 75735
PageCount 19
ParticipantIDs ieee_primary_9369189
crossref_citationtrail_10_1109_TITS_2021_3059705
proquest_journals_2672087574
crossref_primary_10_1109_TITS_2021_3059705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Saveyn (ref5) 2018
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Wänsch (ref24) 2008
ref43
ref49
ref8
ref7
Trafficware (ref60) 2014; 281
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
Volpe (ref11) 2008
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref29
  doi: 10.1016/j.ifacol.2018.07.047
– ident: ref41
  doi: 10.3390/s18020368
– ident: ref4
  doi: 10.1111/j.1467-8667.2004.00362.x
– ident: ref54
  doi: 10.1007/s40534-019-00200-y
– ident: ref22
  doi: 10.1109/ITSC.2009.5309870
– ident: ref42
  doi: 10.1016/0191-2615(94)90002-7
– ident: ref63
  doi: 10.1002/atr.182
– volume-title: Coordination of Traffic Signals in Networks and Related Graph Theoretical Problems on Spanning Trees
  year: 2008
  ident: ref24
– ident: ref15
  doi: 10.1109/TVT.2013.2241460
– ident: ref18
  doi: 10.3141/2619-01
– ident: ref23
  doi: 10.1631/FITEE.1500355
– ident: ref40
  doi: 10.3141/2381-08
– ident: ref43
  doi: 10.1016/j.trb.2018.10.005
– ident: ref49
  doi: 10.1016/S0965-8564(00)00035-5
– ident: ref13
  doi: 10.1016/j.trc.2012.11.004
– ident: ref27
  doi: 10.1016/j.trc.2018.05.002
– ident: ref36
  doi: 10.1016/j.trc.2011.01.002
– ident: ref62
  doi: 10.1016/j.simpat.2019.102025
– ident: ref53
  doi: 10.1007/s40534-019-0193-2
– ident: ref20
  doi: 10.1016/j.trc.2011.05.007
– ident: ref48
  doi: 10.1016/S0167-8655(99)00040-9
– ident: ref3
  doi: 10.1109/TITS.2016.2515023
– year: 2018
  ident: ref5
  article-title: An analysis of possible socio-economic effects of a Cooperative, Connected and Automated Mobility (CCAM) in Europe—Effects of automated driving on the economy, employment and skills
– ident: ref8
  doi: 10.1109/ITSC.2008.4732534
– ident: ref33
  doi: 10.1016/j.sbspro.2013.08.224
– ident: ref12
  doi: 10.1111/mice.12261
– year: 2008
  ident: ref11
  article-title: Vehicle-infrastructure integration (VII) initiative benefit-cost analysis version 2.3 (draft)
– ident: ref19
  doi: 10.3141/2558-02
– ident: ref31
  doi: 10.1109/VETECS.2007.17
– ident: ref58
  doi: 10.1016/j.trb.2012.05.001
– ident: ref39
  doi: 10.1109/FISTS.2011.5973659
– ident: ref6
  doi: 10.1049/iet-its.2018.5287
– ident: ref34
  doi: 10.1016/j.trc.2019.04.023
– ident: ref59
  doi: 10.1109/CACSD.2004.1393890
– ident: ref35
  doi: 10.1016/j.trc.2017.03.007
– ident: ref2
  doi: 10.1109/MITS.2019.2907680
– ident: ref21
  doi: 10.1016/j.trc.2014.12.005
– ident: ref9
  doi: 10.1016/j.adhoc.2012.02.013
– ident: ref56
  doi: 10.1016/s0965-8564(98)00049-4
– ident: ref52
  doi: 10.1109/ITSC.2007.4357755
– ident: ref16
  doi: 10.1109/TVT.2015.2472367
– ident: ref45
  doi: 10.1016/0968-090X(95)00005-4
– ident: ref55
  doi: 10.1080/19427867.2020.1759852
– ident: ref10
  doi: 10.1016/j.trc.2017.04.017
– ident: ref46
  doi: 10.3141/1651-06
– ident: ref50
  doi: 10.1016/j.trc.2014.02.006
– ident: ref51
  doi: 10.1109/ACC.2013.6580568
– ident: ref1
  doi: 10.1109/TITS.2008.2006812
– ident: ref17
  doi: 10.1016/j.procs.2012.06.069
– volume: 281
  start-page: 7233
  year: 2014
  ident: ref60
  article-title: Synchro studio 9 user guide
  publication-title: Trafficware
– ident: ref32
  doi: 10.1109/VETECS.2011.5956305
– ident: ref38
  doi: 10.3390/info8030101
– ident: ref57
  doi: 10.1287/trsc.34.1.37.12281
– ident: ref44
  doi: 10.1016/j.trc.2017.11.012
– ident: ref7
  doi: 10.1109/TITS.2014.2337238
– ident: ref47
  doi: 10.1007/s00521-020-05196-9
– ident: ref14
  doi: 10.1016/j.trc.2014.05.008
– ident: ref30
  doi: 10.1007/978-3-319-66972-4_18
– ident: ref28
  doi: 10.1109/ITSC.2017.8317635
– ident: ref61
  doi: 10.1049/iet-its.2018.5469
– ident: ref26
  doi: 10.1007/BF01586088
– ident: ref25
  doi: 10.1016/j.trc.2015.01.007
– ident: ref37
  doi: 10.1061/(ASCE)TE.1943-5436.0000587
SSID ssj0014511
Score 2.4209163
Snippet This paper presents an innovative method to adaptively optimize traffic signal plans based on the estimation of traffic situation achieved from the information...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5840
SubjectTerms adaptive traffic signal control
Algorithms
Artificial neural networks
connected transport system
Connected vehicles
Estimation
Kalman filter
Kalman filters
Model testing
neural network
Neural networks
Optimization
Penetration
penetration rate
Prediction algorithms
Sensors
State estimation
Traffic control
Traffic flow
Traffic information
Traffic planning
Traffic signals
Title Network-Wide Traffic State Estimation and Rolling Horizon-Based Signal Control Optimization in a Connected Vehicle Environment
URI https://ieeexplore.ieee.org/document/9369189
https://www.proquest.com/docview/2672087574
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TgMxEB0BFRTciHDJBRXCYW3vkS0BBQUkoCAc3conRMAGhaSh4NsZezcBAUJ0W9haSzP2vLHnvQHYTWwrdUp6inJmaOyMoMqxhGqNUC5l0lgXqi0u0s51fHaX3E3B_oQLY60NxWe26T_DW77p65G_KjvwzedYK5-GaUzcKq7W5MXA62wFbVQe0zxKxi-YLMoPuqfdK8wEOWuic-eZ71T3JQaFpio_TuIQXk4W4Hy8sKqq5LE5Gqqmfvum2fjflS_CfI0zyWHlGEswZctlmPuiPrgC7xdVCTi97RlLMGh5NQkS0Cdp486vSI1ElobU0t2k0x_03volPcLYZ8hV797_47iqdieXePo817RO0sOJJFTRaMS05MY--HWQ9ievbhW6J-3ucYfW7RioRkwwpJg4MYtwzIlExI4J67XAWK60Uwb3rhTGSNHSLM0zI5WVVmU5N4ILlRiHTrAGM2W_tOtAEOXJSCJ00NzGzknFfGcWFwspE5ca3oBobJ9C11LlvmPGUxFSligvvEkLb9KiNmkD9iZTXiqdjr8Gr3gTTQbW1mnA1tgJinonvxY8zXhQ_Y83fp-1CbPcUyLCzcwWzAwHI7uNQGWodoKHfgBKSudb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROLQcgBYQ4dH60FNVh7W9j-wRUFBoIT2wBW4rPyECNigkFw78dsbeTUBQod72YGstzYznsz3fNwDfE9tJnZKeopwZGjsjqHIsoVojlEuZNNaFaot-2vsb_7pILubg54wLY60NxWe27T_DW74Z6om_Ktv1zedYJ_8AC5j3E1aztWZvBl5pK6ij8pjmUTJ9w2RRvlscFad4FuSsje6dZ75X3YssFNqqvNmLQ4I5XIaT6dLqupLr9mSs2vrhlWrj_659BZYapEn2atf4DHO2-gKLL_QHV-GxXxeB0_OBsQTTlteTIAF_ki7Gfk1rJLIypBHvJr3haPAwrOg-Zj9DTgeX_h8Hdb07-YP7z21D7CQDnEhCHY1GVEvO7JVfB-k-M-vWoDjsFgc92jRkoBpRwZji0YlZBGROJCJ2TFivBsZypZ0yGL1SGCNFR7M0z4xUVlqV5dwILlRiHLrBOsxXw8puAEGcJyOJ4EFzGzsnFfO9WVwspExcangLoql9St2IlfueGTdlOLREeelNWnqTlo1JW_BjNuWuVup4b_CqN9FsYGOdFmxPnaBsYvm-5GnGg-5_vPnvWd_gY684OS6Pj_q_t-AT9wSJcE-zDfPj0cTuIGwZq6_BW58AgALqpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-Wide+Traffic+State+Estimation+and+Rolling+Horizon-Based+Signal+Control+Optimization+in+a+Connected+Vehicle+Environment&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Emami%2C+Azadeh&rft.au=Sarvi%2C+Majid&rft.au=Saeed+Asadi+Bagloee&rft.date=2022-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=6&rft.spage=5840&rft_id=info:doi/10.1109%2FTITS.2021.3059705&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon