Ka‐band distributed microelectromechanical systems transmission line phase shifter using metal air metal switch

A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and tw...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of circuit theory and applications Vol. 49; no. 5; pp. 1358 - 1377
Main Authors Teymoori, Mir Majid, Dousti, Massoud, Afrang, Saeid
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas. A new approach for designing a two‐state unit cell for a 6‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this paper. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM bridges to produce two phase shifts per unit cell. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism.
AbstractList A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas. A new approach for designing a two‐state unit cell for a 6‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this paper. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM bridges to produce two phase shifts per unit cell. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism.
A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas.
Abstract A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas.
Author Afrang, Saeid
Dousti, Massoud
Teymoori, Mir Majid
Author_xml – sequence: 1
  givenname: Mir Majid
  surname: Teymoori
  fullname: Teymoori, Mir Majid
  organization: Islamic Azad University
– sequence: 2
  givenname: Massoud
  orcidid: 0000-0003-2884-7062
  surname: Dousti
  fullname: Dousti, Massoud
  email: m_dousti@srbiau.ac.ir
  organization: Islamic Azad University
– sequence: 3
  givenname: Saeid
  orcidid: 0000-0002-2643-7759
  surname: Afrang
  fullname: Afrang, Saeid
  organization: Urmia University
BookMark eNp10L1OwzAQB3ALFYm2IPEIllhYUmwndeKxqvgSSCxFYosc50JcJU7rc1R14xF4Rp6ElHZluht-d6f7T8jIdQ4IueZsxhkTdybomVCJOiNjzlQaMZZ-jMiYMZVFKsvkBZkgrhljmYjVmGxf9M_Xd6FdSUuLwduiD1DS1hrfQQMm-K4FU2tnjW4o7jFAizR47bC1iLZztLEO6KbWCBRrWwXwtEfrPmkLYZjR1p863Nlg6ktyXukG4epUp-T94X61fIpe3x6fl4vXyAgVq6iQpTZVAqBlqQrN0wQ4K0o5V6lOK5EyUQGA0fOYKZBVbKSUYs4NF6o0aWLiKbk57t34btsDhnzd9d4NJ_PBySwWkotB3R7V8C-ihyrfeNtqv885yw-B5kOg-SHQgUZHurMN7P91-XK1-PO_kW589w
CitedBy_id crossref_primary_10_1007_s10825_022_01982_x
Cites_doi 10.1002/mop.32263
10.1007/978-0-387-47318-5
10.1080/09205071.2015.1090347
10.1088/0960-1317/14/8/001
10.1109/ICMMT.2010.5524754
10.1109/TMTT.2002.806520
10.1109/TMTT.2002.805285
10.1002/0471225282
10.1109/75.819418
10.1109/TMTT.2014.2379258
10.1002/mop.31199
10.1002/9783527680856
10.1016/j.sna.2016.05.046
10.1016/j.sna.2005.12.045
10.1109/75.842070
10.1007/s10470-014-0450-6
10.1002/mop.30543
10.1016/j.mejo.2013.02.014
10.1109/NWRCS.2014.7
10.1007/s00542-012-1649-z
10.2528/PIERC18060504
10.1109/TMTT.2011.2112374
10.23919/EuMC.2012.6459122
10.1002/mop.24938
10.1007/s00542-008-0637-9
10.1007/s00542-016-2987-z
10.1109/MMM.2016.2616155
10.1002/cta.2600
10.1002/9781119120384
10.1109/22.734503
10.1007/s00542-002-0250-2
10.1016/j.sna.2004.06.025
10.1109/LMWC.2005.861350
10.1109/TMTT.2007.900317
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/cta.2949
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-007X
EndPage 1377
ExternalDocumentID 10_1002_cta_2949
CTA2949
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c2939-b6dacf4eea6d9ba174e10bd6597a7f2702feeeca5309e6f3c666251c129dc74c3
IEDL.DBID DR2
ISSN 0098-9886
IngestDate Thu Oct 10 18:05:56 EDT 2024
Fri Aug 23 02:59:12 EDT 2024
Sat Aug 24 01:02:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-b6dacf4eea6d9ba174e10bd6597a7f2702feeeca5309e6f3c666251c129dc74c3
ORCID 0000-0002-2643-7759
0000-0003-2884-7062
PQID 2516832612
PQPubID 996369
PageCount 20
ParticipantIDs proquest_journals_2516832612
crossref_primary_10_1002_cta_2949
wiley_primary_10_1002_cta_2949_CTA2949
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of circuit theory and applications
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012
2013; 44
2011
2020; 62
2010
2002; 50
2006; 16
2017; 68
2017; 23
2005; 117
2016; 30
2003
2011; 59
2016; 247
2018; 60
2008; 4
2002
2013; 7
2007; 55
2003; 51
2018; 86
2014; 82
1999; 9
1998; 46
2013; 19
2017; 59
2000; 10
2004; 14
2015; 63
2019; 47
2003; 9
2019
2017; 18
2014
2013
2006; 127
2018; 31
2010; 52
1988
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Ghaderkhani A (e_1_2_9_31_1) 2018; 31
Wolff EA (e_1_2_9_34_1) 1988
Ghaderkhani A (e_1_2_9_30_1) 2017; 68
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
Chen A (e_1_2_9_21_1) 2013; 7
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
Hayden JS (e_1_2_9_33_1) 2002
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 55
  start-page: 1476
  issue: 7
  year: 2007
  end-page: 1483
  article-title: A 4‐bit CMOS phase shifter using distributed active switches
  publication-title: IEEE Trans Microw Theory Tech
– volume: 117
  start-page: 222
  issue: 2
  year: 2005
  end-page: 229
  article-title: Design and simulation of a novel electrostatic Persitaltic micromachined pump for drug deliver applications
  publication-title: Sens Actuators A: Phys
– volume: 59
  start-page: 894
  issue: 4
  year: 2011
  end-page: 900
  article-title: A 60 GHz 2‐bit switched‐line phase shifter using SP4T RF‐MEMS switches
  publication-title: IEEE Trans Microw Theory Tech
– volume: 7
  start-page: 77
  year: 2013
  end-page: 80
  article-title: A low‐loss Ka‐band distributed metal‐air‐metal MEMS phase shifter
  publication-title: Rzelad Elektrotechniczny
– volume: 46
  start-page: 1881
  issue: 11
  year: 1998
  end-page: 1890
  article-title: Distributed MEMS true‐time delay phase shifters and wide‐band switches
  publication-title: IEEE Trans Microw Theory Tech
– volume: 247
  start-page: 187
  year: 2016
  end-page: 198
  article-title: Development of compact 180° phase shifters based on MEMS technology
  publication-title: Sens Actuators A: Phys
– volume: 4
  start-page: 1173
  year: 2008
  end-page: 1183
  article-title: Distributed transmission line phase shifter using MEMS switches and inductors
  publication-title: Microsyst Technol
– start-page: 1652
  year: 2010
  end-page: 1654
– volume: 30
  start-page: 553
  issue: 5
  year: 2016
  end-page: 565
  article-title: A 1.7–2.7‐GHz 4‐bit phase shifter based on packaged RF MEMS switches
  publication-title: J Eelectromagnet Wave
– volume: 62
  start-page: 1935
  issue: 5
  year: 2020
  end-page: 1939
  article-title: A 100GHz full 360° reflection type phase shifter using a balanced phase inverter
  publication-title: Microw Opt Techn Lett
– year: 2003
– volume: 31
  start-page: 315
  year: 2018
  end-page: 321
  article-title: A new structure for 6 bit distributed MEMS transmission line phase shifter in Ku band
  publication-title: IJE Trans B: Appl
– volume: 9
  start-page: 420
  issue: 6‐7
  year: 2003
  end-page: 426
  article-title: Electromechanical model of RF MEMS switches
  publication-title: Microsyst Technol
– volume: 59
  start-page: 1401
  issue: 6
  year: 2017
  end-page: 1404
  article-title: Low loss Ku to Ka band analog DMTL phase shifter with 360° phase shifts
  publication-title: Microw Opt Tech Lett
– volume: 23
  start-page: 1853
  issue: 6
  year: 2017
  end-page: 1866
  article-title: A small size Ka band six‐bit DMTL phase shifter using new design of MEMS switch
  publication-title: Microsyst Technol
– volume: 82
  start-page: 181
  year: 2014
  end-page: 187
  article-title: Low insertion loss, high power handling and good performance 90° phase shifter for X‐band radar application
  publication-title: Analog Integr Circ S
– volume: 50
  start-page: 2918
  year: 2002
  end-page: 2923
  article-title: V‐band 2‐b and 4‐b low‐loss and low‐voltage distributed MEMS digital phase shifter using metal air metal capacitors
  publication-title: IEEE Trans Microw Theory Tech
– volume: 19
  start-page: 237
  issue: 2
  year: 2013
  end-page: 244
  article-title: A new design of multi‐bit RF MEMS distributed phase shifters for phase error reduction
  publication-title: Microsyst Technol
– volume: 10
  start-page: 7
  issue: 1
  year: 2000
  end-page: 9
  article-title: K‐band 3‐bit low‐loss distributed MEMS phase shifter
  publication-title: IEEE Microw Guided Wave Lett
– start-page: 719
  year: 2012
  end-page: 722
– year: 2002
– year: 1988
– volume: 16
  start-page: 34
  issue: 1
  year: 2006
  end-page: 36
  article-title: Distributed MEMS analog phase shifter with enhanced tuning
  publication-title: IEEE Microw Wirel Compon
– volume: 68
  start-page: 1
  year: 2017
  end-page: 12
  article-title: A new structure for reducing the number of MEMS switches used in six‐bit DMTL phase shifters
  publication-title: Acta Technica
– start-page: 11
  year: 2014
  end-page: 14
– volume: 86
  start-page: 1
  year: 2018
  end-page: 6
  article-title: Design technique for Varactor analog phase shifters with equalized losses
  publication-title: Prog Electromagn Res C
– volume: 14
  start-page: 1119
  issue: 8
  year: 2004
  end-page: 1125
  article-title: Pull‐in instability study of carbon nanotube tweezers under the influence of van der Waals forces
  publication-title: J Micromech Microeng
– volume: 47
  start-page: 542
  issue: 4
  year: 2019
  end-page: 548
  article-title: Low‐loss 7‐bit S‐band CMOS passive phase shifter with digital control
  publication-title: Int J Circ Theor App
– volume: 9
  start-page: 520
  issue: 12
  year: 1999
  end-page: 522
  article-title: MEMS phase shifters
  publication-title: IEEE Microw Guid Wave Lett
– volume: 52
  start-page: 355
  issue: 2
  year: 2010
  end-page: 359
  article-title: A C‐band wideband 360° phase shifter design
  publication-title: Microw Opt Tech Lett
– volume: 18
  start-page: 22
  issue: 1
  year: 2017
  end-page: 41
  article-title: Paradigm phase shift
  publication-title: IEEE Microw Mag
– volume: 44
  start-page: 442
  issue: 5
  year: 2013
  end-page: 453
  article-title: Small and low loss resonator type DMTL phase shifter
  publication-title: Microelectro J
– year: 2019
– volume: 63
  start-page: 414
  issue: 2
  year: 2015
  end-page: 421
  article-title: A 1.6–2.3 GHz RF MEMS reconfigurable quadrature coupler and its application to a 360° reflective‐type phase shifter
  publication-title: IEEE Trans Microwave Theory Tech
– volume: 51
  start-page: 309
  issue: 1
  year: 2003
  end-page: 314
  article-title: Very low loss distributed X‐band and Ka‐band MEMS phase shifters using metal‐air‐metal capacitors
  publication-title: IEEE Trans Microw Theory Tech
– year: 2013
– volume: 60
  start-page: 1526
  issue: 6
  year: 2018
  end-page: 1531
  article-title: Miniaturized switched line MEMS phase shifter
  publication-title: Microw Opt Techn Lett
– volume: 127
  start-page: 366
  issue: 2
  year: 2006
  end-page: 380
  article-title: Numerical and analytical study on the pull‐in instability of micro‐structure under lectrostatic loading
  publication-title: Sens Actuators A: Phys
– ident: e_1_2_9_14_1
  doi: 10.1002/mop.32263
– ident: e_1_2_9_35_1
  doi: 10.1007/978-0-387-47318-5
– ident: e_1_2_9_11_1
  doi: 10.1080/09205071.2015.1090347
– ident: e_1_2_9_37_1
  doi: 10.1088/0960-1317/14/8/001
– ident: e_1_2_9_18_1
  doi: 10.1109/ICMMT.2010.5524754
– ident: e_1_2_9_20_1
  doi: 10.1109/TMTT.2002.806520
– ident: e_1_2_9_24_1
  doi: 10.1109/TMTT.2002.805285
– ident: e_1_2_9_3_1
  doi: 10.1002/0471225282
– ident: e_1_2_9_12_1
  doi: 10.1109/75.819418
– ident: e_1_2_9_15_1
  doi: 10.1109/TMTT.2014.2379258
– ident: e_1_2_9_16_1
  doi: 10.1002/mop.31199
– ident: e_1_2_9_2_1
  doi: 10.1002/9783527680856
– volume: 7
  start-page: 77
  year: 2013
  ident: e_1_2_9_21_1
  article-title: A low‐loss Ka‐band distributed metal‐air‐metal MEMS phase shifter
  publication-title: Rzelad Elektrotechniczny
  contributor:
    fullname: Chen A
– volume: 68
  start-page: 1
  year: 2017
  ident: e_1_2_9_30_1
  article-title: A new structure for reducing the number of MEMS switches used in six‐bit DMTL phase shifters
  publication-title: Acta Technica
  contributor:
    fullname: Ghaderkhani A
– ident: e_1_2_9_25_1
  doi: 10.1016/j.sna.2016.05.046
– ident: e_1_2_9_38_1
  doi: 10.1016/j.sna.2005.12.045
– ident: e_1_2_9_22_1
  doi: 10.1109/75.842070
– ident: e_1_2_9_8_1
  doi: 10.1007/s10470-014-0450-6
– ident: e_1_2_9_6_1
  doi: 10.1002/mop.30543
– ident: e_1_2_9_27_1
  doi: 10.1016/j.mejo.2013.02.014
– ident: e_1_2_9_28_1
  doi: 10.1109/NWRCS.2014.7
– ident: e_1_2_9_29_1
  doi: 10.1007/s00542-012-1649-z
– ident: e_1_2_9_4_1
  doi: 10.2528/PIERC18060504
– ident: e_1_2_9_17_1
  doi: 10.1109/TMTT.2011.2112374
– ident: e_1_2_9_19_1
  doi: 10.23919/EuMC.2012.6459122
– ident: e_1_2_9_5_1
  doi: 10.1002/mop.24938
– ident: e_1_2_9_26_1
  doi: 10.1007/s00542-008-0637-9
– volume-title: Microwave engineering and systems application
  year: 1988
  ident: e_1_2_9_34_1
  contributor:
    fullname: Wolff EA
– ident: e_1_2_9_32_1
  doi: 10.1007/s00542-016-2987-z
– ident: e_1_2_9_13_1
  doi: 10.1109/MMM.2016.2616155
– ident: e_1_2_9_9_1
  doi: 10.1002/cta.2600
– ident: e_1_2_9_40_1
  doi: 10.1002/9781119120384
– ident: e_1_2_9_23_1
  doi: 10.1109/22.734503
– ident: e_1_2_9_36_1
  doi: 10.1007/s00542-002-0250-2
– ident: e_1_2_9_39_1
  doi: 10.1016/j.sna.2004.06.025
– volume-title: High‐performance digital X‐band and Ka‐band distributed MEMS phase shifters
  year: 2002
  ident: e_1_2_9_33_1
  contributor:
    fullname: Hayden JS
– ident: e_1_2_9_7_1
  doi: 10.1109/LMWC.2005.861350
– ident: e_1_2_9_10_1
  doi: 10.1109/TMTT.2007.900317
– volume: 31
  start-page: 315
  year: 2018
  ident: e_1_2_9_31_1
  article-title: A new structure for 6 bit distributed MEMS transmission line phase shifter in Ku band
  publication-title: IJE Trans B: Appl
  contributor:
    fullname: Ghaderkhani A
SSID ssj0008239
Score 2.3120604
Snippet A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed...
Abstract A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1358
SubjectTerms Antenna arrays
Banded structure
Circuit design
Coplanar waveguides
Design
distributed coplanar waveguide
DMTL
Insertion loss
MEMS
Microelectromechanical systems
Phase error
Phase shift
phase shifter
Phase shifters
Phased arrays
Switches
Transmission lines
Unit cell
Title Ka‐band distributed microelectromechanical systems transmission line phase shifter using metal air metal switch
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.2949
https://www.proquest.com/docview/2516832612
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfVFBPHWtY8kbY7LqoiiB3FhwUPJq7rIruu2InjyJ_gb_SXO9OGqIIin9tDQNDOT-Sad-YaQ_SDQUcwkBDlWQoAiue-pKBCeMqHQiVZBVv49v7gUpz121uf9OqsSa2EqfojPAze0jHK_RgNXOj-ckoaaQrVDybB2L4hizOY6upoyRyVhJBu6TJkkouGd9cPDZuB3TzSFl19BaullThbJTTO_Krnkvv1U6LZ5-UHd-L8PWCILNfiknUpblsmMG62Q-S-UhKvk8Vy9v75pNbLUIqcutsNylg4xb69umTN0WC2MwqUVD3ROC_R4oDF49EZxZnR8B-6R5ncD7EFOMbv-lg4dIH2qBpP6Ln8egM6skd7J8XX31KvbMngGsIH0tLDKZMw5JawEacbMBb62AkITFWdY35Y554zikS-dyCIDERKgKAPIwpqYmWidzI4eRm6DUAAvivs6yzRnTPNEGl8obXTCeGgNNy2y14goHVfsG2nFsxymsHwpLl-LbDeyS2v7y1N4n4C9CuBbixyUQvh1fNq97uB1868PbpG5EBNbyqzHbTJbTJ7cDiCTQu-WOvgBtH_kCw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5Remg5QGmLCAW6SFVvDn6s115xQkCUFpIDChKHSta-DBFKeNgIiVN_Qn9jfwkzfpBQqVLVk33wyuudmZ1vxrPfAHwJAh0lXGKQYyUGKDL2PRUFwlMmFDrVKsirv-eDoeif8e_n8fkC7LVnYWp-iOeEG1lGtV-TgVNCenfGGmpK1Q0ll6_gNVp7RH0bDk9n3FFpGMmWMFOmqWiZZ_1wtx350hfNAOY8TK38TG8FfrQzrMtLrrr3pe6axz_IG__zE97BcoM_2X6tMKuw4KbvYWmOlfAD3B6r3z9_aTW1zBKtLnXEcpZNqHSv6ZozcXRgmOTLairogpXk9FBpKPvGaGrs5hI9JCsux9SGnFGB_QWbOAT7TI3vmrviYYxq8xHOekejg77XdGbwDMID6Wlhlcm5c0pYiQJNuAt8bQVGJyrJ6Yhb7pwzKo586UQeGQySEEgZBBfWJNxEa7A4vZ66dWCIX1Ts6zzXMec6TqXxhdJGpzwOrYlNB3ZaGWU3NQFHVlMthxkuX0bL14HNVnhZY4JFhu8TuF0hguvA10oKfx2fHYz26brxrw9-hjf90eAkO_k2PP4Eb0Oqc6mKIDdhsby7d1sIVEq9XSnkE9zw6CM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RIFVwKNAWNSXQRap6c-LHeuM9RoGIR0GoAilSD9a-DFEVkxKjSj31J_Ab-SXM-EGgUiXUk33wyuudmZ1v1jPfAHwOAh31ucQgx0oMUGTseyoKhKdMKHSiVZCVf89PTsXBBT8ax-M6q5JqYSp-iMcDN7KMcr8mA5_ZrLcgDTWF6oaSy1ewzAUCXwJE3xbUUUkYyYYvUyaJaIhn_bDXjHzuihb48ilKLd3MaA2-NxOsskt-dG8L3TW__-Ju_L8vWIc3Nfpkg0pdNmDJ5W9h9Qkn4Tv4eazu_9xplVtmiVSX-mE5y6aUuFf3zJk6Khcm6bKKCHrOCnJ5qDJ09sZoZmx2hf6Rza8m1IScUXr9JZs6hPpMTW7qu_mvCSrNe7gY7Z8PD7y6L4NnEBxITwurTMadU8JKFGefu8DXVmBsovoZFbhlzjmj4siXTmSRwRAJYZRBaGFNn5toE1r5de4-AEP0omJfZ5mOOddxIo0vlDY64XFoTWzasNuIKJ1V9BtpRbQcprh8KS1fGzqN7NLaAOcpvk_gZoX4rQ1fSiH8c3w6PB_Q9eNLH_wEr8_2RunXw9PjLVgJKcmlzIDsQKu4uXXbiFIKvVOq4wNMzObS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ka%E2%80%90band+distributed+microelectromechanical+systems+transmission+line+phase+shifter+using+metal+air+metal+switch&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Teymoori%2C+Mir+Majid&rft.au=Dousti%2C+Massoud&rft.au=Afrang%2C+Saeid&rft.date=2021-05-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=49&rft.issue=5&rft.spage=1358&rft.epage=1377&rft_id=info:doi/10.1002%2Fcta.2949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cta_2949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon