Ka‐band distributed microelectromechanical systems transmission line phase shifter using metal air metal switch
A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and tw...
Saved in:
Published in | International journal of circuit theory and applications Vol. 49; no. 5; pp. 1358 - 1377 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas.
A new approach for designing a two‐state unit cell for a 6‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this paper. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM bridges to produce two phase shifts per unit cell. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. |
---|---|
AbstractList | A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas.
A new approach for designing a two‐state unit cell for a 6‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this paper. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM bridges to produce two phase shifts per unit cell. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas. Abstract A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed in this study. The proposed structure includes metal air metal (MAM) capacitors as switches and consists of a unit cell with one MEMS and two MAM switches to produce two phase shifts per unit cell. In the first state, the MAM switches are pulled down and a 5.625° phase shift is achieved, and in the second state, the MEMS switch is actuated to yield a phase shift of 11.25°. The designed structure is modeled using equivalent transmission line circuit model and simulated in the Ka‐band at 34 GHz, employing advanced design system (ADS), ANSOFT HFSS and COMSOL software. Based on the modeling and simulation results, the root‐mean‐square (RMS) phase error is 1.4°, and maximum return loss and minimum insertion loss for all 64 states are better than −10.1 and −1.45 dB, respectively. The main advantages of the designed structure are its small size, low loss, low phase error and a simple phase shift mechanism. A fabrication process is also proposed for the distributed MEMS transmission line (DMTL) phase shifter that shows the feasibility of the proposed design. The proposed structure can be easily scaled to other bands and used in applications with more bits as complex as phased array antennas. |
Author | Afrang, Saeid Dousti, Massoud Teymoori, Mir Majid |
Author_xml | – sequence: 1 givenname: Mir Majid surname: Teymoori fullname: Teymoori, Mir Majid organization: Islamic Azad University – sequence: 2 givenname: Massoud orcidid: 0000-0003-2884-7062 surname: Dousti fullname: Dousti, Massoud email: m_dousti@srbiau.ac.ir organization: Islamic Azad University – sequence: 3 givenname: Saeid orcidid: 0000-0002-2643-7759 surname: Afrang fullname: Afrang, Saeid organization: Urmia University |
BookMark | eNp10L1OwzAQB3ALFYm2IPEIllhYUmwndeKxqvgSSCxFYosc50JcJU7rc1R14xF4Rp6ElHZluht-d6f7T8jIdQ4IueZsxhkTdybomVCJOiNjzlQaMZZ-jMiYMZVFKsvkBZkgrhljmYjVmGxf9M_Xd6FdSUuLwduiD1DS1hrfQQMm-K4FU2tnjW4o7jFAizR47bC1iLZztLEO6KbWCBRrWwXwtEfrPmkLYZjR1p863Nlg6ktyXukG4epUp-T94X61fIpe3x6fl4vXyAgVq6iQpTZVAqBlqQrN0wQ4K0o5V6lOK5EyUQGA0fOYKZBVbKSUYs4NF6o0aWLiKbk57t34btsDhnzd9d4NJ_PBySwWkotB3R7V8C-ihyrfeNtqv885yw-B5kOg-SHQgUZHurMN7P91-XK1-PO_kW589w |
CitedBy_id | crossref_primary_10_1007_s10825_022_01982_x |
Cites_doi | 10.1002/mop.32263 10.1007/978-0-387-47318-5 10.1080/09205071.2015.1090347 10.1088/0960-1317/14/8/001 10.1109/ICMMT.2010.5524754 10.1109/TMTT.2002.806520 10.1109/TMTT.2002.805285 10.1002/0471225282 10.1109/75.819418 10.1109/TMTT.2014.2379258 10.1002/mop.31199 10.1002/9783527680856 10.1016/j.sna.2016.05.046 10.1016/j.sna.2005.12.045 10.1109/75.842070 10.1007/s10470-014-0450-6 10.1002/mop.30543 10.1016/j.mejo.2013.02.014 10.1109/NWRCS.2014.7 10.1007/s00542-012-1649-z 10.2528/PIERC18060504 10.1109/TMTT.2011.2112374 10.23919/EuMC.2012.6459122 10.1002/mop.24938 10.1007/s00542-008-0637-9 10.1007/s00542-016-2987-z 10.1109/MMM.2016.2616155 10.1002/cta.2600 10.1002/9781119120384 10.1109/22.734503 10.1007/s00542-002-0250-2 10.1016/j.sna.2004.06.025 10.1109/LMWC.2005.861350 10.1109/TMTT.2007.900317 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1002/cta.2949 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-007X |
EndPage | 1377 |
ExternalDocumentID | 10_1002_cta_2949 CTA2949 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c2939-b6dacf4eea6d9ba174e10bd6597a7f2702feeeca5309e6f3c666251c129dc74c3 |
IEDL.DBID | DR2 |
ISSN | 0098-9886 |
IngestDate | Thu Oct 10 18:05:56 EDT 2024 Fri Aug 23 02:59:12 EDT 2024 Sat Aug 24 01:02:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2939-b6dacf4eea6d9ba174e10bd6597a7f2702feeeca5309e6f3c666251c129dc74c3 |
ORCID | 0000-0002-2643-7759 0000-0003-2884-7062 |
PQID | 2516832612 |
PQPubID | 996369 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2516832612 crossref_primary_10_1002_cta_2949 wiley_primary_10_1002_cta_2949_CTA2949 |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of circuit theory and applications |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012 2013; 44 2011 2020; 62 2010 2002; 50 2006; 16 2017; 68 2017; 23 2005; 117 2016; 30 2003 2011; 59 2016; 247 2018; 60 2008; 4 2002 2013; 7 2007; 55 2003; 51 2018; 86 2014; 82 1999; 9 1998; 46 2013; 19 2017; 59 2000; 10 2004; 14 2015; 63 2019; 47 2003; 9 2019 2017; 18 2014 2013 2006; 127 2018; 31 2010; 52 1988 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Ghaderkhani A (e_1_2_9_31_1) 2018; 31 Wolff EA (e_1_2_9_34_1) 1988 Ghaderkhani A (e_1_2_9_30_1) 2017; 68 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 Chen A (e_1_2_9_21_1) 2013; 7 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 Hayden JS (e_1_2_9_33_1) 2002 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 55 start-page: 1476 issue: 7 year: 2007 end-page: 1483 article-title: A 4‐bit CMOS phase shifter using distributed active switches publication-title: IEEE Trans Microw Theory Tech – volume: 117 start-page: 222 issue: 2 year: 2005 end-page: 229 article-title: Design and simulation of a novel electrostatic Persitaltic micromachined pump for drug deliver applications publication-title: Sens Actuators A: Phys – volume: 59 start-page: 894 issue: 4 year: 2011 end-page: 900 article-title: A 60 GHz 2‐bit switched‐line phase shifter using SP4T RF‐MEMS switches publication-title: IEEE Trans Microw Theory Tech – volume: 7 start-page: 77 year: 2013 end-page: 80 article-title: A low‐loss Ka‐band distributed metal‐air‐metal MEMS phase shifter publication-title: Rzelad Elektrotechniczny – volume: 46 start-page: 1881 issue: 11 year: 1998 end-page: 1890 article-title: Distributed MEMS true‐time delay phase shifters and wide‐band switches publication-title: IEEE Trans Microw Theory Tech – volume: 247 start-page: 187 year: 2016 end-page: 198 article-title: Development of compact 180° phase shifters based on MEMS technology publication-title: Sens Actuators A: Phys – volume: 4 start-page: 1173 year: 2008 end-page: 1183 article-title: Distributed transmission line phase shifter using MEMS switches and inductors publication-title: Microsyst Technol – start-page: 1652 year: 2010 end-page: 1654 – volume: 30 start-page: 553 issue: 5 year: 2016 end-page: 565 article-title: A 1.7–2.7‐GHz 4‐bit phase shifter based on packaged RF MEMS switches publication-title: J Eelectromagnet Wave – volume: 62 start-page: 1935 issue: 5 year: 2020 end-page: 1939 article-title: A 100GHz full 360° reflection type phase shifter using a balanced phase inverter publication-title: Microw Opt Techn Lett – year: 2003 – volume: 31 start-page: 315 year: 2018 end-page: 321 article-title: A new structure for 6 bit distributed MEMS transmission line phase shifter in Ku band publication-title: IJE Trans B: Appl – volume: 9 start-page: 420 issue: 6‐7 year: 2003 end-page: 426 article-title: Electromechanical model of RF MEMS switches publication-title: Microsyst Technol – volume: 59 start-page: 1401 issue: 6 year: 2017 end-page: 1404 article-title: Low loss Ku to Ka band analog DMTL phase shifter with 360° phase shifts publication-title: Microw Opt Tech Lett – volume: 23 start-page: 1853 issue: 6 year: 2017 end-page: 1866 article-title: A small size Ka band six‐bit DMTL phase shifter using new design of MEMS switch publication-title: Microsyst Technol – volume: 82 start-page: 181 year: 2014 end-page: 187 article-title: Low insertion loss, high power handling and good performance 90° phase shifter for X‐band radar application publication-title: Analog Integr Circ S – volume: 50 start-page: 2918 year: 2002 end-page: 2923 article-title: V‐band 2‐b and 4‐b low‐loss and low‐voltage distributed MEMS digital phase shifter using metal air metal capacitors publication-title: IEEE Trans Microw Theory Tech – volume: 19 start-page: 237 issue: 2 year: 2013 end-page: 244 article-title: A new design of multi‐bit RF MEMS distributed phase shifters for phase error reduction publication-title: Microsyst Technol – volume: 10 start-page: 7 issue: 1 year: 2000 end-page: 9 article-title: K‐band 3‐bit low‐loss distributed MEMS phase shifter publication-title: IEEE Microw Guided Wave Lett – start-page: 719 year: 2012 end-page: 722 – year: 2002 – year: 1988 – volume: 16 start-page: 34 issue: 1 year: 2006 end-page: 36 article-title: Distributed MEMS analog phase shifter with enhanced tuning publication-title: IEEE Microw Wirel Compon – volume: 68 start-page: 1 year: 2017 end-page: 12 article-title: A new structure for reducing the number of MEMS switches used in six‐bit DMTL phase shifters publication-title: Acta Technica – start-page: 11 year: 2014 end-page: 14 – volume: 86 start-page: 1 year: 2018 end-page: 6 article-title: Design technique for Varactor analog phase shifters with equalized losses publication-title: Prog Electromagn Res C – volume: 14 start-page: 1119 issue: 8 year: 2004 end-page: 1125 article-title: Pull‐in instability study of carbon nanotube tweezers under the influence of van der Waals forces publication-title: J Micromech Microeng – volume: 47 start-page: 542 issue: 4 year: 2019 end-page: 548 article-title: Low‐loss 7‐bit S‐band CMOS passive phase shifter with digital control publication-title: Int J Circ Theor App – volume: 9 start-page: 520 issue: 12 year: 1999 end-page: 522 article-title: MEMS phase shifters publication-title: IEEE Microw Guid Wave Lett – volume: 52 start-page: 355 issue: 2 year: 2010 end-page: 359 article-title: A C‐band wideband 360° phase shifter design publication-title: Microw Opt Tech Lett – volume: 18 start-page: 22 issue: 1 year: 2017 end-page: 41 article-title: Paradigm phase shift publication-title: IEEE Microw Mag – volume: 44 start-page: 442 issue: 5 year: 2013 end-page: 453 article-title: Small and low loss resonator type DMTL phase shifter publication-title: Microelectro J – year: 2019 – volume: 63 start-page: 414 issue: 2 year: 2015 end-page: 421 article-title: A 1.6–2.3 GHz RF MEMS reconfigurable quadrature coupler and its application to a 360° reflective‐type phase shifter publication-title: IEEE Trans Microwave Theory Tech – volume: 51 start-page: 309 issue: 1 year: 2003 end-page: 314 article-title: Very low loss distributed X‐band and Ka‐band MEMS phase shifters using metal‐air‐metal capacitors publication-title: IEEE Trans Microw Theory Tech – year: 2013 – volume: 60 start-page: 1526 issue: 6 year: 2018 end-page: 1531 article-title: Miniaturized switched line MEMS phase shifter publication-title: Microw Opt Techn Lett – volume: 127 start-page: 366 issue: 2 year: 2006 end-page: 380 article-title: Numerical and analytical study on the pull‐in instability of micro‐structure under lectrostatic loading publication-title: Sens Actuators A: Phys – ident: e_1_2_9_14_1 doi: 10.1002/mop.32263 – ident: e_1_2_9_35_1 doi: 10.1007/978-0-387-47318-5 – ident: e_1_2_9_11_1 doi: 10.1080/09205071.2015.1090347 – ident: e_1_2_9_37_1 doi: 10.1088/0960-1317/14/8/001 – ident: e_1_2_9_18_1 doi: 10.1109/ICMMT.2010.5524754 – ident: e_1_2_9_20_1 doi: 10.1109/TMTT.2002.806520 – ident: e_1_2_9_24_1 doi: 10.1109/TMTT.2002.805285 – ident: e_1_2_9_3_1 doi: 10.1002/0471225282 – ident: e_1_2_9_12_1 doi: 10.1109/75.819418 – ident: e_1_2_9_15_1 doi: 10.1109/TMTT.2014.2379258 – ident: e_1_2_9_16_1 doi: 10.1002/mop.31199 – ident: e_1_2_9_2_1 doi: 10.1002/9783527680856 – volume: 7 start-page: 77 year: 2013 ident: e_1_2_9_21_1 article-title: A low‐loss Ka‐band distributed metal‐air‐metal MEMS phase shifter publication-title: Rzelad Elektrotechniczny contributor: fullname: Chen A – volume: 68 start-page: 1 year: 2017 ident: e_1_2_9_30_1 article-title: A new structure for reducing the number of MEMS switches used in six‐bit DMTL phase shifters publication-title: Acta Technica contributor: fullname: Ghaderkhani A – ident: e_1_2_9_25_1 doi: 10.1016/j.sna.2016.05.046 – ident: e_1_2_9_38_1 doi: 10.1016/j.sna.2005.12.045 – ident: e_1_2_9_22_1 doi: 10.1109/75.842070 – ident: e_1_2_9_8_1 doi: 10.1007/s10470-014-0450-6 – ident: e_1_2_9_6_1 doi: 10.1002/mop.30543 – ident: e_1_2_9_27_1 doi: 10.1016/j.mejo.2013.02.014 – ident: e_1_2_9_28_1 doi: 10.1109/NWRCS.2014.7 – ident: e_1_2_9_29_1 doi: 10.1007/s00542-012-1649-z – ident: e_1_2_9_4_1 doi: 10.2528/PIERC18060504 – ident: e_1_2_9_17_1 doi: 10.1109/TMTT.2011.2112374 – ident: e_1_2_9_19_1 doi: 10.23919/EuMC.2012.6459122 – ident: e_1_2_9_5_1 doi: 10.1002/mop.24938 – ident: e_1_2_9_26_1 doi: 10.1007/s00542-008-0637-9 – volume-title: Microwave engineering and systems application year: 1988 ident: e_1_2_9_34_1 contributor: fullname: Wolff EA – ident: e_1_2_9_32_1 doi: 10.1007/s00542-016-2987-z – ident: e_1_2_9_13_1 doi: 10.1109/MMM.2016.2616155 – ident: e_1_2_9_9_1 doi: 10.1002/cta.2600 – ident: e_1_2_9_40_1 doi: 10.1002/9781119120384 – ident: e_1_2_9_23_1 doi: 10.1109/22.734503 – ident: e_1_2_9_36_1 doi: 10.1007/s00542-002-0250-2 – ident: e_1_2_9_39_1 doi: 10.1016/j.sna.2004.06.025 – volume-title: High‐performance digital X‐band and Ka‐band distributed MEMS phase shifters year: 2002 ident: e_1_2_9_33_1 contributor: fullname: Hayden JS – ident: e_1_2_9_7_1 doi: 10.1109/LMWC.2005.861350 – ident: e_1_2_9_10_1 doi: 10.1109/TMTT.2007.900317 – volume: 31 start-page: 315 year: 2018 ident: e_1_2_9_31_1 article-title: A new structure for 6 bit distributed MEMS transmission line phase shifter in Ku band publication-title: IJE Trans B: Appl contributor: fullname: Ghaderkhani A |
SSID | ssj0008239 |
Score | 2.3120604 |
Snippet | A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is proposed... Abstract A new approach for designing a two‐state unit cell for a six‐bit distributed coplanar waveguide microelectromechanical systems (MEMS) phase shifter is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1358 |
SubjectTerms | Antenna arrays Banded structure Circuit design Coplanar waveguides Design distributed coplanar waveguide DMTL Insertion loss MEMS Microelectromechanical systems Phase error Phase shift phase shifter Phase shifters Phased arrays Switches Transmission lines Unit cell |
Title | Ka‐band distributed microelectromechanical systems transmission line phase shifter using metal air metal switch |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcta.2949 https://www.proquest.com/docview/2516832612 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfVFBPHWtY8kbY7LqoiiB3FhwUPJq7rIruu2InjyJ_gb_SXO9OGqIIin9tDQNDOT-Sad-YaQ_SDQUcwkBDlWQoAiue-pKBCeMqHQiVZBVv49v7gUpz121uf9OqsSa2EqfojPAze0jHK_RgNXOj-ckoaaQrVDybB2L4hizOY6upoyRyVhJBu6TJkkouGd9cPDZuB3TzSFl19BaullThbJTTO_Krnkvv1U6LZ5-UHd-L8PWCILNfiknUpblsmMG62Q-S-UhKvk8Vy9v75pNbLUIqcutsNylg4xb69umTN0WC2MwqUVD3ROC_R4oDF49EZxZnR8B-6R5ncD7EFOMbv-lg4dIH2qBpP6Ln8egM6skd7J8XX31KvbMngGsIH0tLDKZMw5JawEacbMBb62AkITFWdY35Y554zikS-dyCIDERKgKAPIwpqYmWidzI4eRm6DUAAvivs6yzRnTPNEGl8obXTCeGgNNy2y14goHVfsG2nFsxymsHwpLl-LbDeyS2v7y1N4n4C9CuBbixyUQvh1fNq97uB1868PbpG5EBNbyqzHbTJbTJ7cDiCTQu-WOvgBtH_kCw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5Remg5QGmLCAW6SFVvDn6s115xQkCUFpIDChKHSta-DBFKeNgIiVN_Qn9jfwkzfpBQqVLVk33wyuudmZ1vxrPfAHwJAh0lXGKQYyUGKDL2PRUFwlMmFDrVKsirv-eDoeif8e_n8fkC7LVnYWp-iOeEG1lGtV-TgVNCenfGGmpK1Q0ll6_gNVp7RH0bDk9n3FFpGMmWMFOmqWiZZ_1wtx350hfNAOY8TK38TG8FfrQzrMtLrrr3pe6axz_IG__zE97BcoM_2X6tMKuw4KbvYWmOlfAD3B6r3z9_aTW1zBKtLnXEcpZNqHSv6ZozcXRgmOTLairogpXk9FBpKPvGaGrs5hI9JCsux9SGnFGB_QWbOAT7TI3vmrviYYxq8xHOekejg77XdGbwDMID6Wlhlcm5c0pYiQJNuAt8bQVGJyrJ6Yhb7pwzKo586UQeGQySEEgZBBfWJNxEa7A4vZ66dWCIX1Ts6zzXMec6TqXxhdJGpzwOrYlNB3ZaGWU3NQFHVlMthxkuX0bL14HNVnhZY4JFhu8TuF0hguvA10oKfx2fHYz26brxrw9-hjf90eAkO_k2PP4Eb0Oqc6mKIDdhsby7d1sIVEq9XSnkE9zw6CM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RIFVwKNAWNSXQRap6c-LHeuM9RoGIR0GoAilSD9a-DFEVkxKjSj31J_Ab-SXM-EGgUiXUk33wyuudmZ1v1jPfAHwOAh31ucQgx0oMUGTseyoKhKdMKHSiVZCVf89PTsXBBT8ax-M6q5JqYSp-iMcDN7KMcr8mA5_ZrLcgDTWF6oaSy1ewzAUCXwJE3xbUUUkYyYYvUyaJaIhn_bDXjHzuihb48ilKLd3MaA2-NxOsskt-dG8L3TW__-Ju_L8vWIc3Nfpkg0pdNmDJ5W9h9Qkn4Tv4eazu_9xplVtmiVSX-mE5y6aUuFf3zJk6Khcm6bKKCHrOCnJ5qDJ09sZoZmx2hf6Rza8m1IScUXr9JZs6hPpMTW7qu_mvCSrNe7gY7Z8PD7y6L4NnEBxITwurTMadU8JKFGefu8DXVmBsovoZFbhlzjmj4siXTmSRwRAJYZRBaGFNn5toE1r5de4-AEP0omJfZ5mOOddxIo0vlDY64XFoTWzasNuIKJ1V9BtpRbQcprh8KS1fGzqN7NLaAOcpvk_gZoX4rQ1fSiH8c3w6PB_Q9eNLH_wEr8_2RunXw9PjLVgJKcmlzIDsQKu4uXXbiFIKvVOq4wNMzObS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ka%E2%80%90band+distributed+microelectromechanical+systems+transmission+line+phase+shifter+using+metal+air+metal+switch&rft.jtitle=International+journal+of+circuit+theory+and+applications&rft.au=Teymoori%2C+Mir+Majid&rft.au=Dousti%2C+Massoud&rft.au=Afrang%2C+Saeid&rft.date=2021-05-01&rft.issn=0098-9886&rft.eissn=1097-007X&rft.volume=49&rft.issue=5&rft.spage=1358&rft.epage=1377&rft_id=info:doi/10.1002%2Fcta.2949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cta_2949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-9886&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-9886&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-9886&client=summon |