A frequency‐localized recursive partial least squares ensemble for soft sensing
We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing di...
Saved in:
Published in | Journal of chemometrics Vol. 32; no. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0886-9383 1099-128X |
DOI | 10.1002/cem.2999 |
Cover
Loading…
Abstract | We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing different frequency content of the signals from the physical sensors, combining the predictions from these models via static weights determined from an inverse‐variance weighting approach, and recursively adapting each of the soft sensor models in the ensemble when new data are received. Wavelet‐induced boundary effects are handled by using the undecimated wavelet transform with the Haar wavelet, an approach that is not subject to wavelet boundary effects that would otherwise arise on the most recent sensor data. An additional advantage of the undecimated wavelet transform is that the wavelet function is defined for a signal of arbitrary length, thus avoiding the need to either trim or pad the training signals to dyadic length, which is required with the basic discrete wavelet transform. The new method is tested against a standard recursive partial least squares soft sensor on 3 soft‐sensing applications from 2 real industrial processes. For the datasets we examined, we show that results from the new method appear to be statistically superior to those from a soft sensor based only on a recursive partial least squares model with additional advantages arising from the ability to examine performance of each localized soft sensor in the ensemble.
Frequency‐localization of physical sensor responses via wavelet decomposition for soft sensing of chemical processes is explored. The adaptive soft sensor is constructed by independently modeling the wavelet coefficients (which contain different frequency content of the physical sensors) via a stacked ensemble of recursive partial least squares models. The proposed method appears to yield statistically superior results to a standard recursive partial least squares soft sensor on 3 online prediction/predictive control test applications. |
---|---|
AbstractList | We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing different frequency content of the signals from the physical sensors, combining the predictions from these models via static weights determined from an inverse‐variance weighting approach, and recursively adapting each of the soft sensor models in the ensemble when new data are received. Wavelet‐induced boundary effects are handled by using the undecimated wavelet transform with the Haar wavelet, an approach that is not subject to wavelet boundary effects that would otherwise arise on the most recent sensor data. An additional advantage of the undecimated wavelet transform is that the wavelet function is defined for a signal of arbitrary length, thus avoiding the need to either trim or pad the training signals to dyadic length, which is required with the basic discrete wavelet transform. The new method is tested against a standard recursive partial least squares soft sensor on 3 soft‐sensing applications from 2 real industrial processes. For the datasets we examined, we show that results from the new method appear to be statistically superior to those from a soft sensor based only on a recursive partial least squares model with additional advantages arising from the ability to examine performance of each localized soft sensor in the ensemble.
Frequency‐localization of physical sensor responses via wavelet decomposition for soft sensing of chemical processes is explored. The adaptive soft sensor is constructed by independently modeling the wavelet coefficients (which contain different frequency content of the physical sensors) via a stacked ensemble of recursive partial least squares models. The proposed method appears to yield statistically superior results to a standard recursive partial least squares soft sensor on 3 online prediction/predictive control test applications. We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing different frequency content of the signals from the physical sensors, combining the predictions from these models via static weights determined from an inverse‐variance weighting approach, and recursively adapting each of the soft sensor models in the ensemble when new data are received. Wavelet‐induced boundary effects are handled by using the undecimated wavelet transform with the Haar wavelet, an approach that is not subject to wavelet boundary effects that would otherwise arise on the most recent sensor data. An additional advantage of the undecimated wavelet transform is that the wavelet function is defined for a signal of arbitrary length, thus avoiding the need to either trim or pad the training signals to dyadic length, which is required with the basic discrete wavelet transform. The new method is tested against a standard recursive partial least squares soft sensor on 3 soft‐sensing applications from 2 real industrial processes. For the datasets we examined, we show that results from the new method appear to be statistically superior to those from a soft sensor based only on a recursive partial least squares model with additional advantages arising from the ability to examine performance of each localized soft sensor in the ensemble. |
Author | Poerio, Dominic V. Brown, Steven D. |
Author_xml | – sequence: 1 givenname: Dominic V. surname: Poerio fullname: Poerio, Dominic V. organization: University of Delaware – sequence: 2 givenname: Steven D. orcidid: 0000-0002-1006-4177 surname: Brown fullname: Brown, Steven D. email: sdb@udel.edu organization: University of Delaware |
BookMark | eNp1kM9KAzEQxoNUsK2CjxDw4mVrNml3k2Mp9Q9URFDwFrLZiaSkmzbZVerJR_AZfRJT60n0NDDz-76Z-Qao1_gGEDrNySgnhF5oWI2oEOIA9XMiRJZT_tRDfcJ5kQnG2REaxLgkJM3YuI_up9gE2HTQ6O3n-4fzWjn7BjUOoLsQ7QvgtQqtVQ47ULHFcdOpABFDE2FVOcDGBxy9SZPUss3zMTo0ykU4-alD9Hg5f5hdZ4u7q5vZdJFpKpjICm00EbUo1aRSooTKCMXKopiIXFHDKSjOeM3HlNVAK8JNLginVJVFRSplJmyIzva-6-DT_bGVS9-FJq2UlIxLxtPLPFHne0oHH2MAI9fBrlTYypzIXWAyBSZ3gSV09AvVtlWt9U0blHV_CbK94NU62P5rLGfz22_-C2aMf8c |
CitedBy_id | crossref_primary_10_1002_cem_3554 crossref_primary_10_2478_amns_2023_2_00364 crossref_primary_10_1016_j_chemolab_2018_10_007 crossref_primary_10_1016_j_jprocont_2021_03_006 crossref_primary_10_1016_j_ins_2020_04_013 crossref_primary_10_1109_JSEN_2020_3033153 crossref_primary_10_1016_j_fuel_2021_120441 crossref_primary_10_1016_j_cjche_2024_01_024 crossref_primary_10_1016_j_neucom_2020_01_083 |
Cites_doi | 10.1016/S0098-1354(97)00262-7 10.1016/j.jbiotec.2004.10.012 10.1016/j.chaos.2017.03.018 10.1002/cem.768 10.1016/0169-7439(92)80098-O 10.1016/S0959-1524(97)80001-7 10.1002/cem.2638 10.1021/ie050391w 10.1016/j.neucom.2016.10.005 10.18267/j.aop.431 10.1016/j.chemolab.2015.05.007 10.1109/ISEFS.2006.251167 10.1016/j.conengprac.2007.04.014 10.1016/0169-7439(93)E0075-F 10.1016/j.chemolab.2009.09.006 10.1016/S1474-6670(17)31058-3 10.1016/S0952-1976(97)00055-9 10.1002/aic.12346 10.1021/ie201898a 10.1002/aic.10260 10.1006/acha.1993.1005 10.1016/j.cherd.2011.05.005 10.1016/S0925-2312(01)00648-8 10.1016/0003-2670(86)80028-9 10.1016/j.compchemeng.2017.04.014 10.1016/j.compchemeng.2013.06.014 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7U5 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cem.2999 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-128X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cem_2999 CEM2999 |
Genre | article |
GrantInformation_xml | – fundername: United States National Science Foundation Division of Chemistry funderid: 1506853 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ UB1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WRJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2939-6cfc09d97a5ba97ebf9a3766591a2f82ea838d8423de2b08f190822a76b0baf53 |
IEDL.DBID | DR2 |
ISSN | 0886-9383 |
IngestDate | Fri Jul 25 10:53:49 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Tue Jul 01 03:17:03 EDT 2025 Wed Jan 22 16:57:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2939-6cfc09d97a5ba97ebf9a3766591a2f82ea838d8423de2b08f190822a76b0baf53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1006-4177 |
PQID | 2047380888 |
PQPubID | 37374 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2047380888 crossref_primary_10_1002_cem_2999 crossref_citationtrail_10_1002_cem_2999 wiley_primary_10_1002_cem_2999_CEM2999 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Journal of chemometrics |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 57 2015; 146 2008; 16 2005; 116 1994; 23 2009 2008 2010; 100 2007 2003; 17 1992; 14 2014; 2014 2014; 28 1993; 1 1998; 22 1997; 7 2012; 51 2002; 48 2004; 50 2013; 58 2006; 45 1995; 28 2004; 37 2017; 98 1986; 185 2016 2011; 89 2017; 222 2017; 104 1998; 11 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Fortuna L (e_1_2_7_29_1) 2007 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Voet H (e_1_2_7_33_1) 1995; 28 e_1_2_7_17_1 e_1_2_7_16_1 Strang G (e_1_2_7_24_1) 2009 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Percival D (e_1_2_7_23_1) 2008 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 14 start-page: 129 issue: 1‐3 year: 1992 end-page: 137 article-title: Recursive algorithm for partial least squares regression publication-title: Chemom Intel Lab Syst – year: 2009 – volume: 104 start-page: 164 year: 2017 end-page: 171 article-title: Locally weighted kernel partial least squares regression based on sparse nonlinear features for virtual sensing of nonlinear time‐varying processes publication-title: Comput Chem Eng – volume: 48 start-page: 267 issue: 1‐4 year: 2002 end-page: 277 article-title: On the use of the wavelet decomposition for time series prediction publication-title: Neurocomputing – volume: 17 start-page: 111 issue: 2 year: 2003 end-page: 122 article-title: Dual‐domain regression analysis for spectral calibration models publication-title: J Chemometr – year: 2007 – volume: 7 start-page: 169 issue: 3 year: 1997 end-page: 179 article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction publication-title: J Process Control – volume: 16 start-page: 294 issue: 3 year: 2008 end-page: 307 article-title: Monitoring a complex refining process using multivariate statistics publication-title: Control Eng Pract – volume: 23 start-page: 149 issue: 1 year: 1994 end-page: 161 article-title: Exponentially weighted moving principal components analysis and projections to latent structures publication-title: Chemom Intel Lab Syst – volume: 50 start-page: 2891 issue: 11 year: 2004 end-page: 2903 article-title: Principal‐component analysis of multiscale data for process monitoring and fault diagnosis publication-title: AIChE J – volume: 185 start-page: 1 year: 1986 end-page: 17 article-title: Partial least‐squares regression: a tutorial publication-title: Anal Chim Acta – volume: 11 start-page: 293 issue: 2 year: 1998 end-page: 306 article-title: Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor publication-title: Eng Appl Artif Intel – year: 2016 – volume: 28 start-page: 315 year: 1995 article-title: Comparing the predictive accuracy of models using a simple randomization test publication-title: Chemom Intel Lab Syst – volume: 58 start-page: 84 year: 2013 end-page: 97 article-title: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models publication-title: Comput Chem Eng – volume: 22 start-page: 503 issue: 4‐5 year: 1998 end-page: 514 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput Chem Eng – volume: 45 start-page: 3108 issue: 9 year: 2006 end-page: 3118 article-title: Adaptive multivariate statistical process control for monitoring time‐varying processes publication-title: Ind Eng Chem Res – volume: 100 start-page: 22 issue: 1 year: 2010 end-page: 27 article-title: Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra publication-title: Chemom Intel Lab Syst – year: 2008 – volume: 51 start-page: 6416 issue: 18 year: 2012 end-page: 6428 article-title: Moving‐window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing publication-title: Ind Eng Chem Res – volume: 2014 start-page: 48 issue: 2 year: 2014 end-page: 70 article-title: Additive decomposition and boundary conditions in wavelet‐based forecasting approaches publication-title: Acta Oecon Prag – volume: 28 start-page: 793 issue: 11 year: 2014 end-page: 804 article-title: Nonlinear semisupervised principal component regression for soft sensor modeling and its mixture form publication-title: J Chemometr – volume: 222 start-page: 91 year: 2017 end-page: 104 article-title: Semi‐supervised selective ensemble learning based on distance to model for nonlinear soft sensor development publication-title: Neurocomputing – volume: 37 start-page: 407 issue: 15 year: 2004 end-page: 411 article-title: Adaptive soft‐sensors for on‐line particle size estimation in wet grinding circuits publication-title: IFAC Proc Vol – volume: 116 start-page: 195 issue: 2 year: 2005 end-page: 210 article-title: Adaptive multiscale principal component analysis for on‐line monitoring of a sequencing batch reactor publication-title: J Biotechnol – volume: 1 start-page: 54 issue: 1 year: 1993 end-page: 81 article-title: Wavelets on the interval and fast wavelet transforms publication-title: Appl Comput Harmon Anal – volume: 146 start-page: 55 year: 2015 end-page: 62 article-title: Covariance‐based locally weighted partial least squares for high‐performance adaptive modeling publication-title: Chemom Intel Lab Syst – volume: 57 start-page: 1288 year: 2010 end-page: 1301 article-title: Local learning‐based adaptive soft sensor for catalyst activation prediction publication-title: AIChE J – volume: 98 start-page: 158 year: 2017 end-page: 172 article-title: A prediction method based on wavelet transform and multiple models fusion for chaotic time series publication-title: Chaos, Solitons Fractals – volume: 89 start-page: 2667 issue: 12 year: 2011 end-page: 2678 article-title: Multivariate process monitoring and analysis based on multi‐scale KPLS publication-title: Chem Eng Res Des – ident: e_1_2_7_20_1 doi: 10.1016/S0098-1354(97)00262-7 – ident: e_1_2_7_14_1 doi: 10.1016/j.jbiotec.2004.10.012 – ident: e_1_2_7_18_1 doi: 10.1016/j.chaos.2017.03.018 – ident: e_1_2_7_26_1 doi: 10.1002/cem.768 – ident: e_1_2_7_4_1 doi: 10.1016/0169-7439(92)80098-O – ident: e_1_2_7_5_1 doi: 10.1016/S0959-1524(97)80001-7 – ident: e_1_2_7_32_1 doi: 10.1002/cem.2638 – ident: e_1_2_7_22_1 doi: 10.1021/ie050391w – ident: e_1_2_7_6_1 doi: 10.1016/j.neucom.2016.10.005 – ident: e_1_2_7_25_1 doi: 10.18267/j.aop.431 – ident: e_1_2_7_11_1 doi: 10.1016/j.chemolab.2015.05.007 – ident: e_1_2_7_9_1 doi: 10.1109/ISEFS.2006.251167 – ident: e_1_2_7_3_1 doi: 10.1016/j.conengprac.2007.04.014 – ident: e_1_2_7_21_1 doi: 10.1016/0169-7439(93)E0075-F – ident: e_1_2_7_27_1 doi: 10.1016/j.chemolab.2009.09.006 – ident: e_1_2_7_2_1 doi: 10.1016/S1474-6670(17)31058-3 – ident: e_1_2_7_8_1 doi: 10.1016/S0952-1976(97)00055-9 – ident: e_1_2_7_10_1 doi: 10.1002/aic.12346 – ident: e_1_2_7_7_1 doi: 10.1021/ie201898a – ident: e_1_2_7_16_1 doi: 10.1002/aic.10260 – volume-title: Soft Sensors for Monitoring and Control of Industrial Processes year: 2007 ident: e_1_2_7_29_1 – ident: e_1_2_7_30_1 – volume-title: Wavelets and Filter Banks year: 2009 ident: e_1_2_7_24_1 – ident: e_1_2_7_28_1 doi: 10.1006/acha.1993.1005 – volume: 28 start-page: 315 year: 1995 ident: e_1_2_7_33_1 article-title: Comparing the predictive accuracy of models using a simple randomization test publication-title: Chemom Intel Lab Syst – ident: e_1_2_7_15_1 doi: 10.1016/j.cherd.2011.05.005 – ident: e_1_2_7_17_1 doi: 10.1016/S0925-2312(01)00648-8 – ident: e_1_2_7_19_1 doi: 10.1016/0003-2670(86)80028-9 – volume-title: Wavelet Methods for Time Series Analysis year: 2008 ident: e_1_2_7_23_1 – ident: e_1_2_7_12_1 doi: 10.1016/j.compchemeng.2017.04.014 – ident: e_1_2_7_13_1 doi: 10.1016/j.compchemeng.2013.06.014 – ident: e_1_2_7_31_1 |
SSID | ssj0009934 |
Score | 2.2710447 |
Snippet | We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Discrete Wavelet Transform Least squares online prediction process analysis Recursive methods recursive partial least squares Sensors soft sensor wavelet analysis Wavelet transforms |
Title | A frequency‐localized recursive partial least squares ensemble for soft sensing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.2999 https://www.proquest.com/docview/2047380888 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xfVFBNFT15o2SXNcll0WQUFREDyUpE1E3K3rdvegJ3-Cv9Ff4kwfroqCeOolKW0yM9-XMPMNIftcC8eZbzwhwd1CIxMPYER6KWeWK0AEGWKB8-mZ6F2FJ9f8usqqxFqYUh_i48INPaOI1-jg2uRHU9HQxA6aEEuxdg9TtZAPXUyVowB2w5JACk_BKazWnfXZUT3xKxJN6eVnklqgTHeR3NTfVyaX3DcnY9NMnr9JN_7vB5bIQkU-aau0lmUyY7MVMteue76tkvMWdaMyufrp7eW1ALq7Z5vSEV7LY6Y7HaKtwUv62PSH5o8TLGCicBi2A9O3FDgwzSG00xwz47PbNXLV7Vy2e17VdMFLAPmVJxKX-CpVUnOjlbTGKQ1BSHB1rJmLmNVREKURsLDUMuNH7hibpjMthfGNdjxYJ7PZQ2Y3CBXMKqGsSCVwTOmk9rlz0gZAcYAUJUGDHNYbECeVIjk2xujHpZYyi2GJYlyiBtn7GDksVTh-GLNd72Fc-WEeMz-UQQRWEDXIQbEZv86P251TfG7-deAWmQf2FJXZj9tkdjya2B1gKGOzW9jiO7KQ44E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt7g-I4ieuta0SRo8yaqsjxUUBQ9CSdpExHVd93HQkz_B3-gvcdJuXRUF8dRLUtpkZr4vYeYbgHWmuGXU1x4X6G6hFomHMCK8lFHDJCKCCF2Bc_2U1y7Doyt2NQQ7RS1Mrg_xceHmPCOL187B3YX01kA1NDH3FQymchhGXENv55V75wPtKATeMKeQ3JN4DiuUZ326Vcz8ikUDgvmZpmY4czAB18UX5ukld5VeV1eS52_ijf_8hUkY7_NPspsbzBQMmeY0jFaLtm8zcLZLbDvPr356e3nNsO722aSk7W7mXbI7aTlzw5c0XN8f0nnsuRomgudhc68bhiANJh2M7qTjkuObN7NwebB_Ua15_b4LXoLgLz2e2MSXqRSKaSWF0VYqjEOcyW1FbUSNioIojZCIpYZqP7Lbrm86VYJrXyvLgjkoNR-aZh4Ip0ZyaXgqkGYKK5TPrBUmQJaDvCgJyrBZ7ECc9EXJXW-MRpzLKdMYlyh2S1SGtY-RrVyI44cxS8Umxn1X7MTUD0UQoRlEZdjIduPX-XF1v-6eC38duAqjtYv6SXxyeHq8CGNIpqI8GXIJSt12zywjYenqlcww3wHf3-ea |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkGgv9AGoAVqMVLWnDRvv-nVEeShAg6AqUiQOK3vXRlWTNM3jAKf-hP7G_pKO95GUCiTEaS_2ateeme-zNfMNwAemuWM0NAEX6G6xEWmAMCKCjFHLFCKCiH2Bc--Mdy_jkz7rl1mVvham0IdYXLh5z8jjtXfwceYOl6KhqR3WMZaqZ7AW81D6g1fry1I6CnE3LhgkDxQewyrh2ZAeVjPvQtGSX_7LUnOY6byEq-oDi-yS7_X5zNTT2_-0G5_2B69go2Sf5Kgwl9ewYkdv4Hmzavq2CRdHxE2K7OqbP79-50j37dZmZOLv5X2qOxl7Y8OXDHzXHzL9OfcVTARPw3ZoBpYgCSZTjO1k6lPjR9dbcNlpf212g7LrQpAi9KuApy4NVaaEZkYrYY1TGqMQZ6qhqZPUahnJTCINyyw1oXQN3zWdasFNaLRj0Tasjn6M7FsgnFrFleWZQJIpnNAhc07YCDkOsqI0qsGnagOStJQk950xBkkhpkwTXKLEL1ENDhYjx4UMxz1j9qo9TEpHnCY0jEUk0QpkDT7mm_Hg_KTZ7vnnzmMH7sP6eauTfD4-O92FF8ikZJEJuQers8ncvkO2MjPvc7P8C2CB5lI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+frequency%E2%80%90localized+recursive+partial+least+squares+ensemble+for+soft+sensing&rft.jtitle=Journal+of+chemometrics&rft.au=Poerio%2C+Dominic+V.&rft.au=Brown%2C+Steven+D.&rft.date=2018-05-01&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=32&rft.issue=5&rft_id=info:doi/10.1002%2Fcem.2999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cem_2999 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon |