A frequency‐localized recursive partial least squares ensemble for soft sensing

We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing di...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemometrics Vol. 32; no. 5
Main Authors Poerio, Dominic V., Brown, Steven D.
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN0886-9383
1099-128X
DOI10.1002/cem.2999

Cover

Loading…
Abstract We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing different frequency content of the signals from the physical sensors, combining the predictions from these models via static weights determined from an inverse‐variance weighting approach, and recursively adapting each of the soft sensor models in the ensemble when new data are received. Wavelet‐induced boundary effects are handled by using the undecimated wavelet transform with the Haar wavelet, an approach that is not subject to wavelet boundary effects that would otherwise arise on the most recent sensor data. An additional advantage of the undecimated wavelet transform is that the wavelet function is defined for a signal of arbitrary length, thus avoiding the need to either trim or pad the training signals to dyadic length, which is required with the basic discrete wavelet transform. The new method is tested against a standard recursive partial least squares soft sensor on 3 soft‐sensing applications from 2 real industrial processes. For the datasets we examined, we show that results from the new method appear to be statistically superior to those from a soft sensor based only on a recursive partial least squares model with additional advantages arising from the ability to examine performance of each localized soft sensor in the ensemble. Frequency‐localization of physical sensor responses via wavelet decomposition for soft sensing of chemical processes is explored. The adaptive soft sensor is constructed by independently modeling the wavelet coefficients (which contain different frequency content of the physical sensors) via a stacked ensemble of recursive partial least squares models. The proposed method appears to yield statistically superior results to a standard recursive partial least squares soft sensor on 3 online prediction/predictive control test applications.
AbstractList We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing different frequency content of the signals from the physical sensors, combining the predictions from these models via static weights determined from an inverse‐variance weighting approach, and recursively adapting each of the soft sensor models in the ensemble when new data are received. Wavelet‐induced boundary effects are handled by using the undecimated wavelet transform with the Haar wavelet, an approach that is not subject to wavelet boundary effects that would otherwise arise on the most recent sensor data. An additional advantage of the undecimated wavelet transform is that the wavelet function is defined for a signal of arbitrary length, thus avoiding the need to either trim or pad the training signals to dyadic length, which is required with the basic discrete wavelet transform. The new method is tested against a standard recursive partial least squares soft sensor on 3 soft‐sensing applications from 2 real industrial processes. For the datasets we examined, we show that results from the new method appear to be statistically superior to those from a soft sensor based only on a recursive partial least squares model with additional advantages arising from the ability to examine performance of each localized soft sensor in the ensemble. Frequency‐localization of physical sensor responses via wavelet decomposition for soft sensing of chemical processes is explored. The adaptive soft sensor is constructed by independently modeling the wavelet coefficients (which contain different frequency content of the physical sensors) via a stacked ensemble of recursive partial least squares models. The proposed method appears to yield statistically superior results to a standard recursive partial least squares soft sensor on 3 online prediction/predictive control test applications.
We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The proposed method is based on building recursive, partial least squares soft sensor models on each of the wavelet coefficient matrices representing different frequency content of the signals from the physical sensors, combining the predictions from these models via static weights determined from an inverse‐variance weighting approach, and recursively adapting each of the soft sensor models in the ensemble when new data are received. Wavelet‐induced boundary effects are handled by using the undecimated wavelet transform with the Haar wavelet, an approach that is not subject to wavelet boundary effects that would otherwise arise on the most recent sensor data. An additional advantage of the undecimated wavelet transform is that the wavelet function is defined for a signal of arbitrary length, thus avoiding the need to either trim or pad the training signals to dyadic length, which is required with the basic discrete wavelet transform. The new method is tested against a standard recursive partial least squares soft sensor on 3 soft‐sensing applications from 2 real industrial processes. For the datasets we examined, we show that results from the new method appear to be statistically superior to those from a soft sensor based only on a recursive partial least squares model with additional advantages arising from the ability to examine performance of each localized soft sensor in the ensemble.
Author Poerio, Dominic V.
Brown, Steven D.
Author_xml – sequence: 1
  givenname: Dominic V.
  surname: Poerio
  fullname: Poerio, Dominic V.
  organization: University of Delaware
– sequence: 2
  givenname: Steven D.
  orcidid: 0000-0002-1006-4177
  surname: Brown
  fullname: Brown, Steven D.
  email: sdb@udel.edu
  organization: University of Delaware
BookMark eNp1kM9KAzEQxoNUsK2CjxDw4mVrNml3k2Mp9Q9URFDwFrLZiaSkmzbZVerJR_AZfRJT60n0NDDz-76Z-Qao1_gGEDrNySgnhF5oWI2oEOIA9XMiRJZT_tRDfcJ5kQnG2REaxLgkJM3YuI_up9gE2HTQ6O3n-4fzWjn7BjUOoLsQ7QvgtQqtVQ47ULHFcdOpABFDE2FVOcDGBxy9SZPUss3zMTo0ykU4-alD9Hg5f5hdZ4u7q5vZdJFpKpjICm00EbUo1aRSooTKCMXKopiIXFHDKSjOeM3HlNVAK8JNLginVJVFRSplJmyIzva-6-DT_bGVS9-FJq2UlIxLxtPLPFHne0oHH2MAI9fBrlTYypzIXWAyBSZ3gSV09AvVtlWt9U0blHV_CbK94NU62P5rLGfz22_-C2aMf8c
CitedBy_id crossref_primary_10_1002_cem_3554
crossref_primary_10_2478_amns_2023_2_00364
crossref_primary_10_1016_j_chemolab_2018_10_007
crossref_primary_10_1016_j_jprocont_2021_03_006
crossref_primary_10_1016_j_ins_2020_04_013
crossref_primary_10_1109_JSEN_2020_3033153
crossref_primary_10_1016_j_fuel_2021_120441
crossref_primary_10_1016_j_cjche_2024_01_024
crossref_primary_10_1016_j_neucom_2020_01_083
Cites_doi 10.1016/S0098-1354(97)00262-7
10.1016/j.jbiotec.2004.10.012
10.1016/j.chaos.2017.03.018
10.1002/cem.768
10.1016/0169-7439(92)80098-O
10.1016/S0959-1524(97)80001-7
10.1002/cem.2638
10.1021/ie050391w
10.1016/j.neucom.2016.10.005
10.18267/j.aop.431
10.1016/j.chemolab.2015.05.007
10.1109/ISEFS.2006.251167
10.1016/j.conengprac.2007.04.014
10.1016/0169-7439(93)E0075-F
10.1016/j.chemolab.2009.09.006
10.1016/S1474-6670(17)31058-3
10.1016/S0952-1976(97)00055-9
10.1002/aic.12346
10.1021/ie201898a
10.1002/aic.10260
10.1006/acha.1993.1005
10.1016/j.cherd.2011.05.005
10.1016/S0925-2312(01)00648-8
10.1016/0003-2670(86)80028-9
10.1016/j.compchemeng.2017.04.014
10.1016/j.compchemeng.2013.06.014
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cem.2999
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-128X
EndPage n/a
ExternalDocumentID 10_1002_cem_2999
CEM2999
Genre article
GrantInformation_xml – fundername: United States National Science Foundation Division of Chemistry
  funderid: 1506853
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2939-6cfc09d97a5ba97ebf9a3766591a2f82ea838d8423de2b08f190822a76b0baf53
IEDL.DBID DR2
ISSN 0886-9383
IngestDate Fri Jul 25 10:53:49 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Tue Jul 01 03:17:03 EDT 2025
Wed Jan 22 16:57:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-6cfc09d97a5ba97ebf9a3766591a2f82ea838d8423de2b08f190822a76b0baf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1006-4177
PQID 2047380888
PQPubID 37374
PageCount 17
ParticipantIDs proquest_journals_2047380888
crossref_primary_10_1002_cem_2999
crossref_citationtrail_10_1002_cem_2999
wiley_primary_10_1002_cem_2999_CEM2999
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of chemometrics
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 57
2015; 146
2008; 16
2005; 116
1994; 23
2009
2008
2010; 100
2007
2003; 17
1992; 14
2014; 2014
2014; 28
1993; 1
1998; 22
1997; 7
2012; 51
2002; 48
2004; 50
2013; 58
2006; 45
1995; 28
2004; 37
2017; 98
1986; 185
2016
2011; 89
2017; 222
2017; 104
1998; 11
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Fortuna L (e_1_2_7_29_1) 2007
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Voet H (e_1_2_7_33_1) 1995; 28
e_1_2_7_17_1
e_1_2_7_16_1
Strang G (e_1_2_7_24_1) 2009
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Percival D (e_1_2_7_23_1) 2008
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 14
  start-page: 129
  issue: 1‐3
  year: 1992
  end-page: 137
  article-title: Recursive algorithm for partial least squares regression
  publication-title: Chemom Intel Lab Syst
– year: 2009
– volume: 104
  start-page: 164
  year: 2017
  end-page: 171
  article-title: Locally weighted kernel partial least squares regression based on sparse nonlinear features for virtual sensing of nonlinear time‐varying processes
  publication-title: Comput Chem Eng
– volume: 48
  start-page: 267
  issue: 1‐4
  year: 2002
  end-page: 277
  article-title: On the use of the wavelet decomposition for time series prediction
  publication-title: Neurocomputing
– volume: 17
  start-page: 111
  issue: 2
  year: 2003
  end-page: 122
  article-title: Dual‐domain regression analysis for spectral calibration models
  publication-title: J Chemometr
– year: 2007
– volume: 7
  start-page: 169
  issue: 3
  year: 1997
  end-page: 179
  article-title: Recursive exponentially weighted PLS and its applications to adaptive control and prediction
  publication-title: J Process Control
– volume: 16
  start-page: 294
  issue: 3
  year: 2008
  end-page: 307
  article-title: Monitoring a complex refining process using multivariate statistics
  publication-title: Control Eng Pract
– volume: 23
  start-page: 149
  issue: 1
  year: 1994
  end-page: 161
  article-title: Exponentially weighted moving principal components analysis and projections to latent structures
  publication-title: Chemom Intel Lab Syst
– volume: 50
  start-page: 2891
  issue: 11
  year: 2004
  end-page: 2903
  article-title: Principal‐component analysis of multiscale data for process monitoring and fault diagnosis
  publication-title: AIChE J
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  article-title: Partial least‐squares regression: a tutorial
  publication-title: Anal Chim Acta
– volume: 11
  start-page: 293
  issue: 2
  year: 1998
  end-page: 306
  article-title: Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor
  publication-title: Eng Appl Artif Intel
– year: 2016
– volume: 28
  start-page: 315
  year: 1995
  article-title: Comparing the predictive accuracy of models using a simple randomization test
  publication-title: Chemom Intel Lab Syst
– volume: 58
  start-page: 84
  year: 2013
  end-page: 97
  article-title: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models
  publication-title: Comput Chem Eng
– volume: 22
  start-page: 503
  issue: 4‐5
  year: 1998
  end-page: 514
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput Chem Eng
– volume: 45
  start-page: 3108
  issue: 9
  year: 2006
  end-page: 3118
  article-title: Adaptive multivariate statistical process control for monitoring time‐varying processes
  publication-title: Ind Eng Chem Res
– volume: 100
  start-page: 22
  issue: 1
  year: 2010
  end-page: 27
  article-title: Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra
  publication-title: Chemom Intel Lab Syst
– year: 2008
– volume: 51
  start-page: 6416
  issue: 18
  year: 2012
  end-page: 6428
  article-title: Moving‐window GPR for nonlinear dynamic system modeling with dual updating and dual preprocessing
  publication-title: Ind Eng Chem Res
– volume: 2014
  start-page: 48
  issue: 2
  year: 2014
  end-page: 70
  article-title: Additive decomposition and boundary conditions in wavelet‐based forecasting approaches
  publication-title: Acta Oecon Prag
– volume: 28
  start-page: 793
  issue: 11
  year: 2014
  end-page: 804
  article-title: Nonlinear semisupervised principal component regression for soft sensor modeling and its mixture form
  publication-title: J Chemometr
– volume: 222
  start-page: 91
  year: 2017
  end-page: 104
  article-title: Semi‐supervised selective ensemble learning based on distance to model for nonlinear soft sensor development
  publication-title: Neurocomputing
– volume: 37
  start-page: 407
  issue: 15
  year: 2004
  end-page: 411
  article-title: Adaptive soft‐sensors for on‐line particle size estimation in wet grinding circuits
  publication-title: IFAC Proc Vol
– volume: 116
  start-page: 195
  issue: 2
  year: 2005
  end-page: 210
  article-title: Adaptive multiscale principal component analysis for on‐line monitoring of a sequencing batch reactor
  publication-title: J Biotechnol
– volume: 1
  start-page: 54
  issue: 1
  year: 1993
  end-page: 81
  article-title: Wavelets on the interval and fast wavelet transforms
  publication-title: Appl Comput Harmon Anal
– volume: 146
  start-page: 55
  year: 2015
  end-page: 62
  article-title: Covariance‐based locally weighted partial least squares for high‐performance adaptive modeling
  publication-title: Chemom Intel Lab Syst
– volume: 57
  start-page: 1288
  year: 2010
  end-page: 1301
  article-title: Local learning‐based adaptive soft sensor for catalyst activation prediction
  publication-title: AIChE J
– volume: 98
  start-page: 158
  year: 2017
  end-page: 172
  article-title: A prediction method based on wavelet transform and multiple models fusion for chaotic time series
  publication-title: Chaos, Solitons Fractals
– volume: 89
  start-page: 2667
  issue: 12
  year: 2011
  end-page: 2678
  article-title: Multivariate process monitoring and analysis based on multi‐scale KPLS
  publication-title: Chem Eng Res Des
– ident: e_1_2_7_20_1
  doi: 10.1016/S0098-1354(97)00262-7
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jbiotec.2004.10.012
– ident: e_1_2_7_18_1
  doi: 10.1016/j.chaos.2017.03.018
– ident: e_1_2_7_26_1
  doi: 10.1002/cem.768
– ident: e_1_2_7_4_1
  doi: 10.1016/0169-7439(92)80098-O
– ident: e_1_2_7_5_1
  doi: 10.1016/S0959-1524(97)80001-7
– ident: e_1_2_7_32_1
  doi: 10.1002/cem.2638
– ident: e_1_2_7_22_1
  doi: 10.1021/ie050391w
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neucom.2016.10.005
– ident: e_1_2_7_25_1
  doi: 10.18267/j.aop.431
– ident: e_1_2_7_11_1
  doi: 10.1016/j.chemolab.2015.05.007
– ident: e_1_2_7_9_1
  doi: 10.1109/ISEFS.2006.251167
– ident: e_1_2_7_3_1
  doi: 10.1016/j.conengprac.2007.04.014
– ident: e_1_2_7_21_1
  doi: 10.1016/0169-7439(93)E0075-F
– ident: e_1_2_7_27_1
  doi: 10.1016/j.chemolab.2009.09.006
– ident: e_1_2_7_2_1
  doi: 10.1016/S1474-6670(17)31058-3
– ident: e_1_2_7_8_1
  doi: 10.1016/S0952-1976(97)00055-9
– ident: e_1_2_7_10_1
  doi: 10.1002/aic.12346
– ident: e_1_2_7_7_1
  doi: 10.1021/ie201898a
– ident: e_1_2_7_16_1
  doi: 10.1002/aic.10260
– volume-title: Soft Sensors for Monitoring and Control of Industrial Processes
  year: 2007
  ident: e_1_2_7_29_1
– ident: e_1_2_7_30_1
– volume-title: Wavelets and Filter Banks
  year: 2009
  ident: e_1_2_7_24_1
– ident: e_1_2_7_28_1
  doi: 10.1006/acha.1993.1005
– volume: 28
  start-page: 315
  year: 1995
  ident: e_1_2_7_33_1
  article-title: Comparing the predictive accuracy of models using a simple randomization test
  publication-title: Chemom Intel Lab Syst
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cherd.2011.05.005
– ident: e_1_2_7_17_1
  doi: 10.1016/S0925-2312(01)00648-8
– ident: e_1_2_7_19_1
  doi: 10.1016/0003-2670(86)80028-9
– volume-title: Wavelet Methods for Time Series Analysis
  year: 2008
  ident: e_1_2_7_23_1
– ident: e_1_2_7_12_1
  doi: 10.1016/j.compchemeng.2017.04.014
– ident: e_1_2_7_13_1
  doi: 10.1016/j.compchemeng.2013.06.014
– ident: e_1_2_7_31_1
SSID ssj0009934
Score 2.2710447
Snippet We report the use of a frequency‐localized adaptive soft sensor ensemble using the wavelet coefficients of the responses from the physical sensors. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Discrete Wavelet Transform
Least squares
online prediction
process analysis
Recursive methods
recursive partial least squares
Sensors
soft sensor
wavelet analysis
Wavelet transforms
Title A frequency‐localized recursive partial least squares ensemble for soft sensing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.2999
https://www.proquest.com/docview/2047380888
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xfVFBNFT15o2SXNcll0WQUFREDyUpE1E3K3rdvegJ3-Cv9Ff4kwfroqCeOolKW0yM9-XMPMNIftcC8eZbzwhwd1CIxMPYER6KWeWK0AEGWKB8-mZ6F2FJ9f8usqqxFqYUh_i48INPaOI1-jg2uRHU9HQxA6aEEuxdg9TtZAPXUyVowB2w5JACk_BKazWnfXZUT3xKxJN6eVnklqgTHeR3NTfVyaX3DcnY9NMnr9JN_7vB5bIQkU-aau0lmUyY7MVMteue76tkvMWdaMyufrp7eW1ALq7Z5vSEV7LY6Y7HaKtwUv62PSH5o8TLGCicBi2A9O3FDgwzSG00xwz47PbNXLV7Vy2e17VdMFLAPmVJxKX-CpVUnOjlbTGKQ1BSHB1rJmLmNVREKURsLDUMuNH7hibpjMthfGNdjxYJ7PZQ2Y3CBXMKqGsSCVwTOmk9rlz0gZAcYAUJUGDHNYbECeVIjk2xujHpZYyi2GJYlyiBtn7GDksVTh-GLNd72Fc-WEeMz-UQQRWEDXIQbEZv86P251TfG7-deAWmQf2FJXZj9tkdjya2B1gKGOzW9jiO7KQ44E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt7g-I4ieuta0SRo8yaqsjxUUBQ9CSdpExHVd93HQkz_B3-gvcdJuXRUF8dRLUtpkZr4vYeYbgHWmuGXU1x4X6G6hFomHMCK8lFHDJCKCCF2Bc_2U1y7Doyt2NQQ7RS1Mrg_xceHmPCOL187B3YX01kA1NDH3FQymchhGXENv55V75wPtKATeMKeQ3JN4DiuUZ326Vcz8ikUDgvmZpmY4czAB18UX5ukld5VeV1eS52_ijf_8hUkY7_NPspsbzBQMmeY0jFaLtm8zcLZLbDvPr356e3nNsO722aSk7W7mXbI7aTlzw5c0XN8f0nnsuRomgudhc68bhiANJh2M7qTjkuObN7NwebB_Ua15_b4LXoLgLz2e2MSXqRSKaSWF0VYqjEOcyW1FbUSNioIojZCIpYZqP7Lbrm86VYJrXyvLgjkoNR-aZh4Ip0ZyaXgqkGYKK5TPrBUmQJaDvCgJyrBZ7ECc9EXJXW-MRpzLKdMYlyh2S1SGtY-RrVyI44cxS8Umxn1X7MTUD0UQoRlEZdjIduPX-XF1v-6eC38duAqjtYv6SXxyeHq8CGNIpqI8GXIJSt12zywjYenqlcww3wHf3-ea
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RkGgv9AGoAVqMVLWnDRvv-nVEeShAg6AqUiQOK3vXRlWTNM3jAKf-hP7G_pKO95GUCiTEaS_2ateeme-zNfMNwAemuWM0NAEX6G6xEWmAMCKCjFHLFCKCiH2Bc--Mdy_jkz7rl1mVvham0IdYXLh5z8jjtXfwceYOl6KhqR3WMZaqZ7AW81D6g1fry1I6CnE3LhgkDxQewyrh2ZAeVjPvQtGSX_7LUnOY6byEq-oDi-yS7_X5zNTT2_-0G5_2B69go2Sf5Kgwl9ewYkdv4Hmzavq2CRdHxE2K7OqbP79-50j37dZmZOLv5X2qOxl7Y8OXDHzXHzL9OfcVTARPw3ZoBpYgCSZTjO1k6lPjR9dbcNlpf212g7LrQpAi9KuApy4NVaaEZkYrYY1TGqMQZ6qhqZPUahnJTCINyyw1oXQN3zWdasFNaLRj0Tasjn6M7FsgnFrFleWZQJIpnNAhc07YCDkOsqI0qsGnagOStJQk950xBkkhpkwTXKLEL1ENDhYjx4UMxz1j9qo9TEpHnCY0jEUk0QpkDT7mm_Hg_KTZ7vnnzmMH7sP6eauTfD4-O92FF8ikZJEJuQers8ncvkO2MjPvc7P8C2CB5lI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+frequency%E2%80%90localized+recursive+partial+least+squares+ensemble+for+soft+sensing&rft.jtitle=Journal+of+chemometrics&rft.au=Poerio%2C+Dominic+V.&rft.au=Brown%2C+Steven+D.&rft.date=2018-05-01&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=32&rft.issue=5&rft_id=info:doi/10.1002%2Fcem.2999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cem_2999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon