Coupling immersed boundary and lattice Boltzmann method for modeling multi‐body interactions subjected to pulsatile flow

This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and spans several areas ranging from mathematical and numerical modeling to fluid mechanics. For this purpose, pulsatile flow characteristics ar...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 46; no. 6; pp. 6767 - 6786
Main Authors Karimnejad, Sajjad, Amiri Delouei, Amin, He, Fuli
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.8939

Cover

Loading…
Abstract This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and spans several areas ranging from mathematical and numerical modeling to fluid mechanics. For this purpose, pulsatile flow characteristics are embedded in the combination of the direct‐forcing immersed boundary method and the split‐forcing lattice Boltzmann method. Inter‐collision forces between the solid boundaries (particles and boundaries) and the added mass force due to acceleration are considered. Adequate verification tests are done to ensure the credibility of the findings. The critical parameters of pulsating flow, such as amplitude and frequency of pulsation, are investigated in detail. The paper especially puts emphasis on the interaction between particles and studies the well‐known drafting, kissing, and tumbling (DKT) phenomena. Two different scenarios are taken into account and also compared with the stationary flow. The first case is when the pulsating flow is in the direction of gravity (co‐flow), while in the latter, there is an opposing flow (counterflow). The sedimentation manners of 12 particles in a vertical channel are also presented. The findings shed light on the importance of pulsating flow and the extension of the proposed computational method for such problems. It is also revealed that pulsation and its variables can alter DKT by either postponing or speeding up the process. Also, in some cases, the cycle of DKT can be maintained incompletely, and particles would just stick together. The results can be useful for various engineering problems like filtration and particle sorting.
AbstractList This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and spans several areas ranging from mathematical and numerical modeling to fluid mechanics. For this purpose, pulsatile flow characteristics are embedded in the combination of the direct‐forcing immersed boundary method and the split‐forcing lattice Boltzmann method. Inter‐collision forces between the solid boundaries (particles and boundaries) and the added mass force due to acceleration are considered. Adequate verification tests are done to ensure the credibility of the findings. The critical parameters of pulsating flow, such as amplitude and frequency of pulsation, are investigated in detail. The paper especially puts emphasis on the interaction between particles and studies the well‐known drafting, kissing, and tumbling (DKT) phenomena. Two different scenarios are taken into account and also compared with the stationary flow. The first case is when the pulsating flow is in the direction of gravity (co‐flow), while in the latter, there is an opposing flow (counterflow). The sedimentation manners of 12 particles in a vertical channel are also presented. The findings shed light on the importance of pulsating flow and the extension of the proposed computational method for such problems. It is also revealed that pulsation and its variables can alter DKT by either postponing or speeding up the process. Also, in some cases, the cycle of DKT can be maintained incompletely, and particles would just stick together. The results can be useful for various engineering problems like filtration and particle sorting.
Author Karimnejad, Sajjad
Amiri Delouei, Amin
He, Fuli
Author_xml – sequence: 1
  givenname: Sajjad
  surname: Karimnejad
  fullname: Karimnejad, Sajjad
  organization: University of Bojnord
– sequence: 2
  givenname: Amin
  orcidid: 0000-0001-7414-4195
  surname: Amiri Delouei
  fullname: Amiri Delouei, Amin
  organization: University of Bojnord
– sequence: 3
  givenname: Fuli
  orcidid: 0000-0002-9395-545X
  surname: He
  fullname: He, Fuli
  email: hefuli999@163.com
  organization: Central South University
BookMark eNp1kM1uEzEUhS1UJNKCxCNYYtPNpNeeScZethEtSK3YwHrkse-AI_8E26MqXfUR-ox9EpymKwSru_nOuTrfKTkJMSAhHxksGQC_8F4thWzlG7JgIGXDun59QhbAemg6zrp35DTnLQAIxviCPGzivHM2_KTWe0wZDR3jHIxKe6qCoU6VYjXSq-jKg1chUI_lVzR0ion6aPAl62dX7PPj0xjNntpQMCldbAyZ5nncoi61tkS6m11WxTqkk4v378nbSbmMH17vGflx_fn75ktz--3m6-byttG87mjWdZUxCo2ATrXABEMmpOCrUagejdTYtUJAv1rpEUynOJsUb5VE3kmuBWvPyKdj7y7F3zPmMmzjnEJ9OfBe9AAS1qtKnR8pnWLOCadhl6yvGgYGw8HsUM0OB7MVXf6FalvUYW9Jyrp_BZpj4L5u3_-3eLi7u3zh_wAC-463
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_107924
crossref_primary_10_1140_epjp_s13360_024_04935_4
crossref_primary_10_1016_j_ast_2024_109877
crossref_primary_10_1016_j_powtec_2023_119336
crossref_primary_10_1016_j_oceaneng_2024_117564
crossref_primary_10_1016_j_oceaneng_2024_117860
crossref_primary_10_1007_s40997_023_00737_8
crossref_primary_10_1080_10407790_2024_2316197
crossref_primary_10_1016_j_cjph_2023_11_002
crossref_primary_10_1016_j_csite_2023_103604
crossref_primary_10_1016_j_oceaneng_2024_119555
crossref_primary_10_1088_1873_7005_ace37b
crossref_primary_10_1016_j_energy_2023_128622
crossref_primary_10_1016_j_polymertesting_2023_108169
crossref_primary_10_1016_j_tsep_2023_102168
crossref_primary_10_1016_j_icheatmasstransfer_2024_108048
crossref_primary_10_1080_10407782_2024_2340071
crossref_primary_10_1108_HFF_08_2024_0621
crossref_primary_10_1007_s40430_024_05186_1
crossref_primary_10_1016_j_oceaneng_2024_120283
crossref_primary_10_1063_5_0258353
crossref_primary_10_1080_14484846_2023_2290335
crossref_primary_10_1016_j_jmmm_2024_172016
crossref_primary_10_1016_j_marpolbul_2023_115438
crossref_primary_10_1016_j_cjph_2024_01_031
crossref_primary_10_1016_j_powtec_2024_120237
crossref_primary_10_1016_j_ijmecsci_2024_109304
crossref_primary_10_1063_5_0219798
crossref_primary_10_1007_s40997_023_00717_y
crossref_primary_10_1016_j_heliyon_2024_e29439
crossref_primary_10_1016_j_molliq_2023_123620
crossref_primary_10_1007_s40997_024_00781_y
crossref_primary_10_1007_s40997_023_00673_7
crossref_primary_10_1016_j_padiff_2024_101022
crossref_primary_10_1142_S0217979225500110
crossref_primary_10_1142_S0217984924500064
crossref_primary_10_2174_2212797616666230803115517
crossref_primary_10_1007_s10973_024_13209_1
crossref_primary_10_1007_s12648_023_02880_z
crossref_primary_10_1016_j_csite_2024_105438
crossref_primary_10_1016_j_ijthermalsci_2023_108750
crossref_primary_10_1016_j_cherd_2024_01_008
crossref_primary_10_1080_14484846_2023_2274999
crossref_primary_10_1016_j_powtec_2023_118750
Cites_doi 10.1016/S0021‐9991(02)00022‐0
10.1007/s10915-020-01234-9
10.1103/PhysRevE.89.013309
10.1016/j.ijthermalsci.2014.03.008
10.1006/jcph.2000.6542
10.1038/s41598‐018‐26786‐7
10.1016/j.molliq.2018.04.075
10.1093/oso/9780198503989.001.0001
10.1016/j.jcp.2013.12.052
10.1146/annurev‐fluid‐010719‐060228
10.1016/j.jcp.2004.06.020
10.1016/j.jcp.2008.01.009
10.1103/PhysRevE.89.053312
10.1142/8806
10.1007/978‐981‐15‐3940‐4
10.1063/1.869307
10.1007/s10973‐019‐08329‐y
10.1016/j.jcp.2003.10.013
10.1002/9780470686652.eae064
10.1007/s00231‐014‐1294‐4
10.1016/j.oceaneng.2022.111025
10.1016/j.compfluid.2014.03.005
10.1016/j.physa.2015.11.032
10.1103/PhysRevE.96.013302
10.1017/CBO9781139424547
10.1063/1.2911022
10.1016/j.powtec.2019.12.041
10.1007/BF01060931
10.1016/j.ces.2008.08.006
10.1016/j.jcp.2005.03.017
10.1103/PhysRevE.83.056710
10.1063/5.0013977
10.4208/cicp.2009.09.054
10.1016/j.compfluid.2011.04.016
10.1103/PhysRevE.65.046308
10.1016/j.jaerosci.2016.09.002
10.1016/j.powtec.2021.06.031
10.1007/978‐3‐319‐44649‐3_1
10.1016/j.partic.2015.05.004
10.1016/j.physleta.2006.01.060
10.1115/AJKFluids2019-5676
10.1016/j.jcp.2020.109713
10.1016/j.amc.2020.125411
10.1016/j.jcp.2012.01.021
10.1016/0370‐1573(92)90090‐M
10.1017/S0022112087001046
10.1016/j.jaerosci.2015.11.006
10.1002/fld.1129
10.1007/s10404‐013‐1291‐9
10.1038/s41598-021-81417-y
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.8939
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 6786
ExternalDocumentID 10_1002_mma_8939
MMA8939
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11601525
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2020JJ4105
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2939-6002ddaed804a30181e189825b8a7ed9ce43880755cb0d4a21fa23a9e2492c813
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:20:47 EDT 2025
Tue Jul 01 03:02:50 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Wed Jan 22 16:14:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-6002ddaed804a30181e189825b8a7ed9ce43880755cb0d4a21fa23a9e2492c813
Notes Funding information
National Natural Science Foundation of China, Grant/Award Number: 11601525; Natural Science Foundation of Hunan Province, Grant/Award Number: 2020JJ4105
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9395-545X
0000-0001-7414-4195
PQID 2787009065
PQPubID 1016386
PageCount 20
ParticipantIDs proquest_journals_2787009065
crossref_primary_10_1002_mma_8939
crossref_citationtrail_10_1002_mma_8939
wiley_primary_10_1002_mma_8939_MMA8939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 56
1993; 8
2022; 250
2020; 363
2008; 227
2019; 59087
1997; 9
2020; 6
2018; 8
2001
2020; 52
2021; 431
2021; 391
2008; 63
2014; 17
2008; 20
2014; 96
2014; 50
2010; 7
2018; 262
2006; 51
2020; 83
1992; 222
2011; 83
2016; 447
2016; 93
2020; 386
2020; 32
2014; 82
2014; 89
2006; 354
2001; 169
2017; 96
2012; 231
2021; 11
1987; 177
2020
2005; 202
2004; 195
2017; 10
2002; 65
2003; 184
2019; 138
2005; 209
2014; 261
2014
2013
2011; 49
2017; 104
2016; 25
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_32_1
Succi S (e_1_2_9_39_1) 2001
Jalali A (e_1_2_9_13_1) 2020; 6
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 227
  start-page: 4486
  issue: 9
  year: 2008
  end-page: 4498
  article-title: An immersed boundary–lattice‐Boltzmann method for the simulation of the flow past an impulsively started cylinder
  publication-title: J Comput Phys
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: Significance of nanoparticle's radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of water conveying copper nanoparticles
  publication-title: Sci Rep
– volume: 184
  start-page: 406
  issue: 2
  year: 2003
  end-page: 421
  article-title: Lattice Boltzmann method for moving boundaries
  publication-title: J Comput Phys
– year: 2001
– volume: 250
  year: 2022
  article-title: Flow control of two tandem cylinders by a highly flexible filament: lattice spring IB‐LBM
  publication-title: Ocean Eng
– volume: 386
  year: 2020
  article-title: Study of drafting, kissing and tumbling process of two particles with different sizes and densities using immersed boundary method in a confined medium
  publication-title: Appl Math Comput
– volume: 169
  start-page: 363
  issue: 2
  year: 2001
  end-page: 426
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J Comput Phys
– volume: 138
  start-page: 4003
  issue: 6
  year: 2019
  end-page: 4017
  article-title: Immersed boundary—thermal lattice Boltzmann method for the moving simulation of non‐isothermal elliptical particles
  publication-title: J Thermal Anal Calorimetry
– volume: 222
  start-page: 145
  issue: 3
  year: 1992
  end-page: 197
  article-title: The lattice Boltzmann equation: theory and applications
  publication-title: Phys Rep
– volume: 9
  start-page: 1591
  issue: 6
  year: 1997
  end-page: 1598
  article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model
  publication-title: Phys Fluids
– year: 2014
– volume: 96
  issue: 1
  year: 2017
  article-title: Revisiting the use of the immersed‐boundary lattice‐Boltzmann method for simulations of suspended particles
  publication-title: Phys Rev E
– volume: 65
  issue: 4
  year: 2002
  article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method
  publication-title: Phys Rev E
– volume: 52
  start-page: 421
  issue: 1
  year: 2020
  end-page: 448
  article-title: Immersed methods for fluid–structure interaction
  publication-title: Annu Rev Fluid Mech
– volume: 83
  start-page: 1
  year: 2020
  end-page: 24
  article-title: Nanofluid heat transfer in wavy‐wall channels with different geometries: a finite‐volume lattice Boltzmann study
  publication-title: J Sci Comput
– volume: 82
  start-page: 23
  year: 2014
  end-page: 33
  article-title: Three dimensional thermal lattice Boltzmann simulation of heating/cooling spheres falling in a Newtonian liquid
  publication-title: Int J Thermal Sci
– volume: 50
  start-page: 849
  issue: 6
  year: 2014
  end-page: 864
  article-title: Effect on the flow and heat transfer characteristics for sinusoidal pulsating laminar flow in a heated square cylinder
  publication-title: Heat Mass Transfer
– volume: 59087
  start-page: V005T05A067
  year: 2019
– volume: 32
  issue: 7
  year: 2020
  article-title: An immersed boundary‐lattice Boltzmann method for thermal and thermo‐solutal problems of Newtonian and non‐Newtonian fluids
  publication-title: Phys Fluids
– volume: 83
  issue: 5
  year: 2011
  article-title: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations
  publication-title: Phys Rev E
– volume: 231
  start-page: 3663
  issue: 9
  year: 2012
  end-page: 3684
  article-title: An improved immersed boundary method with direct forcing for the simulation of particle laden flows
  publication-title: J Comput Phys
– volume: 195
  start-page: 602
  issue: 2
  year: 2004
  end-page: 628
  article-title: The immersed boundary‐lattice Boltzmann method for solving fluid–particles interaction problems
  publication-title: J Comput Phys
– volume: 363
  start-page: 187
  year: 2020
  end-page: 194
  article-title: The behaviors of particle‐wall collision for non‐spherical particles: experimental investigation
  publication-title: Powder Technol
– volume: 431
  year: 2021
  article-title: The lattice Boltzmann method for nearly incompressible flows
  publication-title: J Comput Phys
– volume: 8
  start-page: 219
  issue: 3
  year: 1993
  end-page: 230
  article-title: On the small‐scale dynamical behavior of lattice BGK and lattice Boltzmann schemes
  publication-title: J Sci Comput
– volume: 17
  start-page: 1
  issue: 1
  year: 2014
  end-page: 52
  article-title: Particle separation and sorting in microfluidic devices: a review
  publication-title: Microfluid Nanofluidics
– volume: 10
  start-page: 4
  issue: 978–3
  year: 2017
  end-page: 15
  article-title: The lattice Boltzmann method
  publication-title: Springer Int Publ
– volume: 447
  start-page: 1
  year: 2016
  end-page: 20
  article-title: Non‐Newtonian particulate flow simulation: a direct‐forcing immersed boundary–lattice Boltzmann approach
  publication-title: Phys A: Stat Mech Applic
– volume: 56
  start-page: 651
  year: 2010
  end-page: 660
  article-title: Lattice Boltzmann method for computational fluid dynamics
  publication-title: Encyclopedia Aerospace Eng
– volume: 89
  issue: 1
  year: 2014
  article-title: Alternative curved‐boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields
  publication-title: Phys Rev E
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 11
  article-title: Particle shape influences settling and sorting behavior in microfluidic domains
  publication-title: Sci Rep
– volume: 93
  start-page: 45
  year: 2016
  end-page: 62
  article-title: A non‐Newtonian direct numerical study for stationary and moving objects with various shapes: an immersed boundary–lattice Boltzmann approach
  publication-title: J Aerosol Sci
– volume: 7
  start-page: 793
  issue: 4
  year: 2010
  end-page: 812
  article-title: Particulate flow simulation via a boundary condition‐enforced immersed boundary‐lattice Boltzmann scheme
  publication-title: Commun Comput Phys
– volume: 354
  start-page: 173
  issue: 3
  year: 2006
  end-page: 182
  article-title: A momentum exchange‐based immersed boundary‐lattice Boltzmann method for simulating incompressible viscous flows
  publication-title: Phys Lett A
– volume: 20
  issue: 4
  year: 2008
  article-title: Inclusion of heat transfer computations for particle laden flows
  publication-title: Phys Fluids
– volume: 96
  start-page: 20
  year: 2014
  end-page: 34
  article-title: Drafting, kissing and tumbling process of two particles with different sizes
  publication-title: Comput Fluids
– volume: 391
  start-page: 467
  year: 2021
  end-page: 478
  article-title: A numerical study on the sedimentation of adhesive particles in viscous fluids using LBM‐LES‐DEM
  publication-title: Powder Technol
– volume: 51
  start-page: 531
  issue: 5
  year: 2006
  end-page: 566
  article-title: Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method
  publication-title: Int J Numer Methods Fluids
– volume: 177
  start-page: 467
  year: 1987
  end-page: 483
  article-title: Nonlinear mechanics of fluidization of beds of spherical particles
  publication-title: J Fluid Mech
– volume: 25
  start-page: 93
  year: 2016
  end-page: 103
  article-title: Direct‐forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non‐spherical particles
  publication-title: Particuology
– volume: 63
  start-page: 5728
  issue: 23
  year: 2008
  end-page: 5770
  article-title: Discrete particle simulation of particulate systems: a review of major applications and findings
  publication-title: Chem Eng Sci
– volume: 49
  start-page: 36
  issue: 1
  year: 2011
  end-page: 45
  article-title: A direct‐forcing immersed boundary method for the thermal lattice Boltzmann method
  publication-title: Comput Fluids
– year: 2020
– volume: 6
  start-page: 307
  issue: 2
  year: 2020
  end-page: 319
  article-title: Mesoscopic simulation of forced convective heat transfer of Carreau‐Yasuda fluid flow over an inclined square: temperature‐dependent viscosity
  publication-title: J Appl Comput Mech
– volume: 202
  start-page: 20
  issue: 1
  year: 2005
  end-page: 51
  article-title: Proteus: a direct forcing method in the simulations of particulate flows
  publication-title: J Comput Phys
– volume: 261
  start-page: 145
  year: 2014
  end-page: 161
  article-title: A lattice Boltzmann–immersed boundary method to simulate the fluid interaction with moving and slender flexible objects
  publication-title: J Comput Phys
– volume: 209
  start-page: 448
  issue: 2
  year: 2005
  end-page: 476
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J Comput Phys
– volume: 262
  start-page: 180
  year: 2018
  end-page: 193
  article-title: Sedimentation of elliptical particles using immersed boundary–lattice Boltzmann method: a complementary repulsive force model
  publication-title: J Mol Liq
– volume: 89
  issue: 5
  year: 2014
  article-title: Non‐Newtonian unconfined flow and heat transfer over a heated cylinder using the direct‐forcing immersed boundary–thermal lattice Boltzmann method
  publication-title: Phys Rev E
– volume: 104
  start-page: 106
  year: 2017
  end-page: 122
  article-title: Direct‐forcing immersed boundary–non‐Newtonian lattice Boltzmann method for transient non‐isothermal sedimentation
  publication-title: J Aerosol Sci
– year: 2013
– ident: e_1_2_9_17_1
  doi: 10.1016/S0021‐9991(02)00022‐0
– ident: e_1_2_9_7_1
  doi: 10.1007/s10915-020-01234-9
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRevE.89.013309
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ijthermalsci.2014.03.008
– ident: e_1_2_9_46_1
  doi: 10.1006/jcph.2000.6542
– ident: e_1_2_9_20_1
  doi: 10.1038/s41598‐018‐26786‐7
– ident: e_1_2_9_26_1
  doi: 10.1016/j.molliq.2018.04.075
– volume-title: The lattice Boltzmann equation: For Fluid Dynamics and Beyond
  year: 2001
  ident: e_1_2_9_39_1
  doi: 10.1093/oso/9780198503989.001.0001
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jcp.2013.12.052
– ident: e_1_2_9_8_1
  doi: 10.1146/annurev‐fluid‐010719‐060228
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jcp.2004.06.020
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jcp.2008.01.009
– ident: e_1_2_9_21_1
  doi: 10.1103/PhysRevE.89.053312
– ident: e_1_2_9_11_1
  doi: 10.1142/8806
– ident: e_1_2_9_12_1
  doi: 10.1007/978‐981‐15‐3940‐4
– ident: e_1_2_9_50_1
  doi: 10.1063/1.869307
– ident: e_1_2_9_47_1
  doi: 10.1007/s10973‐019‐08329‐y
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jcp.2003.10.013
– ident: e_1_2_9_41_1
  doi: 10.1002/9780470686652.eae064
– ident: e_1_2_9_49_1
  doi: 10.1007/s00231‐014‐1294‐4
– ident: e_1_2_9_14_1
  doi: 10.1016/j.oceaneng.2022.111025
– ident: e_1_2_9_32_1
  doi: 10.1016/j.compfluid.2014.03.005
– ident: e_1_2_9_33_1
  doi: 10.1016/j.physa.2015.11.032
– ident: e_1_2_9_19_1
  doi: 10.1103/PhysRevE.96.013302
– ident: e_1_2_9_3_1
  doi: 10.1017/CBO9781139424547
– volume: 6
  start-page: 307
  issue: 2
  year: 2020
  ident: e_1_2_9_13_1
  article-title: Mesoscopic simulation of forced convective heat transfer of Carreau‐Yasuda fluid flow over an inclined square: temperature‐dependent viscosity
  publication-title: J Appl Comput Mech
– ident: e_1_2_9_30_1
  doi: 10.1063/1.2911022
– ident: e_1_2_9_36_1
  doi: 10.1016/j.powtec.2019.12.041
– ident: e_1_2_9_40_1
  doi: 10.1007/BF01060931
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ces.2008.08.006
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jcp.2005.03.017
– ident: e_1_2_9_43_1
  doi: 10.1103/PhysRevE.83.056710
– ident: e_1_2_9_10_1
  doi: 10.1063/5.0013977
– ident: e_1_2_9_51_1
  doi: 10.4208/cicp.2009.09.054
– ident: e_1_2_9_45_1
  doi: 10.1016/j.compfluid.2011.04.016
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevE.65.046308
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jaerosci.2016.09.002
– ident: e_1_2_9_35_1
  doi: 10.1016/j.powtec.2021.06.031
– ident: e_1_2_9_38_1
  doi: 10.1007/978‐3‐319‐44649‐3_1
– ident: e_1_2_9_25_1
  doi: 10.1016/j.partic.2015.05.004
– ident: e_1_2_9_48_1
  doi: 10.1016/j.physleta.2006.01.060
– ident: e_1_2_9_34_1
  doi: 10.1115/AJKFluids2019-5676
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jcp.2020.109713
– ident: e_1_2_9_29_1
  doi: 10.1016/j.amc.2020.125411
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jcp.2012.01.021
– ident: e_1_2_9_42_1
  doi: 10.1016/0370‐1573(92)90090‐M
– ident: e_1_2_9_28_1
  doi: 10.1017/S0022112087001046
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jaerosci.2015.11.006
– ident: e_1_2_9_52_1
  doi: 10.1002/fld.1129
– ident: e_1_2_9_2_1
  doi: 10.1007/s10404‐013‐1291‐9
– ident: e_1_2_9_5_1
  doi: 10.1038/s41598-021-81417-y
SSID ssj0008112
Score 2.5140462
Snippet This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6767
SubjectTerms Acceleration
Boundaries
Counterflow
co‐flow
Flow characteristics
Fluid flow
Fluid mechanics
immersed boundary method
Interdisciplinary subjects
lattice Boltzmann method
Mathematical models
particle
Particle sorting
pulsating flow
Pulsation
Unsteady flow
Title Coupling immersed boundary and lattice Boltzmann method for modeling multi‐body interactions subjected to pulsatile flow
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.8939
https://www.proquest.com/docview/2787009065
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDeNKDv8XplAjij0Nn03Zre1RRRJgHcTDwUF6aVMSuHWuLbCf_BP9G_xLz0nZTURBPPTQpbZKXfJu893mEHKg112WS-Ybo2GA4rgsGFz4zhB1GoG5wX3O2u7ed655z02_3K69KjIUp-RDTDTe0DD1fo4EDz05n0NDBAFpqscXYPXTVQj10NyNHeUwfdCIdxnAs5tTcWdM6rSt-XYlm8vKzSNWrzNUyeajfr3QueW4VOW-Fk2_oxv99wApZqsQnPStHyyqZk8kaWexOya3ZGlmtjD2jxxWR-mSdTC7SAiN3H-mT3ueWgnKdjmk0ppAIGkOOPnT0PI3zyQCShJaJqalSxFTn2sG62nfx_fWNp2JMEVMxKoMqMpoVHLeD1GPzlA6LGD2MYkmjOH3ZIL2ry_uLa6NK2mCESjn4Bp7zCQFSeKYDNuLAJPN89R_KPXCl8EPpIH_GbbdDbgoHLBaBZYMvEV0YeszeJPNJmsgtQkEieogBmCAdN-LgSRZ1UOR5IrIYb5CjugODsCKaY2KNOChZzFagmjjAJm6Q_WnJYUnx-KFMsx4DQWXHWWDhfGb6Sqc1yKHuzF_rB93uGV63_1pwhyxg7vrSDahJ5vNRIXeVwsn5nh7LHw9_-04
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHpT0AB2gLFQt9GAnxOGQbJ9lNrJ76oFqg6QG1Ug9I0Th2ECKbVJtEqHviI_AZ-SR4nGQXEEiIUw6xo8T2eP6xx78BeGZ8bsg1F44a--gEYYiOVII7yk8zNDeksJzt-Hw8uQzeXo2uVuCgPwvT8iEWC25kGXa-JgOnBen9JTV0OsWh8bbiFqxRQm9KX3DyfsmOirjd6iQ-jBN4POjJs66339f81RctBebPMtX6mdP78KF_wza85POwqeUwnf8Gb_zPT1iHe53-ZIftgNmAFV1swt14AW-tNmGjs_eKveyg1K8ewPy4bOjw7kf2yS51a8Wkzcg0u2FYKJZjTWF07KjM6_kUi4K1uamZEcXMptuhujZ88fvXb7JUN4xIFbP2XEXFqkbSipB5bF2y6yanIKNcsywvvzyEy9PXF8cTp8vb4KRGPAiHtvqUQq0iN0CfiGCaR8L8isoIQ61EqgNC0ISjUSpdFaDHM_R8FJrohWnE_S1YLcpCPwKGmuhDHNFFHYSZxEjzbEw6L1KZx-UAXvQ9mKQd1Jxya-RJi2P2EtPECTXxAJ4uSl63II8_lNnuB0HSmXKVeDSlucJItQE8t7351_pJHB_S9fG_FtyD25OL-Cw5e3P-7gncoVT2bVTQNqzWs0bvGMFTy107sH8Aq33_aA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHUCRED5QWUBcKGAnxccg2Tryb-FgKq_KxFUJUqsQhGscOqppNVptEqHviEXjGPgkeJ9kFBBLilEPsKLE9nn_s8W8AnlifG3HDpafHIXoiitBTWnJPh2mG9oaSjrM9PR4fnYi3p6PTLqqSzsK0fIjVghtZhpuvycDnOttfQ0NnMxxaZyuvwjUxtrZCgujjGh0Vc7fTSXgYTwRc9OBZP9jva_7qitb68meV6tzMZAs-9y_YRpecD5taDdPlb-zG__uCW3CzU5_soB0u23DFFDuwOV2hW6sd2O6svWLPOyT1i9uwPCwbOrr7hZ25hW6jmXL5mBYXDAvNcqwpiI69LPN6OcOiYG1mamYlMXPJdqiuC168_PZdlfqCEadi0Z6qqFjVKFoPso-tSzZvcgoxyg3L8vLrHTiZvP50eOR1WRu81EoH6dFGn9ZodOwLDIkHZngs7Y-oijEyWqZGEIAmGo1S5WuBAc8wCFEaYhemMQ_vwkZRFmYXGBpiD3FEH42IMoWx4dmYVF6ss4CrATzrOzBJO6Q5ZdbIkxbGHCS2iRNq4gE8XpWctxiPP5TZ68dA0hlylQQ0ofnSCrUBPHWd-df6yXR6QNd7_1rwEVz_8GqSvH9z_O4-3KA89m1I0B5s1IvGPLBqp1YP3bD-AdfZ_iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+immersed+boundary+and+lattice+Boltzmann+method+for+modeling+multi%E2%80%90body+interactions+subjected+to+pulsatile+flow&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Karimnejad%2C+Sajjad&rft.au=Amiri+Delouei%2C+Amin&rft.au=He%2C+Fuli&rft.date=2023-04-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=6&rft.spage=6767&rft.epage=6786&rft_id=info:doi/10.1002%2Fmma.8939&rft.externalDBID=10.1002%252Fmma.8939&rft.externalDocID=MMA8939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon