Coupling immersed boundary and lattice Boltzmann method for modeling multi‐body interactions subjected to pulsatile flow
This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and spans several areas ranging from mathematical and numerical modeling to fluid mechanics. For this purpose, pulsatile flow characteristics ar...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 46; no. 6; pp. 6767 - 6786 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.8939 |
Cover
Loading…
Abstract | This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and spans several areas ranging from mathematical and numerical modeling to fluid mechanics. For this purpose, pulsatile flow characteristics are embedded in the combination of the direct‐forcing immersed boundary method and the split‐forcing lattice Boltzmann method. Inter‐collision forces between the solid boundaries (particles and boundaries) and the added mass force due to acceleration are considered. Adequate verification tests are done to ensure the credibility of the findings. The critical parameters of pulsating flow, such as amplitude and frequency of pulsation, are investigated in detail. The paper especially puts emphasis on the interaction between particles and studies the well‐known drafting, kissing, and tumbling (DKT) phenomena. Two different scenarios are taken into account and also compared with the stationary flow. The first case is when the pulsating flow is in the direction of gravity (co‐flow), while in the latter, there is an opposing flow (counterflow). The sedimentation manners of 12 particles in a vertical channel are also presented. The findings shed light on the importance of pulsating flow and the extension of the proposed computational method for such problems. It is also revealed that pulsation and its variables can alter DKT by either postponing or speeding up the process. Also, in some cases, the cycle of DKT can be maintained incompletely, and particles would just stick together. The results can be useful for various engineering problems like filtration and particle sorting. |
---|---|
AbstractList | This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and spans several areas ranging from mathematical and numerical modeling to fluid mechanics. For this purpose, pulsatile flow characteristics are embedded in the combination of the direct‐forcing immersed boundary method and the split‐forcing lattice Boltzmann method. Inter‐collision forces between the solid boundaries (particles and boundaries) and the added mass force due to acceleration are considered. Adequate verification tests are done to ensure the credibility of the findings. The critical parameters of pulsating flow, such as amplitude and frequency of pulsation, are investigated in detail. The paper especially puts emphasis on the interaction between particles and studies the well‐known drafting, kissing, and tumbling (DKT) phenomena. Two different scenarios are taken into account and also compared with the stationary flow. The first case is when the pulsating flow is in the direction of gravity (co‐flow), while in the latter, there is an opposing flow (counterflow). The sedimentation manners of 12 particles in a vertical channel are also presented. The findings shed light on the importance of pulsating flow and the extension of the proposed computational method for such problems. It is also revealed that pulsation and its variables can alter DKT by either postponing or speeding up the process. Also, in some cases, the cycle of DKT can be maintained incompletely, and particles would just stick together. The results can be useful for various engineering problems like filtration and particle sorting. |
Author | Karimnejad, Sajjad Amiri Delouei, Amin He, Fuli |
Author_xml | – sequence: 1 givenname: Sajjad surname: Karimnejad fullname: Karimnejad, Sajjad organization: University of Bojnord – sequence: 2 givenname: Amin orcidid: 0000-0001-7414-4195 surname: Amiri Delouei fullname: Amiri Delouei, Amin organization: University of Bojnord – sequence: 3 givenname: Fuli orcidid: 0000-0002-9395-545X surname: He fullname: He, Fuli email: hefuli999@163.com organization: Central South University |
BookMark | eNp1kM1uEzEUhS1UJNKCxCNYYtPNpNeeScZethEtSK3YwHrkse-AI_8E26MqXfUR-ox9EpymKwSru_nOuTrfKTkJMSAhHxksGQC_8F4thWzlG7JgIGXDun59QhbAemg6zrp35DTnLQAIxviCPGzivHM2_KTWe0wZDR3jHIxKe6qCoU6VYjXSq-jKg1chUI_lVzR0ion6aPAl62dX7PPj0xjNntpQMCldbAyZ5nncoi61tkS6m11WxTqkk4v378nbSbmMH17vGflx_fn75ktz--3m6-byttG87mjWdZUxCo2ATrXABEMmpOCrUagejdTYtUJAv1rpEUynOJsUb5VE3kmuBWvPyKdj7y7F3zPmMmzjnEJ9OfBe9AAS1qtKnR8pnWLOCadhl6yvGgYGw8HsUM0OB7MVXf6FalvUYW9Jyrp_BZpj4L5u3_-3eLi7u3zh_wAC-463 |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2024_107924 crossref_primary_10_1140_epjp_s13360_024_04935_4 crossref_primary_10_1016_j_ast_2024_109877 crossref_primary_10_1016_j_powtec_2023_119336 crossref_primary_10_1016_j_oceaneng_2024_117564 crossref_primary_10_1016_j_oceaneng_2024_117860 crossref_primary_10_1007_s40997_023_00737_8 crossref_primary_10_1080_10407790_2024_2316197 crossref_primary_10_1016_j_cjph_2023_11_002 crossref_primary_10_1016_j_csite_2023_103604 crossref_primary_10_1016_j_oceaneng_2024_119555 crossref_primary_10_1088_1873_7005_ace37b crossref_primary_10_1016_j_energy_2023_128622 crossref_primary_10_1016_j_polymertesting_2023_108169 crossref_primary_10_1016_j_tsep_2023_102168 crossref_primary_10_1016_j_icheatmasstransfer_2024_108048 crossref_primary_10_1080_10407782_2024_2340071 crossref_primary_10_1108_HFF_08_2024_0621 crossref_primary_10_1007_s40430_024_05186_1 crossref_primary_10_1016_j_oceaneng_2024_120283 crossref_primary_10_1063_5_0258353 crossref_primary_10_1080_14484846_2023_2290335 crossref_primary_10_1016_j_jmmm_2024_172016 crossref_primary_10_1016_j_marpolbul_2023_115438 crossref_primary_10_1016_j_cjph_2024_01_031 crossref_primary_10_1016_j_powtec_2024_120237 crossref_primary_10_1016_j_ijmecsci_2024_109304 crossref_primary_10_1063_5_0219798 crossref_primary_10_1007_s40997_023_00717_y crossref_primary_10_1016_j_heliyon_2024_e29439 crossref_primary_10_1016_j_molliq_2023_123620 crossref_primary_10_1007_s40997_024_00781_y crossref_primary_10_1007_s40997_023_00673_7 crossref_primary_10_1016_j_padiff_2024_101022 crossref_primary_10_1142_S0217979225500110 crossref_primary_10_1142_S0217984924500064 crossref_primary_10_2174_2212797616666230803115517 crossref_primary_10_1007_s10973_024_13209_1 crossref_primary_10_1007_s12648_023_02880_z crossref_primary_10_1016_j_csite_2024_105438 crossref_primary_10_1016_j_ijthermalsci_2023_108750 crossref_primary_10_1016_j_cherd_2024_01_008 crossref_primary_10_1080_14484846_2023_2274999 crossref_primary_10_1016_j_powtec_2023_118750 |
Cites_doi | 10.1016/S0021‐9991(02)00022‐0 10.1007/s10915-020-01234-9 10.1103/PhysRevE.89.013309 10.1016/j.ijthermalsci.2014.03.008 10.1006/jcph.2000.6542 10.1038/s41598‐018‐26786‐7 10.1016/j.molliq.2018.04.075 10.1093/oso/9780198503989.001.0001 10.1016/j.jcp.2013.12.052 10.1146/annurev‐fluid‐010719‐060228 10.1016/j.jcp.2004.06.020 10.1016/j.jcp.2008.01.009 10.1103/PhysRevE.89.053312 10.1142/8806 10.1007/978‐981‐15‐3940‐4 10.1063/1.869307 10.1007/s10973‐019‐08329‐y 10.1016/j.jcp.2003.10.013 10.1002/9780470686652.eae064 10.1007/s00231‐014‐1294‐4 10.1016/j.oceaneng.2022.111025 10.1016/j.compfluid.2014.03.005 10.1016/j.physa.2015.11.032 10.1103/PhysRevE.96.013302 10.1017/CBO9781139424547 10.1063/1.2911022 10.1016/j.powtec.2019.12.041 10.1007/BF01060931 10.1016/j.ces.2008.08.006 10.1016/j.jcp.2005.03.017 10.1103/PhysRevE.83.056710 10.1063/5.0013977 10.4208/cicp.2009.09.054 10.1016/j.compfluid.2011.04.016 10.1103/PhysRevE.65.046308 10.1016/j.jaerosci.2016.09.002 10.1016/j.powtec.2021.06.031 10.1007/978‐3‐319‐44649‐3_1 10.1016/j.partic.2015.05.004 10.1016/j.physleta.2006.01.060 10.1115/AJKFluids2019-5676 10.1016/j.jcp.2020.109713 10.1016/j.amc.2020.125411 10.1016/j.jcp.2012.01.021 10.1016/0370‐1573(92)90090‐M 10.1017/S0022112087001046 10.1016/j.jaerosci.2015.11.006 10.1002/fld.1129 10.1007/s10404‐013‐1291‐9 10.1038/s41598-021-81417-y |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.8939 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 6786 |
ExternalDocumentID | 10_1002_mma_8939 MMA8939 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11601525 – fundername: Natural Science Foundation of Hunan Province funderid: 2020JJ4105 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c2939-6002ddaed804a30181e189825b8a7ed9ce43880755cb0d4a21fa23a9e2492c813 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Fri Jul 25 12:20:47 EDT 2025 Tue Jul 01 03:02:50 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Wed Jan 22 16:14:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2939-6002ddaed804a30181e189825b8a7ed9ce43880755cb0d4a21fa23a9e2492c813 |
Notes | Funding information National Natural Science Foundation of China, Grant/Award Number: 11601525; Natural Science Foundation of Hunan Province, Grant/Award Number: 2020JJ4105 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9395-545X 0000-0001-7414-4195 |
PQID | 2787009065 |
PQPubID | 1016386 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2787009065 crossref_primary_10_1002_mma_8939 crossref_citationtrail_10_1002_mma_8939 wiley_primary_10_1002_mma_8939_MMA8939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 56 1993; 8 2022; 250 2020; 363 2008; 227 2019; 59087 1997; 9 2020; 6 2018; 8 2001 2020; 52 2021; 431 2021; 391 2008; 63 2014; 17 2008; 20 2014; 96 2014; 50 2010; 7 2018; 262 2006; 51 2020; 83 1992; 222 2011; 83 2016; 447 2016; 93 2020; 386 2020; 32 2014; 82 2014; 89 2006; 354 2001; 169 2017; 96 2012; 231 2021; 11 1987; 177 2020 2005; 202 2004; 195 2017; 10 2002; 65 2003; 184 2019; 138 2005; 209 2014; 261 2014 2013 2011; 49 2017; 104 2016; 25 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_32_1 Succi S (e_1_2_9_39_1) 2001 Jalali A (e_1_2_9_13_1) 2020; 6 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 227 start-page: 4486 issue: 9 year: 2008 end-page: 4498 article-title: An immersed boundary–lattice‐Boltzmann method for the simulation of the flow past an impulsively started cylinder publication-title: J Comput Phys – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 11 article-title: Significance of nanoparticle's radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of water conveying copper nanoparticles publication-title: Sci Rep – volume: 184 start-page: 406 issue: 2 year: 2003 end-page: 421 article-title: Lattice Boltzmann method for moving boundaries publication-title: J Comput Phys – year: 2001 – volume: 250 year: 2022 article-title: Flow control of two tandem cylinders by a highly flexible filament: lattice spring IB‐LBM publication-title: Ocean Eng – volume: 386 year: 2020 article-title: Study of drafting, kissing and tumbling process of two particles with different sizes and densities using immersed boundary method in a confined medium publication-title: Appl Math Comput – volume: 169 start-page: 363 issue: 2 year: 2001 end-page: 426 article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow publication-title: J Comput Phys – volume: 138 start-page: 4003 issue: 6 year: 2019 end-page: 4017 article-title: Immersed boundary—thermal lattice Boltzmann method for the moving simulation of non‐isothermal elliptical particles publication-title: J Thermal Anal Calorimetry – volume: 222 start-page: 145 issue: 3 year: 1992 end-page: 197 article-title: The lattice Boltzmann equation: theory and applications publication-title: Phys Rep – volume: 9 start-page: 1591 issue: 6 year: 1997 end-page: 1598 article-title: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model publication-title: Phys Fluids – year: 2014 – volume: 96 issue: 1 year: 2017 article-title: Revisiting the use of the immersed‐boundary lattice‐Boltzmann method for simulations of suspended particles publication-title: Phys Rev E – volume: 65 issue: 4 year: 2002 article-title: Discrete lattice effects on the forcing term in the lattice Boltzmann method publication-title: Phys Rev E – volume: 52 start-page: 421 issue: 1 year: 2020 end-page: 448 article-title: Immersed methods for fluid–structure interaction publication-title: Annu Rev Fluid Mech – volume: 83 start-page: 1 year: 2020 end-page: 24 article-title: Nanofluid heat transfer in wavy‐wall channels with different geometries: a finite‐volume lattice Boltzmann study publication-title: J Sci Comput – volume: 82 start-page: 23 year: 2014 end-page: 33 article-title: Three dimensional thermal lattice Boltzmann simulation of heating/cooling spheres falling in a Newtonian liquid publication-title: Int J Thermal Sci – volume: 50 start-page: 849 issue: 6 year: 2014 end-page: 864 article-title: Effect on the flow and heat transfer characteristics for sinusoidal pulsating laminar flow in a heated square cylinder publication-title: Heat Mass Transfer – volume: 59087 start-page: V005T05A067 year: 2019 – volume: 32 issue: 7 year: 2020 article-title: An immersed boundary‐lattice Boltzmann method for thermal and thermo‐solutal problems of Newtonian and non‐Newtonian fluids publication-title: Phys Fluids – volume: 83 issue: 5 year: 2011 article-title: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations publication-title: Phys Rev E – volume: 231 start-page: 3663 issue: 9 year: 2012 end-page: 3684 article-title: An improved immersed boundary method with direct forcing for the simulation of particle laden flows publication-title: J Comput Phys – volume: 195 start-page: 602 issue: 2 year: 2004 end-page: 628 article-title: The immersed boundary‐lattice Boltzmann method for solving fluid–particles interaction problems publication-title: J Comput Phys – volume: 363 start-page: 187 year: 2020 end-page: 194 article-title: The behaviors of particle‐wall collision for non‐spherical particles: experimental investigation publication-title: Powder Technol – volume: 431 year: 2021 article-title: The lattice Boltzmann method for nearly incompressible flows publication-title: J Comput Phys – volume: 8 start-page: 219 issue: 3 year: 1993 end-page: 230 article-title: On the small‐scale dynamical behavior of lattice BGK and lattice Boltzmann schemes publication-title: J Sci Comput – volume: 17 start-page: 1 issue: 1 year: 2014 end-page: 52 article-title: Particle separation and sorting in microfluidic devices: a review publication-title: Microfluid Nanofluidics – volume: 10 start-page: 4 issue: 978–3 year: 2017 end-page: 15 article-title: The lattice Boltzmann method publication-title: Springer Int Publ – volume: 447 start-page: 1 year: 2016 end-page: 20 article-title: Non‐Newtonian particulate flow simulation: a direct‐forcing immersed boundary–lattice Boltzmann approach publication-title: Phys A: Stat Mech Applic – volume: 56 start-page: 651 year: 2010 end-page: 660 article-title: Lattice Boltzmann method for computational fluid dynamics publication-title: Encyclopedia Aerospace Eng – volume: 89 issue: 1 year: 2014 article-title: Alternative curved‐boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields publication-title: Phys Rev E – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 11 article-title: Particle shape influences settling and sorting behavior in microfluidic domains publication-title: Sci Rep – volume: 93 start-page: 45 year: 2016 end-page: 62 article-title: A non‐Newtonian direct numerical study for stationary and moving objects with various shapes: an immersed boundary–lattice Boltzmann approach publication-title: J Aerosol Sci – volume: 7 start-page: 793 issue: 4 year: 2010 end-page: 812 article-title: Particulate flow simulation via a boundary condition‐enforced immersed boundary‐lattice Boltzmann scheme publication-title: Commun Comput Phys – volume: 354 start-page: 173 issue: 3 year: 2006 end-page: 182 article-title: A momentum exchange‐based immersed boundary‐lattice Boltzmann method for simulating incompressible viscous flows publication-title: Phys Lett A – volume: 20 issue: 4 year: 2008 article-title: Inclusion of heat transfer computations for particle laden flows publication-title: Phys Fluids – volume: 96 start-page: 20 year: 2014 end-page: 34 article-title: Drafting, kissing and tumbling process of two particles with different sizes publication-title: Comput Fluids – volume: 391 start-page: 467 year: 2021 end-page: 478 article-title: A numerical study on the sedimentation of adhesive particles in viscous fluids using LBM‐LES‐DEM publication-title: Powder Technol – volume: 51 start-page: 531 issue: 5 year: 2006 end-page: 566 article-title: Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method publication-title: Int J Numer Methods Fluids – volume: 177 start-page: 467 year: 1987 end-page: 483 article-title: Nonlinear mechanics of fluidization of beds of spherical particles publication-title: J Fluid Mech – volume: 25 start-page: 93 year: 2016 end-page: 103 article-title: Direct‐forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non‐spherical particles publication-title: Particuology – volume: 63 start-page: 5728 issue: 23 year: 2008 end-page: 5770 article-title: Discrete particle simulation of particulate systems: a review of major applications and findings publication-title: Chem Eng Sci – volume: 49 start-page: 36 issue: 1 year: 2011 end-page: 45 article-title: A direct‐forcing immersed boundary method for the thermal lattice Boltzmann method publication-title: Comput Fluids – year: 2020 – volume: 6 start-page: 307 issue: 2 year: 2020 end-page: 319 article-title: Mesoscopic simulation of forced convective heat transfer of Carreau‐Yasuda fluid flow over an inclined square: temperature‐dependent viscosity publication-title: J Appl Comput Mech – volume: 202 start-page: 20 issue: 1 year: 2005 end-page: 51 article-title: Proteus: a direct forcing method in the simulations of particulate flows publication-title: J Comput Phys – volume: 261 start-page: 145 year: 2014 end-page: 161 article-title: A lattice Boltzmann–immersed boundary method to simulate the fluid interaction with moving and slender flexible objects publication-title: J Comput Phys – volume: 209 start-page: 448 issue: 2 year: 2005 end-page: 476 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J Comput Phys – volume: 262 start-page: 180 year: 2018 end-page: 193 article-title: Sedimentation of elliptical particles using immersed boundary–lattice Boltzmann method: a complementary repulsive force model publication-title: J Mol Liq – volume: 89 issue: 5 year: 2014 article-title: Non‐Newtonian unconfined flow and heat transfer over a heated cylinder using the direct‐forcing immersed boundary–thermal lattice Boltzmann method publication-title: Phys Rev E – volume: 104 start-page: 106 year: 2017 end-page: 122 article-title: Direct‐forcing immersed boundary–non‐Newtonian lattice Boltzmann method for transient non‐isothermal sedimentation publication-title: J Aerosol Sci – year: 2013 – ident: e_1_2_9_17_1 doi: 10.1016/S0021‐9991(02)00022‐0 – ident: e_1_2_9_7_1 doi: 10.1007/s10915-020-01234-9 – ident: e_1_2_9_6_1 doi: 10.1103/PhysRevE.89.013309 – ident: e_1_2_9_18_1 doi: 10.1016/j.ijthermalsci.2014.03.008 – ident: e_1_2_9_46_1 doi: 10.1006/jcph.2000.6542 – ident: e_1_2_9_20_1 doi: 10.1038/s41598‐018‐26786‐7 – ident: e_1_2_9_26_1 doi: 10.1016/j.molliq.2018.04.075 – volume-title: The lattice Boltzmann equation: For Fluid Dynamics and Beyond year: 2001 ident: e_1_2_9_39_1 doi: 10.1093/oso/9780198503989.001.0001 – ident: e_1_2_9_27_1 doi: 10.1016/j.jcp.2013.12.052 – ident: e_1_2_9_8_1 doi: 10.1146/annurev‐fluid‐010719‐060228 – ident: e_1_2_9_15_1 doi: 10.1016/j.jcp.2004.06.020 – ident: e_1_2_9_37_1 doi: 10.1016/j.jcp.2008.01.009 – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevE.89.053312 – ident: e_1_2_9_11_1 doi: 10.1142/8806 – ident: e_1_2_9_12_1 doi: 10.1007/978‐981‐15‐3940‐4 – ident: e_1_2_9_50_1 doi: 10.1063/1.869307 – ident: e_1_2_9_47_1 doi: 10.1007/s10973‐019‐08329‐y – ident: e_1_2_9_9_1 doi: 10.1016/j.jcp.2003.10.013 – ident: e_1_2_9_41_1 doi: 10.1002/9780470686652.eae064 – ident: e_1_2_9_49_1 doi: 10.1007/s00231‐014‐1294‐4 – ident: e_1_2_9_14_1 doi: 10.1016/j.oceaneng.2022.111025 – ident: e_1_2_9_32_1 doi: 10.1016/j.compfluid.2014.03.005 – ident: e_1_2_9_33_1 doi: 10.1016/j.physa.2015.11.032 – ident: e_1_2_9_19_1 doi: 10.1103/PhysRevE.96.013302 – ident: e_1_2_9_3_1 doi: 10.1017/CBO9781139424547 – volume: 6 start-page: 307 issue: 2 year: 2020 ident: e_1_2_9_13_1 article-title: Mesoscopic simulation of forced convective heat transfer of Carreau‐Yasuda fluid flow over an inclined square: temperature‐dependent viscosity publication-title: J Appl Comput Mech – ident: e_1_2_9_30_1 doi: 10.1063/1.2911022 – ident: e_1_2_9_36_1 doi: 10.1016/j.powtec.2019.12.041 – ident: e_1_2_9_40_1 doi: 10.1007/BF01060931 – ident: e_1_2_9_4_1 doi: 10.1016/j.ces.2008.08.006 – ident: e_1_2_9_31_1 doi: 10.1016/j.jcp.2005.03.017 – ident: e_1_2_9_43_1 doi: 10.1103/PhysRevE.83.056710 – ident: e_1_2_9_10_1 doi: 10.1063/5.0013977 – ident: e_1_2_9_51_1 doi: 10.4208/cicp.2009.09.054 – ident: e_1_2_9_45_1 doi: 10.1016/j.compfluid.2011.04.016 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevE.65.046308 – ident: e_1_2_9_24_1 doi: 10.1016/j.jaerosci.2016.09.002 – ident: e_1_2_9_35_1 doi: 10.1016/j.powtec.2021.06.031 – ident: e_1_2_9_38_1 doi: 10.1007/978‐3‐319‐44649‐3_1 – ident: e_1_2_9_25_1 doi: 10.1016/j.partic.2015.05.004 – ident: e_1_2_9_48_1 doi: 10.1016/j.physleta.2006.01.060 – ident: e_1_2_9_34_1 doi: 10.1115/AJKFluids2019-5676 – ident: e_1_2_9_16_1 doi: 10.1016/j.jcp.2020.109713 – ident: e_1_2_9_29_1 doi: 10.1016/j.amc.2020.125411 – ident: e_1_2_9_22_1 doi: 10.1016/j.jcp.2012.01.021 – ident: e_1_2_9_42_1 doi: 10.1016/0370‐1573(92)90090‐M – ident: e_1_2_9_28_1 doi: 10.1017/S0022112087001046 – ident: e_1_2_9_23_1 doi: 10.1016/j.jaerosci.2015.11.006 – ident: e_1_2_9_52_1 doi: 10.1002/fld.1129 – ident: e_1_2_9_2_1 doi: 10.1007/s10404‐013‐1291‐9 – ident: e_1_2_9_5_1 doi: 10.1038/s41598-021-81417-y |
SSID | ssj0008112 |
Score | 2.5140462 |
Snippet | This paper numerically investigates the effect of pulsating flow on the settling dynamics of rigid circular particles. This is an interdisciplinary subject and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6767 |
SubjectTerms | Acceleration Boundaries Counterflow co‐flow Flow characteristics Fluid flow Fluid mechanics immersed boundary method Interdisciplinary subjects lattice Boltzmann method Mathematical models particle Particle sorting pulsating flow Pulsation Unsteady flow |
Title | Coupling immersed boundary and lattice Boltzmann method for modeling multi‐body interactions subjected to pulsatile flow |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.8939 https://www.proquest.com/docview/2787009065 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeDeNKDv8XplAjij0Nn03Zre1RRRJgHcTDwUF6aVMSuHWuLbCf_BP9G_xLz0nZTURBPPTQpbZKXfJu893mEHKg112WS-Ybo2GA4rgsGFz4zhB1GoG5wX3O2u7ed655z02_3K69KjIUp-RDTDTe0DD1fo4EDz05n0NDBAFpqscXYPXTVQj10NyNHeUwfdCIdxnAs5tTcWdM6rSt-XYlm8vKzSNWrzNUyeajfr3QueW4VOW-Fk2_oxv99wApZqsQnPStHyyqZk8kaWexOya3ZGlmtjD2jxxWR-mSdTC7SAiN3H-mT3ueWgnKdjmk0ppAIGkOOPnT0PI3zyQCShJaJqalSxFTn2sG62nfx_fWNp2JMEVMxKoMqMpoVHLeD1GPzlA6LGD2MYkmjOH3ZIL2ry_uLa6NK2mCESjn4Bp7zCQFSeKYDNuLAJPN89R_KPXCl8EPpIH_GbbdDbgoHLBaBZYMvEV0YeszeJPNJmsgtQkEieogBmCAdN-LgSRZ1UOR5IrIYb5CjugODsCKaY2KNOChZzFagmjjAJm6Q_WnJYUnx-KFMsx4DQWXHWWDhfGb6Sqc1yKHuzF_rB93uGV63_1pwhyxg7vrSDahJ5vNRIXeVwsn5nh7LHw9_-04 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHpT0AB2gLFQt9GAnxOGQbJ9lNrJ76oFqg6QG1Ug9I0Th2ECKbVJtEqHviI_AZ-SR4nGQXEEiIUw6xo8T2eP6xx78BeGZ8bsg1F44a--gEYYiOVII7yk8zNDeksJzt-Hw8uQzeXo2uVuCgPwvT8iEWC25kGXa-JgOnBen9JTV0OsWh8bbiFqxRQm9KX3DyfsmOirjd6iQ-jBN4POjJs66339f81RctBebPMtX6mdP78KF_wza85POwqeUwnf8Gb_zPT1iHe53-ZIftgNmAFV1swt14AW-tNmGjs_eKveyg1K8ewPy4bOjw7kf2yS51a8Wkzcg0u2FYKJZjTWF07KjM6_kUi4K1uamZEcXMptuhujZ88fvXb7JUN4xIFbP2XEXFqkbSipB5bF2y6yanIKNcsywvvzyEy9PXF8cTp8vb4KRGPAiHtvqUQq0iN0CfiGCaR8L8isoIQ61EqgNC0ISjUSpdFaDHM_R8FJrohWnE_S1YLcpCPwKGmuhDHNFFHYSZxEjzbEw6L1KZx-UAXvQ9mKQd1Jxya-RJi2P2EtPECTXxAJ4uSl63II8_lNnuB0HSmXKVeDSlucJItQE8t7351_pJHB_S9fG_FtyD25OL-Cw5e3P-7gncoVT2bVTQNqzWs0bvGMFTy107sH8Aq33_aA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMdHUCRED5QWUBcKGAnxccg2Tryb-FgKq_KxFUJUqsQhGscOqppNVptEqHviEXjGPgkeJ9kFBBLilEPsKLE9nn_s8W8AnlifG3HDpafHIXoiitBTWnJPh2mG9oaSjrM9PR4fnYi3p6PTLqqSzsK0fIjVghtZhpuvycDnOttfQ0NnMxxaZyuvwjUxtrZCgujjGh0Vc7fTSXgYTwRc9OBZP9jva_7qitb68meV6tzMZAs-9y_YRpecD5taDdPlb-zG__uCW3CzU5_soB0u23DFFDuwOV2hW6sd2O6svWLPOyT1i9uwPCwbOrr7hZ25hW6jmXL5mBYXDAvNcqwpiI69LPN6OcOiYG1mamYlMXPJdqiuC168_PZdlfqCEadi0Z6qqFjVKFoPso-tSzZvcgoxyg3L8vLrHTiZvP50eOR1WRu81EoH6dFGn9ZodOwLDIkHZngs7Y-oijEyWqZGEIAmGo1S5WuBAc8wCFEaYhemMQ_vwkZRFmYXGBpiD3FEH42IMoWx4dmYVF6ss4CrATzrOzBJO6Q5ZdbIkxbGHCS2iRNq4gE8XpWctxiPP5TZ68dA0hlylQQ0ofnSCrUBPHWd-df6yXR6QNd7_1rwEVz_8GqSvH9z_O4-3KA89m1I0B5s1IvGPLBqp1YP3bD-AdfZ_iA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+immersed+boundary+and+lattice+Boltzmann+method+for+modeling+multi%E2%80%90body+interactions+subjected+to+pulsatile+flow&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Karimnejad%2C+Sajjad&rft.au=Amiri+Delouei%2C+Amin&rft.au=He%2C+Fuli&rft.date=2023-04-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=6&rft.spage=6767&rft.epage=6786&rft_id=info:doi/10.1002%2Fmma.8939&rft.externalDBID=10.1002%252Fmma.8939&rft.externalDocID=MMA8939 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |