Personalized facial makeup transfer based on outline correspondence

Most existing makeup transfer techniques focus on light makeup styles, which limits the task of makeup transfer to color manipulation issues such as eye shadow and lip gloss. However, the makeup in real life is diverse and personalized, not only the most basic foundation, eye makeup, but also the pa...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 1
Main Authors Gao, Mengying, Wang, Pengjie
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most existing makeup transfer techniques focus on light makeup styles, which limits the task of makeup transfer to color manipulation issues such as eye shadow and lip gloss. However, the makeup in real life is diverse and personalized, not only the most basic foundation, eye makeup, but also the painted patterns on the face, jewelry decoration and other personalized makeup. Inspired by the painting steps of drawing the outline first and then coloring, we propose a makeup transfer network for personalized makeup, which realizes face makeup transfer by learning outline correspondence. Specifically, we propose the outline feature extraction module and outline loss that can promote outline correspondence. Our network can not only transfer daily light makeup, but also complete transfer for complex facial painting patterns. Experiments show that our method can obtain visually more accurate makeup transfer results. Quantitative and qualitative experimental results show that the method proposed in this paper achieves superior results in extreme makeup transfer compared to the state‐of‐the‐art methods. In this paper, we propose a novel makeup transfer method, which first extracts the outline features of the images, and then establishes the outline correspondence between the two images through the self‐attention mechanism. Our method successfully solves the problem of incomplete transfer of colored patterns in the task of extreme makeup transfer. Experiments demonstrate that the method can not only transfer extreme makeup, but also transfer daily light makeup well.
AbstractList Most existing makeup transfer techniques focus on light makeup styles, which limits the task of makeup transfer to color manipulation issues such as eye shadow and lip gloss. However, the makeup in real life is diverse and personalized, not only the most basic foundation, eye makeup, but also the painted patterns on the face, jewelry decoration and other personalized makeup. Inspired by the painting steps of drawing the outline first and then coloring, we propose a makeup transfer network for personalized makeup, which realizes face makeup transfer by learning outline correspondence. Specifically, we propose the outline feature extraction module and outline loss that can promote outline correspondence. Our network can not only transfer daily light makeup, but also complete transfer for complex facial painting patterns. Experiments show that our method can obtain visually more accurate makeup transfer results. Quantitative and qualitative experimental results show that the method proposed in this paper achieves superior results in extreme makeup transfer compared to the state‐of‐the‐art methods.
Most existing makeup transfer techniques focus on light makeup styles, which limits the task of makeup transfer to color manipulation issues such as eye shadow and lip gloss. However, the makeup in real life is diverse and personalized, not only the most basic foundation, eye makeup, but also the painted patterns on the face, jewelry decoration and other personalized makeup. Inspired by the painting steps of drawing the outline first and then coloring, we propose a makeup transfer network for personalized makeup, which realizes face makeup transfer by learning outline correspondence. Specifically, we propose the outline feature extraction module and outline loss that can promote outline correspondence. Our network can not only transfer daily light makeup, but also complete transfer for complex facial painting patterns. Experiments show that our method can obtain visually more accurate makeup transfer results. Quantitative and qualitative experimental results show that the method proposed in this paper achieves superior results in extreme makeup transfer compared to the state‐of‐the‐art methods. In this paper, we propose a novel makeup transfer method, which first extracts the outline features of the images, and then establishes the outline correspondence between the two images through the self‐attention mechanism. Our method successfully solves the problem of incomplete transfer of colored patterns in the task of extreme makeup transfer. Experiments demonstrate that the method can not only transfer extreme makeup, but also transfer daily light makeup well.
Author Gao, Mengying
Wang, Pengjie
Author_xml – sequence: 1
  givenname: Mengying
  surname: Gao
  fullname: Gao, Mengying
  organization: Dalian Minzu University
– sequence: 2
  givenname: Pengjie
  orcidid: 0000-0003-1276-9776
  surname: Wang
  fullname: Wang, Pengjie
  email: pengjiewang@qq.com
  organization: Dalian Minzu University
BookMark eNp1kE9LxDAQxYOs4O4q-BEKXry0Jm2TbY5L8R8s6EHFW0jTCWTtJjVplfXTm3XFg-hpBub3Zt68GZpYZwGhU4IzgnF-oeRblhPOD9CU0JKlZb54nvz0jByhWQjrSLKc4Cmq78EHZ2VnPqBNtFRGdslGvsDYJ4OXNmjwSSNDHDqbuHHojIVEOe8h9M62YBUco0MtuwAn33WOHq8uH-qbdHV3fVsvV6nKecHTkjVMV7jA0FQUN40GLPOCAi8lpbxtiooypjBRTFatZkwXREGluNZAMCdVMUdn-729d68jhEGs3eij9yDiAVzSBeZFpLI9pbwLwYMWygxyMM7Gf0wnCBa7oEQMSuyCioLzX4Lem43027_QdI--mw62_3KiXj598Z_MOXlL
CitedBy_id crossref_primary_10_1186_s40494_024_01463_3
crossref_primary_10_1007_s10489_024_05692_8
Cites_doi 10.1109/WACV51458.2022.00317
10.1109/WACV51458.2022.00102
10.1109/ICCV.2017.304
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPR42600.2020.00524
10.1109/CVPR46437.2021.01310
10.1007/978-3-030-01264-9_33
10.1109/CVPR.2017.544
10.1109/CVPR.2017.73
10.1109/CVPR.2019.00238
10.1109/TPAMI.2017.2724510
10.1109/CVPR42600.2020.00584
10.1145/3197517.3201332
10.1145/3240508.3240618
10.1109/CVPR.2018.00012
10.1609/aaai.v36i2.20131
10.1109/CVPR42600.2020.00519
10.1109/TIP.2003.819861
10.1109/TPAMI.2009.77
10.1109/TPAMI.2021.3083484
10.1145/3197517.3201365
10.1109/ICCV.2019.01058
10.1109/ICCV.2017.203
10.1109/CVPR.2019.00244
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2199
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2199
CAV2199
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Liaoning Province
  funderid: 2023‐MS‐133
– fundername: Dalian Minzu University
  funderid: 110222; 140140
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2939-46b6f8030eb850bbfe0a235e94a559db38566c01c6a8df66f31ce8c9ffe109183
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Tue Aug 12 10:40:58 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Jan 22 16:14:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-46b6f8030eb850bbfe0a235e94a559db38566c01c6a8df66f31ce8c9ffe109183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1276-9776
PQID 2930457093
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_2930457093
crossref_citationtrail_10_1002_cav_2199
crossref_primary_10_1002_cav_2199
wiley_primary_10_1002_cav_2199_CAV2199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2009; 32
2021; 44
2004; 60
2022
2021
2020
2016; 29:2406–2414
2004; 13
2014; 2:1601–1609
2017; 30:6626–6637
2019
2018
2017
2018; 37
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
Choy CB (e_1_2_8_14_1) 2016; 29
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
Long J (e_1_2_8_12_1) 2014; 2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
He M (e_1_2_8_22_1) 2018; 37
Heusel M (e_1_2_8_30_1) 2017; 30
References_xml – volume: 2:1601–1609
  year: 2014
  article-title: Do convnets learn correspondence?
  publication-title: Adv Neural Inf Process Syst
– start-page: 2337
  year: 2019
  end-page: 2346
– start-page: 2278
  year: 2019
  end-page: 2287
– volume: 30:6626–6637
  year: 2017
  article-title: Gans trained by a two time‐scale update rule converge to a local Nash equilibrium
  publication-title: Adv Neural Inf Process Syst
– start-page: 1434
  year: 2022
  end-page: 1444
– start-page: 645
  year: 2018
  end-page: 653
– start-page: 633
  year: 2017
  end-page: 641
– volume: 29:2406–2414
  year: 2016
  article-title: Universal correspondence network
  publication-title: Adv Neural Inf Process Syst
– start-page: 2325
  year: 2022
  end-page: 2334
– start-page: 10481
  year: 2019
  end-page: 10490
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 40
  start-page: 1711
  issue: 7
  year: 2017
  end-page: 1725
  article-title: Proposal flow: semantic correspondences from object proposals
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 44
  start-page: 8538
  issue: 11
  year: 2021
  end-page: 8551
  article-title: Psgan++: robust detail‐preserving makeup transfer and removal
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 32
  start-page: 815
  issue: 5
  year: 2009
  end-page: 830
  article-title: Daisy: An efficient dense descriptor applied to wide‐baseline stereo
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 6560
  year: 2017
  end-page: 6569
– start-page: 5801
  year: 2020
  end-page: 5810
– start-page: 2794
  year: 2017
  end-page: 2802
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: Int J Comput Vis
– start-page: 13305
  year: 2021
  end-page: 13314
– start-page: 5194
  year: 2020
  end-page: 5202
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 16
  article-title: Deep exemplar‐based colorization
  publication-title: ACM Trans Graph
– start-page: 1831
  year: 2017
  end-page: 1840
– year: 2017
– start-page: 40
  year: 2018
  end-page: 48
– start-page: 1717
  year: 2022
  end-page: 1726
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 14
  article-title: Neural best‐buddies: sparse cross‐domain correspondence
  publication-title: ACM Trans Graph
– start-page: 5143
  year: 2020
  end-page: 5153
– year: 2019
– start-page: 534
  year: 2018
  end-page: 551
– volume: 2
  year: 2014
  ident: e_1_2_8_12_1
  article-title: Do convnets learn correspondence?
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_6_1
  doi: 10.1109/WACV51458.2022.00317
– ident: e_1_2_8_9_1
  doi: 10.1109/WACV51458.2022.00102
– ident: e_1_2_8_29_1
  doi: 10.1109/ICCV.2017.304
– ident: e_1_2_8_10_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_8_3_1
  doi: 10.1109/CVPR42600.2020.00524
– ident: e_1_2_8_8_1
  doi: 10.1109/CVPR46437.2021.01310
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-030-01264-9_33
– ident: e_1_2_8_13_1
  doi: 10.1109/CVPR.2017.544
– ident: e_1_2_8_28_1
– ident: e_1_2_8_17_1
  doi: 10.1109/CVPR.2017.73
– ident: e_1_2_8_18_1
  doi: 10.1109/CVPR.2019.00238
– ident: e_1_2_8_15_1
  doi: 10.1109/TPAMI.2017.2724510
– ident: e_1_2_8_23_1
  doi: 10.1109/CVPR42600.2020.00584
– ident: e_1_2_8_20_1
  doi: 10.1145/3197517.3201332
– ident: e_1_2_8_2_1
  doi: 10.1145/3240508.3240618
– ident: e_1_2_8_4_1
  doi: 10.1109/CVPR.2018.00012
– ident: e_1_2_8_25_1
  doi: 10.1609/aaai.v36i2.20131
– ident: e_1_2_8_24_1
– ident: e_1_2_8_19_1
– ident: e_1_2_8_21_1
  doi: 10.1109/CVPR42600.2020.00519
– ident: e_1_2_8_31_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_8_11_1
  doi: 10.1109/TPAMI.2009.77
– volume: 30
  year: 2017
  ident: e_1_2_8_30_1
  article-title: Gans trained by a two time‐scale update rule converge to a local Nash equilibrium
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_5_1
  doi: 10.1109/TPAMI.2021.3083484
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_8_22_1
  article-title: Deep exemplar‐based colorization
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201365
– ident: e_1_2_8_7_1
  doi: 10.1109/ICCV.2019.01058
– volume: 29
  year: 2016
  ident: e_1_2_8_14_1
  article-title: Universal correspondence network
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_16_1
  doi: 10.1109/ICCV.2017.203
– ident: e_1_2_8_27_1
  doi: 10.1109/CVPR.2019.00244
SSID ssj0026210
Score 2.3471649
Snippet Most existing makeup transfer techniques focus on light makeup styles, which limits the task of makeup transfer to color manipulation issues such as eye shadow...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Customization
Eye (anatomy)
Feature extraction
Gloss
image to image translation
makeup transfer
semantic correspondence
Title Personalized facial makeup transfer based on outline correspondence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2199
https://www.proquest.com/docview/2930457093
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yJ33wW5xOiSD61K1L0yx5HMMxBEXEjYEPJUkTkGk31tWH_fXm-rGpKIhPhXKhySXX--W4-x1Cl4AxKDGxR7UMPOouyp4IhfG0bSvdUYrIGIqT7-7ZYEhvx-G4zKqEWpiCH2IVcAPLyP_XYOBSpa01aaiW701nblC7B6lagIceV8xRhJGCiCCkzINbQsU765NWNfCrJ1rDy88gNfcy_R30XM2vSC6ZNLOFaurlN-rG_y1gF22X4BN3i9OyhzZMso-2Ri9pVrxND1DvoULnSxNjKyGijt_kxGQzvMhBrpljcH0xniYY0oncPLDOe3zMpkneofQQDfs3T72BVzZa8LTz9sKjTDHLnbkbxUNfKWt8SYLQCCrdhSNWAXegT_ttzSSPLWM2aGvDtbDWAK8oD45QLZkm5hhhQ2xHMcpj4SsquS-5ojY2XAByCUxQR9eV0iNdspBDM4zXqOBPJpFTSwRqqaOLleSsYN74QaZR7VtU2l4auSU5nNrxhfvYVb4Bv46Pet0RPE_-KniKNolDNUUMpoFqi3lmzhwqWajz_Px9AJNF3vI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSDb_FtBNHTtttsNk3wJMVSX0WkLT0IS5JNQNRtabce_PUmu936QEE8BZYJm0wymW-G5BuAY4cxCNaxR5QIPGIDZY-HXHvKVKWqSYlF7B4n37Zos0OuemFvBs6KtzA5P8Q04eYsIzuvnYG7hHTlgzVUideytTc-C3OuoHcWT91PuaMwxTkVQUio5-KEgnnWx5Wi51df9AEwP8PUzM80luGhGGF-veSpPE5lWb19I2_85xRWYGmCP9F5vmFWYUYna7DYfRyN86-jdajfFQD9TcfICJdURy_iSY8HKM1wrh4i5_1i1E-Qu1FkB4JUVuZj0E-yIqUb0GlctOtNb1JrwVPW4XOPUEkNsxavJQt9KY32BQ5CzYmwMUcsA2Zxn_KrigoWG0pNUFWaKW6MdtSiLNiEUtJP9BYgjU1NUsJi7ksimC-YJCbWjDvwEuhgG04LrUdqQkTu6mE8RzmFMo6sWiKnlm04mkoOcvKNH2T2ioWLJuY3iuyULFSt-dz-7CRbgV_7R_Xzrmt3_ip4CPPN9u1NdHPZut6FBWxBTp6S2YNSOhzrfQtSUnmQbcZ3hDHjDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-QPTgW6xWjSB62nabzabJUVqLzyKiInhY8gSpbhe768Ffb7KPVkVBPC0sEzaZzOx8EybfAHDgMAZGWnlY8sDDNlH2WMi0J01LyLYQiCt3OfmqT07v8PlD-FBWVbq7MAU_xPjAzXlG_r92Dp4o05yQhkr-1rDuxqbBLCY-dRbdvRlTRyGCCiaCEBPPpQkV8ayPmtXIr6Fogi8_o9Q8zPSWwGM1waK6ZNDIUtGQ79-4G_-3gmWwWKJPeFyYywqY0vEqWLh_GmXF29Ea6FxX8PxdK2i4O1KHL3ygswSmOcrVr9DFPgWHMXT1RHYeUOZNPpJhnLcoXQd3vZPbzqlXdlrwpA33zMNEEEOtv2tBQ18Io32OglAzzG3GoURALeqTfksSTpUhxAQtqalkxmhHLEqDDTATD2O9CaBGpi0Ipor5AnPqcyqwUZoyB10CHdTAUaX0SJY05K4bxnNUECijyKolcmqpgf2xZFJQb_wgU6_2LSqdbxTZJVmg2vaZ_dhhvgG_jo86x_fuufVXwT0wd93tRZdn_YttMI8swinOY-pgJn3N9I5FKKnYzU3xAxJr4cU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+facial+makeup+transfer+based+on+outline+correspondence&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Gao%2C+Mengying&rft.au=Wang%2C+Pengjie&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft_id=info:doi/10.1002%2Fcav.2199&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon