A matrix technique‐based numerical treatment of a nonlocal singular boundary value problems

The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐po...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 48; no. 7; pp. 8322 - 8341
Main Authors Sriwastav, Nikhil, Barnwal, Amit K., Srivastav, Avinash Kumar, Chandra, Harish
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 15.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to L2[0,1]$$ {L}_2\left[0,1\right] $$ in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches.
AbstractList The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to L2[0,1]$$ {L}_2\left[0,1\right] $$ in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches.
The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to L2[0,1]$$ {L}_2\left[0,1\right] $$ in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches.
The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches.
Author Barnwal, Amit K.
Sriwastav, Nikhil
Srivastav, Avinash Kumar
Chandra, Harish
Author_xml – sequence: 1
  givenname: Nikhil
  surname: Sriwastav
  fullname: Sriwastav, Nikhil
  organization: Chandigarh University
– sequence: 2
  givenname: Amit K.
  surname: Barnwal
  fullname: Barnwal, Amit K.
  email: akbmsc@mmmut.ac.in
  organization: Madan Mohan Malaviya University of Technology
– sequence: 3
  givenname: Avinash Kumar
  surname: Srivastav
  fullname: Srivastav, Avinash Kumar
  organization: Madan Mohan Malaviya University of Technology
– sequence: 4
  givenname: Harish
  surname: Chandra
  fullname: Chandra, Harish
  organization: Madan Mohan Malaviya University of Technology
BookMark eNp1kE1OwzAQhS0EEqUgcQRLbNikeJykiZdVxZ9UxAaWKJo4DrhynGI7QHccgTNyElzKCsFqRqPvzdN7B2TX9lYRcgxsAozxs67DiSiZ2CEjYEIkkBXTXTJiULAk45DtkwPvl4yxEoCPyMOMdhicfqNBySernwf1-f5Ro1cNtUOnnJZoaHAKQ6dsoH1LkUZL02_uXtvHwaCjdT_YBt2avqAZFF25vjaq84dkr0Xj1dHPHJP7i_O7-VWyuL28ns8WieQiFQkXyAos6hpUxhpWgxBtncoyByzzRmQyVw3GVabYcmyzkhccpi3IOi-yKefpmJxs_0bjmMCHatkPzkbLKoWyyBjkKURqsqWk6713qq2kDhh0b4NDbSpg1abCKlZYbSqMgtNfgpXTXYz5F5ps0Vdt1Ppfrrq5mX3zX-D-g8I
CitedBy_id crossref_primary_10_1007_s10910_025_01703_2
Cites_doi 10.3390/math8122104
10.1090/qam/1012280
10.4236/am.2018.911083
10.1504/IJMMNO.2023.127839
10.1016/S0022-5193(75)80131-7
10.1016/j.advengsoft.2008.04.010
10.1016/S0092-8240(83)80019-6
10.1002/mma.5181
10.1016/j.compchemeng.2011.08.008
10.1080/09720502.2020.1727616
10.1016/j.cam.2010.09.007
10.1007/s40096-020-00328-7
10.1016/S0096-3003(00)00060-6
10.1108/EC-10-2020-0604
10.1016/0377-0427(87)90206-8
10.1155/2022/5717924
10.1002/mma.3763
10.1016/0377-0427(93)90031-6
10.1063/1.1700291
10.1016/0022-5193(78)90270-9
10.3390/math7050459
10.1140/epjp/s13360-020-00489-3
10.1016/0022-5193(76)90071-0
10.1137/0712002
10.1098/rsta.2014.0368
10.1016/j.apm.2016.05.018
10.1016/j.nonrwa.2006.09.001
10.7494/OpMath.2023.43.4.575
10.1016/S0895-7177(01)00160-1
10.1016/0022-247X(92)90179-H
10.1007/978-94-015-9672-5
10.1016/j.camwa.2010.05.029
10.22436/mns.04.01.05
10.1007/s40819-021-01016-3
10.1007/s40314-021-01653-w
10.1140/epjp/s13360-020-00449-x
10.1016/j.apm.2012.09.032
10.1016/j.chaos.2007.06.007
10.1016/j.jocs.2023.101976
10.1007/s40096-021-00412-6
10.1016/S0096-3003(02)00214-X
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.9809
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 8341
ExternalDocumentID 10_1002_mma_9809
MMA9809
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGYGG
CITATION
LH4
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2939-29a07a7bb1e40d0b199fb3c851a85d94c5edaa85c3af2af4827216f1cb5746223
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Tue Jul 22 16:40:59 EDT 2025
Thu Apr 24 23:13:43 EDT 2025
Tue Jul 01 05:13:42 EDT 2025
Tue Apr 08 09:40:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2939-29a07a7bb1e40d0b199fb3c851a85d94c5edaa85c3af2af4827216f1cb5746223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3187401531
PQPubID 1016386
PageCount 20
ParticipantIDs proquest_journals_3187401531
crossref_citationtrail_10_1002_mma_9809
crossref_primary_10_1002_mma_9809
wiley_primary_10_1002_mma_9809_MMA9809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 May 2025
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 15 May 2025
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 235
2009; 40
1992; 168
1976; 60
1978; 71
2008; 9
1975; 12
2020; 14
2018; 41
1975; 54
2016; 39
1989; 47
2010; 60
2020; 8
2018; 7
1952; 20
2021; 38
2018; 9
2001; 530
2023; 67
2015; 373
2016; 40
2020; 135
2021; 40
2012; 219
2001; 122
2017; 62
2019; 7
1993; 46
2021; 7
2019; 9
2023; 13
2019; 4
2015; 19
2003; 139
2015; 3
2010
2002; 35
2012; 36
1987; 19
2023; 43
1987; 23
2013; 37
2019; 81
2022; 2022
2020; 23
2013
2022; 16
1983; 45
2009; 39
e_1_2_8_28_1
Hafez R. M. (e_1_2_8_46_1) 2017; 62
Akyuz‐Dascioglu A. (e_1_2_8_47_1) 2015; 3
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Barnwal A. K. (e_1_2_8_6_1) 2023; 13
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
Ilyin V. A. (e_1_2_8_10_1) 1987; 23
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
Singh M. (e_1_2_8_16_1) 2019; 9
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Iqbal M. K. (e_1_2_8_29_1) 2018; 9
e_1_2_8_30_1
Bhrawy A. H. (e_1_2_8_51_1) 2012; 219
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
El‐Gamel M. (e_1_2_8_38_1) 2018; 7
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Sriwastav N. (e_1_2_8_53_1) 2023; 13
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
Toutounian F. (e_1_2_8_52_1) 2013
Verma A. M. I. T. K. (e_1_2_8_12_1) 2015; 19
Singh R. (e_1_2_8_55_1) 2019; 81
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 23
  start-page: 803
  issue: 7
  year: 1987
  end-page: 810
  article-title: Nonlocal boundary value problem of the first kind for a sturm‐liouville operator in its differential and finite difference aspects
  publication-title: Differ. Equa.
– volume: 16
  start-page: 97
  issue: 1
  year: 2022
  end-page: 104
  article-title: Eigenvalues and eigenfunctions of fourth‐order sturm‐liouville problems using bernoulli series with chebychev collocation points
  publication-title: Math. Sci.
– volume: 62
  start-page: 1
  issue: 111
  year: 2017
  end-page: 11
  article-title: Numerical solutions of two‐dimensional mixed volterra‐fredholm integral equations via bernoulli collocation method
  publication-title: Rom. J. Phys.
– volume: 67
  start-page: 101976
  year: 2023
  article-title: A novel numerical approach and stability analysis for a class of pantograph delay differential equation
  publication-title: J. Comput. Sci.
– volume: 71
  start-page: 255
  issue: 2
  year: 1978
  end-page: 263
  article-title: A re‐examination of oxygen diffusion in a spherical cell with michaelis‐menten oxygen uptake kinetics
  publication-title: J. Theor. Biol.
– volume: 135
  start-page: 427
  issue: 5
  year: 2020
  article-title: Solving a new design of nonlinear second‐order Lane–Emden pantograph delay differential model via Bernoulli collocation method
  publication-title: Eur. Phys. J. Plus
– volume: 46
  start-page: 345
  issue: 3
  year: 1993
  end-page: 355
  article-title: Existence and uniqueness of solutions of a class of two‐point singular nonlinear boundary value problems
  publication-title: J. Comput. Appl. Math.
– volume: 9
  start-page: 377
  issue: 3
  year: 2018
  end-page: 392
  article-title: New cubic b‐spline approximation for solving non‐linear singular boundary value problems arising in physiology
  publication-title: Commun. Math. Appl.
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 16
  article-title: Application of a novel collocation approach for simulating a class of nonlinear third‐order Lane–Emden model
  publication-title: Math. Probl. Eng.
– volume: 135
  start-page: 1
  year: 2020
  end-page: 21
  article-title: An efficient numerical technique for Lane–Emden–Fowler boundary value problems: Bernstein collocation method
  publication-title: Eur. Phys. J. Plus
– volume: 54
  start-page: 285
  issue: 2
  year: 1975
  end-page: 287
  article-title: The distribution of heat sources in the human head: a theoretical consideration
  publication-title: J. Theor. Biol.
– volume: 219
  start-page: 482
  issue: 2
  year: 2012
  end-page: 497
  article-title: A new bernoulli matrix method for solving high‐order linear and nonlinear fredholm integro‐differential equations with piecewise intervals
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 1232
  issue: 3
  year: 2009
  end-page: 1237
  article-title: B‐spline solution of non‐linear singular boundary value problems arising in physiology
  publication-title: Chaos, Solitons Fractals
– volume: 45
  start-page: 661
  issue: 5
  year: 1983
  end-page: 664
  article-title: On oxygen diffusion in a spherical cell with michaelis‐menten oxygen uptake kinetics
  publication-title: Bull. Math. Biol.
– volume: 8
  start-page: 2104
  issue: 12
  year: 2020
  article-title: Solving multi‐point boundary value problems using sinc‐derivative interpolation
  publication-title: Mathematics
– volume: 12
  start-page: 13
  issue: 1
  year: 1975
  end-page: 36
  article-title: Numerical methods for singular boundary value problems
  publication-title: SIAM J. Numer. Anal.
– volume: 9
  start-page: 1270
  issue: 11
  year: 2018
  article-title: Two very accurate and e cient methods for solving time‐dependent problems
  publication-title: Appl. Math.
– volume: 40
  start-page: 8886
  issue: 21‐22
  year: 2016
  end-page: 8897
  article-title: Numerical solution of the static beam problem by bernoulli collocation method
  publication-title: Appl. Math. Model.
– volume: 3
  start-page: 96
  issue: 2
  year: 2015
  article-title: Bernoulli collocation method for high‐order generalized pantograph equations
  publication-title: New Trends Math. Sci.
– volume: 235
  start-page: 1914
  issue: 8
  year: 2011
  end-page: 1924
  article-title: A new analytical and numerical treatment for singular two‐point boundary value problems via the adomian decomposition method
  publication-title: J. Comput. Appl. Math.
– volume: 19
  start-page: 379
  issue: 3
  year: 1987
  end-page: 388
  article-title: On the existence of solutions of a class of singular nonlinear two‐point boundary value problems
  publication-title: J. Comput. Appl. Math.
– volume: 122
  start-page: 393
  issue: 3
  year: 2001
  end-page: 405
  article-title: A new modification of the adomian decomposition method for linear and nonlinear operators
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 1795
  issue: 11
  year: 1952
  end-page: 1797
  article-title: On the solution of the poisson‐boltzmann equation with application to the theory of thermal explosions
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 288
  issue: 4
  year: 2009
  end-page: 297
  article-title: A collection of computational techniques for solving singular boundary‐value problems
  publication-title: Adv. Eng. Softw.
– volume: 36
  start-page: 57
  year: 2012
  end-page: 67
  article-title: A note on the solution of singular boundary value problems arising in engineering and applied sciences: use of OHAM
  publication-title: Comput. Chem. Eng.
– volume: 39
  start-page: 3204
  issue: 12
  year: 2016
  end-page: 3214
  article-title: An efficient pseudospectral method for numerical solution of nonlinear singular initial and boundary value problems arising in astrophysics
  publication-title: Math. Methods Appl. Sci.
– volume: 81
  start-page: 785
  issue: 3
  year: 2019
  end-page: 800
  article-title: An efficient algorithm for solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions: the homotopy analysis method
  publication-title: MATCH Commun. Math. Comput. Chem
– volume: 40
  start-page: 1
  year: 2021
  end-page: 22
  article-title: A different monotone iterative technique for a class of nonlinear three‐point bvps
  publication-title: Comput. Appl. Math.
– volume: 60
  start-page: 821
  issue: 3
  year: 2010
  end-page: 829
  article-title: He's variational iteration method for treating nonlinear singular boundary value problems
  publication-title: Comput. Math. Appl.
– volume: 7
  start-page: 1
  year: 2021
  end-page: 15
  article-title: A novel numerical approach for simulating the nonlinear mhd jeffery–hamel flow problem
  publication-title: Int. J. Appl. Comput. Math.
– volume: 23
  start-page: 1077
  issue: 6
  year: 2020
  end-page: 1091
  article-title: A numerical treatment of the delayed ambartsumian equation over large interval
  publication-title: J. Interdiscip. Math.
– volume: 14
  start-page: 167
  issue: 2
  year: 2020
  end-page: 175
  article-title: A fast and efficient scheme for solving a class of nonlinear lienard's equations
  publication-title: Math. Sci.
– volume: 41
  start-page: 6625
  issue: 16
  year: 2018
  end-page: 6644
  article-title: A new highly accurate domain decomposition optimal homotopy analysis method and its convergence for singular boundary value problems
  publication-title: Math. Methods Appl. Sci.
– volume: 168
  start-page: 540
  issue: 2
  year: 1992
  end-page: 551
  article-title: Solvability of a three‐point nonlinear boundary value problem for a second order ordinary differential equation
  publication-title: J. Math. Anal. Appl.
– volume: 35
  start-page: 215
  issue: 1‐2
  year: 2002
  end-page: 227
  article-title: Multipoint boundary value problems by differential quadrature method
  publication-title: Math. Comput. Model.
– volume: 47
  start-page: 571
  issue: 3
  year: 1989
  end-page: 581
  article-title: Rotationally symmetric solutions for shallow membrane caps
  publication-title: Q. Appl. Math.
– volume: 9
  start-page: 1242
  issue: 4
  year: 2019
  end-page: 1260
  article-title: On an iterative method for a class of 2 point & 3 point nonlinear sbvps
  publication-title: J. Appl. Anal. Comput.
– volume: 37
  start-page: 4283
  issue: 6
  year: 2013
  end-page: 4294
  article-title: A collocation method based on bernoulli operational matrix for numerical solution of generalized pantograph equation
  publication-title: Appl. Math. Model.
– volume: 43
  start-page: 575
  issue: 4
  year: 2023
  end-page: 601
  article-title: Bernstein operational matrix of differentiation and collocation approach for a class of three‐point singular bvps: error estimate and convergence analysis
  publication-title: Opuscula Math.
– volume: 373
  issue: 2050
  year: 2015
  article-title: Free boundary problems in biology
  publication-title: Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci.
– year: 2010
– volume: 13
  start-page: 64
  issue: 1
  year: 2023
  end-page: 83
  article-title: Numerical solution of lane‐emden pantograph delay differential equation: stability and convergence analysis
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 7
  start-page: 459
  issue: 5
  year: 2019
  article-title: On a variational method for stiff differential equations arising from chemistry kinetics
  publication-title: Mathematics
– volume: 13
  start-page: 2162
  issue: 4
  year: 2023
  end-page: 2183
  article-title: New approach based on collocation and shifted chebyshev polynomials for a class of three‐point singular bvps
  publication-title: J. Appl. Anal. Comput.
– volume: 13
  start-page: 341
  issue: 1
  year: 2023
  end-page: 361
  article-title: A technique for solving system of generalized emden‐fowler equation using legendre wavelet
  publication-title: TWMS J. Appl. Eng. Math.
– volume: 9
  start-page: 40
  issue: 1
  year: 2008
  end-page: 52
  article-title: Existence‐uniqueness results for a class of singular boundary value problems arising in physiology
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 38
  start-page: 3932
  issue: 10
  year: 2021
  end-page: 3943
  article-title: A note on variation iteration method with an application on Lane–Emden equations
  publication-title: Eng. Comput.
– volume: 7
  start-page: 1502168
  issue: 03
  year: 2018
  end-page: 9679
  article-title: Collocation method based on bernoulli polynomial and shifted chebychev for solving the bratu equation
  publication-title: J. Appl. Comput. Math
– volume: 530
  year: 2001
– volume: 4
  start-page: 45
  issue: 01
  year: 2019
  end-page: 59
  article-title: Bernoulli polynomial and the numerical solution of high‐order boundary value problems
  publication-title: Math. Nat. Sci.
– volume: 19
  start-page: 175
  issue: 2
  year: 2015
  end-page: 190
  article-title: Maximum principle and nonlinear three point singular boundary value problems arising due to spherical symmetry
  publication-title: Commun. Appl. Anal
– volume: 60
  start-page: 449
  issue: 2
  year: 1976
  end-page: 457
  article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics
  publication-title: J. Theor. Biol.
– volume: 139
  start-page: 513
  issue: 2‐3
  year: 2003
  end-page: 523
  article-title: Chebyshev finite difference approximation for the boundary value problems
  publication-title: Appl. Math. Comput.
– year: 2013
– ident: e_1_2_8_11_1
  doi: 10.3390/math8122104
– ident: e_1_2_8_21_1
  doi: 10.1090/qam/1012280
– ident: e_1_2_8_40_1
  doi: 10.4236/am.2018.911083
– ident: e_1_2_8_4_1
  doi: 10.1504/IJMMNO.2023.127839
– volume: 19
  start-page: 175
  issue: 2
  year: 2015
  ident: e_1_2_8_12_1
  article-title: Maximum principle and nonlinear three point singular boundary value problems arising due to spherical symmetry
  publication-title: Commun. Appl. Anal
– ident: e_1_2_8_22_1
  doi: 10.1016/S0022-5193(75)80131-7
– volume: 7
  start-page: 1502168
  issue: 03
  year: 2018
  ident: e_1_2_8_38_1
  article-title: Collocation method based on bernoulli polynomial and shifted chebychev for solving the bratu equation
  publication-title: J. Appl. Comput. Math
– ident: e_1_2_8_31_1
  doi: 10.1016/j.advengsoft.2008.04.010
– volume: 62
  start-page: 1
  issue: 111
  year: 2017
  ident: e_1_2_8_46_1
  article-title: Numerical solutions of two‐dimensional mixed volterra‐fredholm integral equations via bernoulli collocation method
  publication-title: Rom. J. Phys.
– ident: e_1_2_8_20_1
  doi: 10.1016/S0092-8240(83)80019-6
– ident: e_1_2_8_35_1
  doi: 10.1002/mma.5181
– ident: e_1_2_8_23_1
  doi: 10.1016/j.compchemeng.2011.08.008
– volume: 3
  start-page: 96
  issue: 2
  year: 2015
  ident: e_1_2_8_47_1
  article-title: Bernoulli collocation method for high‐order generalized pantograph equations
  publication-title: New Trends Math. Sci.
– volume: 219
  start-page: 482
  issue: 2
  year: 2012
  ident: e_1_2_8_51_1
  article-title: A new bernoulli matrix method for solving high‐order linear and nonlinear fredholm integro‐differential equations with piecewise intervals
  publication-title: Appl. Math. Comput.
– ident: e_1_2_8_41_1
  doi: 10.1080/09720502.2020.1727616
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cam.2010.09.007
– ident: e_1_2_8_42_1
  doi: 10.1007/s40096-020-00328-7
– ident: e_1_2_8_34_1
  doi: 10.1016/S0096-3003(00)00060-6
– ident: e_1_2_8_17_1
  doi: 10.1108/EC-10-2020-0604
– ident: e_1_2_8_25_1
  doi: 10.1016/0377-0427(87)90206-8
– ident: e_1_2_8_44_1
  doi: 10.1155/2022/5717924
– ident: e_1_2_8_2_1
  doi: 10.1002/mma.3763
– ident: e_1_2_8_26_1
  doi: 10.1016/0377-0427(93)90031-6
– ident: e_1_2_8_13_1
  doi: 10.1063/1.1700291
– ident: e_1_2_8_18_1
  doi: 10.1016/0022-5193(78)90270-9
– volume-title: Abstract and applied analysis
  year: 2013
  ident: e_1_2_8_52_1
– ident: e_1_2_8_5_1
  doi: 10.3390/math7050459
– volume: 23
  start-page: 803
  issue: 7
  year: 1987
  ident: e_1_2_8_10_1
  article-title: Nonlocal boundary value problem of the first kind for a sturm‐liouville operator in its differential and finite difference aspects
  publication-title: Differ. Equa.
– ident: e_1_2_8_24_1
  doi: 10.1140/epjp/s13360-020-00489-3
– ident: e_1_2_8_19_1
  doi: 10.1016/0022-5193(76)90071-0
– ident: e_1_2_8_50_1
– volume: 81
  start-page: 785
  issue: 3
  year: 2019
  ident: e_1_2_8_55_1
  article-title: An efficient algorithm for solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions: the homotopy analysis method
  publication-title: MATCH Commun. Math. Comput. Chem
– ident: e_1_2_8_30_1
  doi: 10.1137/0712002
– ident: e_1_2_8_7_1
  doi: 10.1098/rsta.2014.0368
– ident: e_1_2_8_45_1
  doi: 10.1016/j.apm.2016.05.018
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nonrwa.2006.09.001
– ident: e_1_2_8_54_1
  doi: 10.7494/OpMath.2023.43.4.575
– ident: e_1_2_8_9_1
  doi: 10.1016/S0895-7177(01)00160-1
– ident: e_1_2_8_14_1
  doi: 10.1016/0022-247X(92)90179-H
– ident: e_1_2_8_49_1
  doi: 10.1007/978-94-015-9672-5
– ident: e_1_2_8_15_1
  doi: 10.1016/j.camwa.2010.05.029
– ident: e_1_2_8_39_1
  doi: 10.22436/mns.04.01.05
– volume: 9
  start-page: 377
  issue: 3
  year: 2018
  ident: e_1_2_8_29_1
  article-title: New cubic b‐spline approximation for solving non‐linear singular boundary value problems arising in physiology
  publication-title: Commun. Math. Appl.
– ident: e_1_2_8_43_1
  doi: 10.1007/s40819-021-01016-3
– ident: e_1_2_8_8_1
  doi: 10.1007/s40314-021-01653-w
– ident: e_1_2_8_36_1
  doi: 10.1140/epjp/s13360-020-00449-x
– ident: e_1_2_8_48_1
  doi: 10.1016/j.apm.2012.09.032
– ident: e_1_2_8_28_1
  doi: 10.1016/j.chaos.2007.06.007
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jocs.2023.101976
– volume: 9
  start-page: 1242
  issue: 4
  year: 2019
  ident: e_1_2_8_16_1
  article-title: On an iterative method for a class of 2 point & 3 point nonlinear sbvps
  publication-title: J. Appl. Anal. Comput.
– ident: e_1_2_8_37_1
  doi: 10.1007/s40096-021-00412-6
– volume: 13
  start-page: 2162
  issue: 4
  year: 2023
  ident: e_1_2_8_53_1
  article-title: New approach based on collocation and shifted chebyshev polynomials for a class of three‐point singular bvps
  publication-title: J. Appl. Anal. Comput.
– ident: e_1_2_8_32_1
  doi: 10.1016/S0096-3003(02)00214-X
– volume: 13
  start-page: 341
  issue: 1
  year: 2023
  ident: e_1_2_8_6_1
  article-title: A technique for solving system of generalized emden‐fowler equation using legendre wavelet
  publication-title: TWMS J. Appl. Eng. Math.
SSID ssj0008112
Score 2.3916795
Snippet The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8322
SubjectTerms Astrophysics
Bernoulli polynomials
Boundary conditions
Boundary value problems
collocation method
Collocation methods
Differential equations
Error analysis
Exact solutions
Initial conditions
Lipschitz condition
Mathematical analysis
Operators (mathematics)
Polynomials
Series expansion
singular boundary value problems
three‐point boundary value problems
Title A matrix technique‐based numerical treatment of a nonlocal singular boundary value problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.9809
https://www.proquest.com/docview/3187401531
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1PS8MwFMCDeNKDuqk4nRJB_HPI1qbJ2hyHOIZQD-JgIFKSNL24TVk3UE9-BD-jn8S8_puKgnhqDwmkee_lvSYvv4fQUeAxrR2lSZx4mrCEB0TZ3zDChfX-iZbcj-FycnjV6Q_Y5ZAPi6xKuAuT8yGqDTewjGy9BgOXKm0voKHjsWyJILu7B6laEA9dL8hRgZsddAIdhjDqspI769B22fGrJ1qEl5-D1MzL9NbRbTm-PLnkvjWfqZZ--YZu_N8HbKC1IvjE3VxbamjJTOpoNazIrWkd1QpjT_FpQaQ-20R3XTwGlP8TrpCv769v4ABjPJnnZz4jXOWs44cESzyxYwRHiWE3ApJdscpKOE2fMRDGDS5q2aRbaNC7uDnvk6IuA9E2OBCECun40lfKNcyJHeUKkShP29hNBjwWTHMTS_uqPZlQmQBolFrBu1pxn3VsPLKNlu0YzA7CyiqyH0hJHWmVg8IGjNGJlZ3yHCOMbKCTUkaRLqDlUDtjFOW4ZRrZWYxgFhvosGr5mIM6fmjTLMUcFaaaRl5eldCuRQ10nMnr1_5RGHbhufvXhntohUK9YKC98iZank3nZt8GMTN1kKnrB7hQ8LE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z27btswFEAvDHdoOzSPNqjzaFkgfWSQI1GSJQ4djDqBnUQZihjwUigkRS2N3SCy0ThTP6H_kV_JV_RLeq9eboME6JKhkzRQAEXeF8nLcwG2Q9fT2lbaSlJXW17qh5bCZZjlC_T-qZZ-kNDl5Oi40x96ByN_1IDr6i5MwYeoN9xIM3J7TQpOG9K7C2roeCzbIrRFmVF5aObfcb2WfRz0cHLfcr6_d_Kpb5UlBSyNfk1YXEg7kIFSjvHsxFaOEKlyNYYdMvQT4WnfJBJftStTLlNiZHLss6OVH3gdTpQDtPePqIA4gfp7nxesqtDJj1aJR2N53PEq0q3Nd6ue_u37FgHtn2Fx7tf2l-CmGpEineVrezZVbX11Cxb5nwzZMjwr42vWLRRiBRpmsgpPoxpOm63CSmnPMvahhG7vPIcvXTamagWXrKba_vrxk3x8wiaz4ljrjNVp-exbyiSb4KBQLMBow4XyeZnKq1RdzBlB1A0ry_VkL2D4ID-9Bk3sg3kJTKGuBqGU3JYo_5z2mIxOUViUaxthZAveV0IR65LLTuVBzuKCKM1jnLWYZq0Fb-qW5wWL5I42m5VcxaU1ymK3KLyI5rYF73IBuff7OIq69Fz_14av4XH_JDqKjwbHhxvwhFN5ZILb-pvQnF7MzBbGbFP1KtcVBqcPLWm_AQxOTng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVSshOFBaQGxbipH4PWTrOM4mPnBYdbtqKVshRKVeUGo79qXdbdXsCsqJR-A5eBXegidhJn9LEUhceuCUHBzJsefP9vgbgCdpJK3lxga5j2wgfZwGBpdhQazQ-3ur4ySny8mjg97uoXx9FB8twLfmLkzFh2g33EgzSntNCn6e-605NHQ81l2VclUnVO67y4-4XCte7Q1wbp8KMdx5v70b1BUFAotuTQVCaZ7oxJjQSZ5zEyrlTWQx6tBpnCtpY5drfLWR9kJ7QmQK7HJoTZzIniDIAZr7JdnjispEDN7NUVVpWJ6sEo4mkCKUDeiWi62mp1dd3zye_TUqLt3acBm-NwNSZbOcdGdT07Wff2NF_h8jdgdu19E161fqsAILbrIKt0YtmrZYhZXamhXsRY3cfnkXPvTZmGoVfGIt0_bHl6_k4XM2mVWHWqesTcpnZ55pNsExoUiA0XYLZfMyU9aourhkhFB3rC7WU9yDw2v56fuwiH1wD4AZ1NQk1VpwjdIvaIfJWY-yYiLulNMdeN7IRGZrKjsVBznNKp60yHDWMpq1DjxuW55XJJI_tNloxCqrbVGRRVXZRTS2HXhWysdfv89Goz491_614SO48XYwzN7sHeyvw01BtZGJbBtvwOL0YuYeYsA2NZulpjA4vm5B-wnA2E0n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+matrix+technique%E2%80%90based+numerical+treatment+of+a+nonlocal+singular+boundary+value+problems&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Sriwastav%2C+Nikhil&rft.au=Barnwal%2C+Amit+K.&rft.au=Srivastav%2C+Avinash+Kumar&rft.au=Chandra%2C+Harish&rft.date=2025-05-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=48&rft.issue=7&rft.spage=8322&rft.epage=8341&rft_id=info:doi/10.1002%2Fmma.9809&rft.externalDBID=10.1002%252Fmma.9809&rft.externalDocID=MMA9809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon