A matrix technique‐based numerical treatment of a nonlocal singular boundary value problems
The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐po...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 48; no. 7; pp. 8322 - 8341 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
15.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to
L2[0,1]$$ {L}_2\left[0,1\right] $$ in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches. |
---|---|
AbstractList | The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to
L2[0,1]$$ {L}_2\left[0,1\right] $$ in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches. The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to L2[0,1]$$ {L}_2\left[0,1\right] $$ in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches. The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches. |
Author | Barnwal, Amit K. Sriwastav, Nikhil Srivastav, Avinash Kumar Chandra, Harish |
Author_xml | – sequence: 1 givenname: Nikhil surname: Sriwastav fullname: Sriwastav, Nikhil organization: Chandigarh University – sequence: 2 givenname: Amit K. surname: Barnwal fullname: Barnwal, Amit K. email: akbmsc@mmmut.ac.in organization: Madan Mohan Malaviya University of Technology – sequence: 3 givenname: Avinash Kumar surname: Srivastav fullname: Srivastav, Avinash Kumar organization: Madan Mohan Malaviya University of Technology – sequence: 4 givenname: Harish surname: Chandra fullname: Chandra, Harish organization: Madan Mohan Malaviya University of Technology |
BookMark | eNp1kE1OwzAQhS0EEqUgcQRLbNikeJykiZdVxZ9UxAaWKJo4DrhynGI7QHccgTNyElzKCsFqRqPvzdN7B2TX9lYRcgxsAozxs67DiSiZ2CEjYEIkkBXTXTJiULAk45DtkwPvl4yxEoCPyMOMdhicfqNBySernwf1-f5Ro1cNtUOnnJZoaHAKQ6dsoH1LkUZL02_uXtvHwaCjdT_YBt2avqAZFF25vjaq84dkr0Xj1dHPHJP7i_O7-VWyuL28ns8WieQiFQkXyAos6hpUxhpWgxBtncoyByzzRmQyVw3GVabYcmyzkhccpi3IOi-yKefpmJxs_0bjmMCHatkPzkbLKoWyyBjkKURqsqWk6713qq2kDhh0b4NDbSpg1abCKlZYbSqMgtNfgpXTXYz5F5ps0Vdt1Ppfrrq5mX3zX-D-g8I |
CitedBy_id | crossref_primary_10_1007_s10910_025_01703_2 |
Cites_doi | 10.3390/math8122104 10.1090/qam/1012280 10.4236/am.2018.911083 10.1504/IJMMNO.2023.127839 10.1016/S0022-5193(75)80131-7 10.1016/j.advengsoft.2008.04.010 10.1016/S0092-8240(83)80019-6 10.1002/mma.5181 10.1016/j.compchemeng.2011.08.008 10.1080/09720502.2020.1727616 10.1016/j.cam.2010.09.007 10.1007/s40096-020-00328-7 10.1016/S0096-3003(00)00060-6 10.1108/EC-10-2020-0604 10.1016/0377-0427(87)90206-8 10.1155/2022/5717924 10.1002/mma.3763 10.1016/0377-0427(93)90031-6 10.1063/1.1700291 10.1016/0022-5193(78)90270-9 10.3390/math7050459 10.1140/epjp/s13360-020-00489-3 10.1016/0022-5193(76)90071-0 10.1137/0712002 10.1098/rsta.2014.0368 10.1016/j.apm.2016.05.018 10.1016/j.nonrwa.2006.09.001 10.7494/OpMath.2023.43.4.575 10.1016/S0895-7177(01)00160-1 10.1016/0022-247X(92)90179-H 10.1007/978-94-015-9672-5 10.1016/j.camwa.2010.05.029 10.22436/mns.04.01.05 10.1007/s40819-021-01016-3 10.1007/s40314-021-01653-w 10.1140/epjp/s13360-020-00449-x 10.1016/j.apm.2012.09.032 10.1016/j.chaos.2007.06.007 10.1016/j.jocs.2023.101976 10.1007/s40096-021-00412-6 10.1016/S0096-3003(02)00214-X |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.9809 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 8341 |
ExternalDocumentID | 10_1002_mma_9809 MMA9809 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGYGG CITATION LH4 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c2939-29a07a7bb1e40d0b199fb3c851a85d94c5edaa85c3af2af4827216f1cb5746223 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Tue Jul 22 16:40:59 EDT 2025 Thu Apr 24 23:13:43 EDT 2025 Tue Jul 01 05:13:42 EDT 2025 Tue Apr 08 09:40:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2939-29a07a7bb1e40d0b199fb3c851a85d94c5edaa85c3af2af4827216f1cb5746223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3187401531 |
PQPubID | 1016386 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3187401531 crossref_citationtrail_10_1002_mma_9809 crossref_primary_10_1002_mma_9809 wiley_primary_10_1002_mma_9809_MMA9809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 May 2025 |
PublicationDateYYYYMMDD | 2025-05-15 |
PublicationDate_xml | – month: 05 year: 2025 text: 15 May 2025 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 235 2009; 40 1992; 168 1976; 60 1978; 71 2008; 9 1975; 12 2020; 14 2018; 41 1975; 54 2016; 39 1989; 47 2010; 60 2020; 8 2018; 7 1952; 20 2021; 38 2018; 9 2001; 530 2023; 67 2015; 373 2016; 40 2020; 135 2021; 40 2012; 219 2001; 122 2017; 62 2019; 7 1993; 46 2021; 7 2019; 9 2023; 13 2019; 4 2015; 19 2003; 139 2015; 3 2010 2002; 35 2012; 36 1987; 19 2023; 43 1987; 23 2013; 37 2019; 81 2022; 2022 2020; 23 2013 2022; 16 1983; 45 2009; 39 e_1_2_8_28_1 Hafez R. M. (e_1_2_8_46_1) 2017; 62 Akyuz‐Dascioglu A. (e_1_2_8_47_1) 2015; 3 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Barnwal A. K. (e_1_2_8_6_1) 2023; 13 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 Ilyin V. A. (e_1_2_8_10_1) 1987; 23 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 Singh M. (e_1_2_8_16_1) 2019; 9 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 Iqbal M. K. (e_1_2_8_29_1) 2018; 9 e_1_2_8_30_1 Bhrawy A. H. (e_1_2_8_51_1) 2012; 219 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 El‐Gamel M. (e_1_2_8_38_1) 2018; 7 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Sriwastav N. (e_1_2_8_53_1) 2023; 13 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 Toutounian F. (e_1_2_8_52_1) 2013 Verma A. M. I. T. K. (e_1_2_8_12_1) 2015; 19 Singh R. (e_1_2_8_55_1) 2019; 81 e_1_2_8_31_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 23 start-page: 803 issue: 7 year: 1987 end-page: 810 article-title: Nonlocal boundary value problem of the first kind for a sturm‐liouville operator in its differential and finite difference aspects publication-title: Differ. Equa. – volume: 16 start-page: 97 issue: 1 year: 2022 end-page: 104 article-title: Eigenvalues and eigenfunctions of fourth‐order sturm‐liouville problems using bernoulli series with chebychev collocation points publication-title: Math. Sci. – volume: 62 start-page: 1 issue: 111 year: 2017 end-page: 11 article-title: Numerical solutions of two‐dimensional mixed volterra‐fredholm integral equations via bernoulli collocation method publication-title: Rom. J. Phys. – volume: 67 start-page: 101976 year: 2023 article-title: A novel numerical approach and stability analysis for a class of pantograph delay differential equation publication-title: J. Comput. Sci. – volume: 71 start-page: 255 issue: 2 year: 1978 end-page: 263 article-title: A re‐examination of oxygen diffusion in a spherical cell with michaelis‐menten oxygen uptake kinetics publication-title: J. Theor. Biol. – volume: 135 start-page: 427 issue: 5 year: 2020 article-title: Solving a new design of nonlinear second‐order Lane–Emden pantograph delay differential model via Bernoulli collocation method publication-title: Eur. Phys. J. Plus – volume: 46 start-page: 345 issue: 3 year: 1993 end-page: 355 article-title: Existence and uniqueness of solutions of a class of two‐point singular nonlinear boundary value problems publication-title: J. Comput. Appl. Math. – volume: 9 start-page: 377 issue: 3 year: 2018 end-page: 392 article-title: New cubic b‐spline approximation for solving non‐linear singular boundary value problems arising in physiology publication-title: Commun. Math. Appl. – volume: 2022 start-page: 1 year: 2022 end-page: 16 article-title: Application of a novel collocation approach for simulating a class of nonlinear third‐order Lane–Emden model publication-title: Math. Probl. Eng. – volume: 135 start-page: 1 year: 2020 end-page: 21 article-title: An efficient numerical technique for Lane–Emden–Fowler boundary value problems: Bernstein collocation method publication-title: Eur. Phys. J. Plus – volume: 54 start-page: 285 issue: 2 year: 1975 end-page: 287 article-title: The distribution of heat sources in the human head: a theoretical consideration publication-title: J. Theor. Biol. – volume: 219 start-page: 482 issue: 2 year: 2012 end-page: 497 article-title: A new bernoulli matrix method for solving high‐order linear and nonlinear fredholm integro‐differential equations with piecewise intervals publication-title: Appl. Math. Comput. – volume: 39 start-page: 1232 issue: 3 year: 2009 end-page: 1237 article-title: B‐spline solution of non‐linear singular boundary value problems arising in physiology publication-title: Chaos, Solitons Fractals – volume: 45 start-page: 661 issue: 5 year: 1983 end-page: 664 article-title: On oxygen diffusion in a spherical cell with michaelis‐menten oxygen uptake kinetics publication-title: Bull. Math. Biol. – volume: 8 start-page: 2104 issue: 12 year: 2020 article-title: Solving multi‐point boundary value problems using sinc‐derivative interpolation publication-title: Mathematics – volume: 12 start-page: 13 issue: 1 year: 1975 end-page: 36 article-title: Numerical methods for singular boundary value problems publication-title: SIAM J. Numer. Anal. – volume: 9 start-page: 1270 issue: 11 year: 2018 article-title: Two very accurate and e cient methods for solving time‐dependent problems publication-title: Appl. Math. – volume: 40 start-page: 8886 issue: 21‐22 year: 2016 end-page: 8897 article-title: Numerical solution of the static beam problem by bernoulli collocation method publication-title: Appl. Math. Model. – volume: 3 start-page: 96 issue: 2 year: 2015 article-title: Bernoulli collocation method for high‐order generalized pantograph equations publication-title: New Trends Math. Sci. – volume: 235 start-page: 1914 issue: 8 year: 2011 end-page: 1924 article-title: A new analytical and numerical treatment for singular two‐point boundary value problems via the adomian decomposition method publication-title: J. Comput. Appl. Math. – volume: 19 start-page: 379 issue: 3 year: 1987 end-page: 388 article-title: On the existence of solutions of a class of singular nonlinear two‐point boundary value problems publication-title: J. Comput. Appl. Math. – volume: 122 start-page: 393 issue: 3 year: 2001 end-page: 405 article-title: A new modification of the adomian decomposition method for linear and nonlinear operators publication-title: Appl. Math. Comput. – volume: 20 start-page: 1795 issue: 11 year: 1952 end-page: 1797 article-title: On the solution of the poisson‐boltzmann equation with application to the theory of thermal explosions publication-title: J. Chem. Phys. – volume: 40 start-page: 288 issue: 4 year: 2009 end-page: 297 article-title: A collection of computational techniques for solving singular boundary‐value problems publication-title: Adv. Eng. Softw. – volume: 36 start-page: 57 year: 2012 end-page: 67 article-title: A note on the solution of singular boundary value problems arising in engineering and applied sciences: use of OHAM publication-title: Comput. Chem. Eng. – volume: 39 start-page: 3204 issue: 12 year: 2016 end-page: 3214 article-title: An efficient pseudospectral method for numerical solution of nonlinear singular initial and boundary value problems arising in astrophysics publication-title: Math. Methods Appl. Sci. – volume: 81 start-page: 785 issue: 3 year: 2019 end-page: 800 article-title: An efficient algorithm for solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions: the homotopy analysis method publication-title: MATCH Commun. Math. Comput. Chem – volume: 40 start-page: 1 year: 2021 end-page: 22 article-title: A different monotone iterative technique for a class of nonlinear three‐point bvps publication-title: Comput. Appl. Math. – volume: 60 start-page: 821 issue: 3 year: 2010 end-page: 829 article-title: He's variational iteration method for treating nonlinear singular boundary value problems publication-title: Comput. Math. Appl. – volume: 7 start-page: 1 year: 2021 end-page: 15 article-title: A novel numerical approach for simulating the nonlinear mhd jeffery–hamel flow problem publication-title: Int. J. Appl. Comput. Math. – volume: 23 start-page: 1077 issue: 6 year: 2020 end-page: 1091 article-title: A numerical treatment of the delayed ambartsumian equation over large interval publication-title: J. Interdiscip. Math. – volume: 14 start-page: 167 issue: 2 year: 2020 end-page: 175 article-title: A fast and efficient scheme for solving a class of nonlinear lienard's equations publication-title: Math. Sci. – volume: 41 start-page: 6625 issue: 16 year: 2018 end-page: 6644 article-title: A new highly accurate domain decomposition optimal homotopy analysis method and its convergence for singular boundary value problems publication-title: Math. Methods Appl. Sci. – volume: 168 start-page: 540 issue: 2 year: 1992 end-page: 551 article-title: Solvability of a three‐point nonlinear boundary value problem for a second order ordinary differential equation publication-title: J. Math. Anal. Appl. – volume: 35 start-page: 215 issue: 1‐2 year: 2002 end-page: 227 article-title: Multipoint boundary value problems by differential quadrature method publication-title: Math. Comput. Model. – volume: 47 start-page: 571 issue: 3 year: 1989 end-page: 581 article-title: Rotationally symmetric solutions for shallow membrane caps publication-title: Q. Appl. Math. – volume: 9 start-page: 1242 issue: 4 year: 2019 end-page: 1260 article-title: On an iterative method for a class of 2 point & 3 point nonlinear sbvps publication-title: J. Appl. Anal. Comput. – volume: 37 start-page: 4283 issue: 6 year: 2013 end-page: 4294 article-title: A collocation method based on bernoulli operational matrix for numerical solution of generalized pantograph equation publication-title: Appl. Math. Model. – volume: 43 start-page: 575 issue: 4 year: 2023 end-page: 601 article-title: Bernstein operational matrix of differentiation and collocation approach for a class of three‐point singular bvps: error estimate and convergence analysis publication-title: Opuscula Math. – volume: 373 issue: 2050 year: 2015 article-title: Free boundary problems in biology publication-title: Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. – year: 2010 – volume: 13 start-page: 64 issue: 1 year: 2023 end-page: 83 article-title: Numerical solution of lane‐emden pantograph delay differential equation: stability and convergence analysis publication-title: Int. J. Math. Model. Numer. Optim. – volume: 7 start-page: 459 issue: 5 year: 2019 article-title: On a variational method for stiff differential equations arising from chemistry kinetics publication-title: Mathematics – volume: 13 start-page: 2162 issue: 4 year: 2023 end-page: 2183 article-title: New approach based on collocation and shifted chebyshev polynomials for a class of three‐point singular bvps publication-title: J. Appl. Anal. Comput. – volume: 13 start-page: 341 issue: 1 year: 2023 end-page: 361 article-title: A technique for solving system of generalized emden‐fowler equation using legendre wavelet publication-title: TWMS J. Appl. Eng. Math. – volume: 9 start-page: 40 issue: 1 year: 2008 end-page: 52 article-title: Existence‐uniqueness results for a class of singular boundary value problems arising in physiology publication-title: Nonlinear Anal. Real World Appl. – volume: 38 start-page: 3932 issue: 10 year: 2021 end-page: 3943 article-title: A note on variation iteration method with an application on Lane–Emden equations publication-title: Eng. Comput. – volume: 7 start-page: 1502168 issue: 03 year: 2018 end-page: 9679 article-title: Collocation method based on bernoulli polynomial and shifted chebychev for solving the bratu equation publication-title: J. Appl. Comput. Math – volume: 530 year: 2001 – volume: 4 start-page: 45 issue: 01 year: 2019 end-page: 59 article-title: Bernoulli polynomial and the numerical solution of high‐order boundary value problems publication-title: Math. Nat. Sci. – volume: 19 start-page: 175 issue: 2 year: 2015 end-page: 190 article-title: Maximum principle and nonlinear three point singular boundary value problems arising due to spherical symmetry publication-title: Commun. Appl. Anal – volume: 60 start-page: 449 issue: 2 year: 1976 end-page: 457 article-title: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics publication-title: J. Theor. Biol. – volume: 139 start-page: 513 issue: 2‐3 year: 2003 end-page: 523 article-title: Chebyshev finite difference approximation for the boundary value problems publication-title: Appl. Math. Comput. – year: 2013 – ident: e_1_2_8_11_1 doi: 10.3390/math8122104 – ident: e_1_2_8_21_1 doi: 10.1090/qam/1012280 – ident: e_1_2_8_40_1 doi: 10.4236/am.2018.911083 – ident: e_1_2_8_4_1 doi: 10.1504/IJMMNO.2023.127839 – volume: 19 start-page: 175 issue: 2 year: 2015 ident: e_1_2_8_12_1 article-title: Maximum principle and nonlinear three point singular boundary value problems arising due to spherical symmetry publication-title: Commun. Appl. Anal – ident: e_1_2_8_22_1 doi: 10.1016/S0022-5193(75)80131-7 – volume: 7 start-page: 1502168 issue: 03 year: 2018 ident: e_1_2_8_38_1 article-title: Collocation method based on bernoulli polynomial and shifted chebychev for solving the bratu equation publication-title: J. Appl. Comput. Math – ident: e_1_2_8_31_1 doi: 10.1016/j.advengsoft.2008.04.010 – volume: 62 start-page: 1 issue: 111 year: 2017 ident: e_1_2_8_46_1 article-title: Numerical solutions of two‐dimensional mixed volterra‐fredholm integral equations via bernoulli collocation method publication-title: Rom. J. Phys. – ident: e_1_2_8_20_1 doi: 10.1016/S0092-8240(83)80019-6 – ident: e_1_2_8_35_1 doi: 10.1002/mma.5181 – ident: e_1_2_8_23_1 doi: 10.1016/j.compchemeng.2011.08.008 – volume: 3 start-page: 96 issue: 2 year: 2015 ident: e_1_2_8_47_1 article-title: Bernoulli collocation method for high‐order generalized pantograph equations publication-title: New Trends Math. Sci. – volume: 219 start-page: 482 issue: 2 year: 2012 ident: e_1_2_8_51_1 article-title: A new bernoulli matrix method for solving high‐order linear and nonlinear fredholm integro‐differential equations with piecewise intervals publication-title: Appl. Math. Comput. – ident: e_1_2_8_41_1 doi: 10.1080/09720502.2020.1727616 – ident: e_1_2_8_33_1 doi: 10.1016/j.cam.2010.09.007 – ident: e_1_2_8_42_1 doi: 10.1007/s40096-020-00328-7 – ident: e_1_2_8_34_1 doi: 10.1016/S0096-3003(00)00060-6 – ident: e_1_2_8_17_1 doi: 10.1108/EC-10-2020-0604 – ident: e_1_2_8_25_1 doi: 10.1016/0377-0427(87)90206-8 – ident: e_1_2_8_44_1 doi: 10.1155/2022/5717924 – ident: e_1_2_8_2_1 doi: 10.1002/mma.3763 – ident: e_1_2_8_26_1 doi: 10.1016/0377-0427(93)90031-6 – ident: e_1_2_8_13_1 doi: 10.1063/1.1700291 – ident: e_1_2_8_18_1 doi: 10.1016/0022-5193(78)90270-9 – volume-title: Abstract and applied analysis year: 2013 ident: e_1_2_8_52_1 – ident: e_1_2_8_5_1 doi: 10.3390/math7050459 – volume: 23 start-page: 803 issue: 7 year: 1987 ident: e_1_2_8_10_1 article-title: Nonlocal boundary value problem of the first kind for a sturm‐liouville operator in its differential and finite difference aspects publication-title: Differ. Equa. – ident: e_1_2_8_24_1 doi: 10.1140/epjp/s13360-020-00489-3 – ident: e_1_2_8_19_1 doi: 10.1016/0022-5193(76)90071-0 – ident: e_1_2_8_50_1 – volume: 81 start-page: 785 issue: 3 year: 2019 ident: e_1_2_8_55_1 article-title: An efficient algorithm for solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions: the homotopy analysis method publication-title: MATCH Commun. Math. Comput. Chem – ident: e_1_2_8_30_1 doi: 10.1137/0712002 – ident: e_1_2_8_7_1 doi: 10.1098/rsta.2014.0368 – ident: e_1_2_8_45_1 doi: 10.1016/j.apm.2016.05.018 – ident: e_1_2_8_27_1 doi: 10.1016/j.nonrwa.2006.09.001 – ident: e_1_2_8_54_1 doi: 10.7494/OpMath.2023.43.4.575 – ident: e_1_2_8_9_1 doi: 10.1016/S0895-7177(01)00160-1 – ident: e_1_2_8_14_1 doi: 10.1016/0022-247X(92)90179-H – ident: e_1_2_8_49_1 doi: 10.1007/978-94-015-9672-5 – ident: e_1_2_8_15_1 doi: 10.1016/j.camwa.2010.05.029 – ident: e_1_2_8_39_1 doi: 10.22436/mns.04.01.05 – volume: 9 start-page: 377 issue: 3 year: 2018 ident: e_1_2_8_29_1 article-title: New cubic b‐spline approximation for solving non‐linear singular boundary value problems arising in physiology publication-title: Commun. Math. Appl. – ident: e_1_2_8_43_1 doi: 10.1007/s40819-021-01016-3 – ident: e_1_2_8_8_1 doi: 10.1007/s40314-021-01653-w – ident: e_1_2_8_36_1 doi: 10.1140/epjp/s13360-020-00449-x – ident: e_1_2_8_48_1 doi: 10.1016/j.apm.2012.09.032 – ident: e_1_2_8_28_1 doi: 10.1016/j.chaos.2007.06.007 – ident: e_1_2_8_3_1 doi: 10.1016/j.jocs.2023.101976 – volume: 9 start-page: 1242 issue: 4 year: 2019 ident: e_1_2_8_16_1 article-title: On an iterative method for a class of 2 point & 3 point nonlinear sbvps publication-title: J. Appl. Anal. Comput. – ident: e_1_2_8_37_1 doi: 10.1007/s40096-021-00412-6 – volume: 13 start-page: 2162 issue: 4 year: 2023 ident: e_1_2_8_53_1 article-title: New approach based on collocation and shifted chebyshev polynomials for a class of three‐point singular bvps publication-title: J. Appl. Anal. Comput. – ident: e_1_2_8_32_1 doi: 10.1016/S0096-3003(02)00214-X – volume: 13 start-page: 341 issue: 1 year: 2023 ident: e_1_2_8_6_1 article-title: A technique for solving system of generalized emden‐fowler equation using legendre wavelet publication-title: TWMS J. Appl. Eng. Math. |
SSID | ssj0008112 |
Score | 2.3916795 |
Snippet | The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8322 |
SubjectTerms | Astrophysics Bernoulli polynomials Boundary conditions Boundary value problems collocation method Collocation methods Differential equations Error analysis Exact solutions Initial conditions Lipschitz condition Mathematical analysis Operators (mathematics) Polynomials Series expansion singular boundary value problems three‐point boundary value problems |
Title | A matrix technique‐based numerical treatment of a nonlocal singular boundary value problems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.9809 https://www.proquest.com/docview/3187401531 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1PS8MwFMCDeNKDuqk4nRJB_HPI1qbJ2hyHOIZQD-JgIFKSNL24TVk3UE9-BD-jn8S8_puKgnhqDwmkee_lvSYvv4fQUeAxrR2lSZx4mrCEB0TZ3zDChfX-iZbcj-FycnjV6Q_Y5ZAPi6xKuAuT8yGqDTewjGy9BgOXKm0voKHjsWyJILu7B6laEA9dL8hRgZsddAIdhjDqspI769B22fGrJ1qEl5-D1MzL9NbRbTm-PLnkvjWfqZZ--YZu_N8HbKC1IvjE3VxbamjJTOpoNazIrWkd1QpjT_FpQaQ-20R3XTwGlP8TrpCv769v4ABjPJnnZz4jXOWs44cESzyxYwRHiWE3ApJdscpKOE2fMRDGDS5q2aRbaNC7uDnvk6IuA9E2OBCECun40lfKNcyJHeUKkShP29hNBjwWTHMTS_uqPZlQmQBolFrBu1pxn3VsPLKNlu0YzA7CyiqyH0hJHWmVg8IGjNGJlZ3yHCOMbKCTUkaRLqDlUDtjFOW4ZRrZWYxgFhvosGr5mIM6fmjTLMUcFaaaRl5eldCuRQ10nMnr1_5RGHbhufvXhntohUK9YKC98iZank3nZt8GMTN1kKnrB7hQ8LE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z27btswFEAvDHdoOzSPNqjzaFkgfWSQI1GSJQ4djDqBnUQZihjwUigkRS2N3SCy0ThTP6H_kV_JV_RLeq9eboME6JKhkzRQAEXeF8nLcwG2Q9fT2lbaSlJXW17qh5bCZZjlC_T-qZZ-kNDl5Oi40x96ByN_1IDr6i5MwYeoN9xIM3J7TQpOG9K7C2roeCzbIrRFmVF5aObfcb2WfRz0cHLfcr6_d_Kpb5UlBSyNfk1YXEg7kIFSjvHsxFaOEKlyNYYdMvQT4WnfJBJftStTLlNiZHLss6OVH3gdTpQDtPePqIA4gfp7nxesqtDJj1aJR2N53PEq0q3Nd6ue_u37FgHtn2Fx7tf2l-CmGpEineVrezZVbX11Cxb5nwzZMjwr42vWLRRiBRpmsgpPoxpOm63CSmnPMvahhG7vPIcvXTamagWXrKba_vrxk3x8wiaz4ljrjNVp-exbyiSb4KBQLMBow4XyeZnKq1RdzBlB1A0ry_VkL2D4ID-9Bk3sg3kJTKGuBqGU3JYo_5z2mIxOUViUaxthZAveV0IR65LLTuVBzuKCKM1jnLWYZq0Fb-qW5wWL5I42m5VcxaU1ymK3KLyI5rYF73IBuff7OIq69Fz_14av4XH_JDqKjwbHhxvwhFN5ZILb-pvQnF7MzBbGbFP1KtcVBqcPLWm_AQxOTng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3NbtQwEIBHVSshOFBaQGxbipH4PWTrOM4mPnBYdbtqKVshRKVeUGo79qXdbdXsCsqJR-A5eBXegidhJn9LEUhceuCUHBzJsefP9vgbgCdpJK3lxga5j2wgfZwGBpdhQazQ-3ur4ySny8mjg97uoXx9FB8twLfmLkzFh2g33EgzSntNCn6e-605NHQ81l2VclUnVO67y4-4XCte7Q1wbp8KMdx5v70b1BUFAotuTQVCaZ7oxJjQSZ5zEyrlTWQx6tBpnCtpY5drfLWR9kJ7QmQK7HJoTZzIniDIAZr7JdnjispEDN7NUVVpWJ6sEo4mkCKUDeiWi62mp1dd3zye_TUqLt3acBm-NwNSZbOcdGdT07Wff2NF_h8jdgdu19E161fqsAILbrIKt0YtmrZYhZXamhXsRY3cfnkXPvTZmGoVfGIt0_bHl6_k4XM2mVWHWqesTcpnZ55pNsExoUiA0XYLZfMyU9aourhkhFB3rC7WU9yDw2v56fuwiH1wD4AZ1NQk1VpwjdIvaIfJWY-yYiLulNMdeN7IRGZrKjsVBznNKp60yHDWMpq1DjxuW55XJJI_tNloxCqrbVGRRVXZRTS2HXhWysdfv89Goz491_614SO48XYwzN7sHeyvw01BtZGJbBtvwOL0YuYeYsA2NZulpjA4vm5B-wnA2E0n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+matrix+technique%E2%80%90based+numerical+treatment+of+a+nonlocal+singular+boundary+value+problems&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Sriwastav%2C+Nikhil&rft.au=Barnwal%2C+Amit+K.&rft.au=Srivastav%2C+Avinash+Kumar&rft.au=Chandra%2C+Harish&rft.date=2025-05-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=48&rft.issue=7&rft.spage=8322&rft.epage=8341&rft_id=info:doi/10.1002%2Fmma.9809&rft.externalDBID=10.1002%252Fmma.9809&rft.externalDocID=MMA9809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |