A novel crosswind mitigation strategy for tall buildings using negative stiffness damped outrigger systems
Summary This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy di...
Saved in:
Published in | Structural control and health monitoring Vol. 29; no. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy dissipation for tall buildings. Systematical evaluation and comparison on crosswind performance are carried out for tall buildings using (a) conventional outrigger (CO), (b) conventional damped outrigger (CDO), and (c) NSDO. It is shown that the proposed NSDO is able to achieve a damping amplification factor larger than a unit, which would never be achieved by CDO in practical due to the actual deformation of perimeter columns. In this way, NSDO has the most satisfactory crosswind reduction effect, especially when perimeter column stiffness is insufficient. For example, replacing CDO with NSDO not only attenuates crosswind‐induced harmful drift and structural acceleration by 22% and 36%, respectively, but also further saves about 75% of the size of viscous dampers. In other words, NSDO adopts less outrigger damping coefficient but reduces more crosswind‐induced vibration. |
---|---|
AbstractList | This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy dissipation for tall buildings. Systematical evaluation and comparison on crosswind performance are carried out for tall buildings using (a) conventional outrigger (CO), (b) conventional damped outrigger (CDO), and (c) NSDO. It is shown that the proposed NSDO is able to achieve a damping amplification factor larger than a unit, which would never be achieved by CDO in practical due to the actual deformation of perimeter columns. In this way, NSDO has the most satisfactory crosswind reduction effect, especially when perimeter column stiffness is insufficient. For example, replacing CDO with NSDO not only attenuates crosswind‐induced harmful drift and structural acceleration by 22% and 36%, respectively, but also further saves about 75% of the size of viscous dampers. In other words, NSDO adopts less outrigger damping coefficient but reduces more crosswind‐induced vibration. Summary This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy dissipation for tall buildings. Systematical evaluation and comparison on crosswind performance are carried out for tall buildings using (a) conventional outrigger (CO), (b) conventional damped outrigger (CDO), and (c) NSDO. It is shown that the proposed NSDO is able to achieve a damping amplification factor larger than a unit, which would never be achieved by CDO in practical due to the actual deformation of perimeter columns. In this way, NSDO has the most satisfactory crosswind reduction effect, especially when perimeter column stiffness is insufficient. For example, replacing CDO with NSDO not only attenuates crosswind‐induced harmful drift and structural acceleration by 22% and 36%, respectively, but also further saves about 75% of the size of viscous dampers. In other words, NSDO adopts less outrigger damping coefficient but reduces more crosswind‐induced vibration. |
Author | Nagarajaiah, Satish Wang, Meng Sun, Fei‐Fei |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0003-0432-8313 surname: Wang fullname: Wang, Meng organization: Tongji University – sequence: 2 givenname: Satish orcidid: 0000-0003-0088-1656 surname: Nagarajaiah fullname: Nagarajaiah, Satish email: satish.nagarajaiah@rice.edu organization: Rice University – sequence: 3 givenname: Fei‐Fei orcidid: 0000-0002-9600-7500 surname: Sun fullname: Sun, Fei‐Fei email: ffsun@tongji.edu.cn organization: Tongji University |
BookMark | eNp1kD1rwzAQhkVJoUla6E8QdOniVJYsRx5D6BcEOjSdhWKdjIItp5Kc4H9fJykdSjvdDc_7HvdM0Mi1DhC6TcksJYQ-hFjOaCHEBRqnPOMJpTkb_eycX6FJCNuBzKngY7RdYNfuocalb0M4WKdxY6OtVLStwyF6FaHqsWk9jqqu8aaztbauCrgLw8AOjugeBtQa4yAErFWzA43bLnpbVeBx6EOEJlyjS6PqADffc4o-nh7Xy5dk9fb8ulyskpIWTCQ6pxnVm6zgjABjpQEF3OgiA5HrzBAtNE2hMLxkc2pYAVoRVeaCKsZTMi_YFN2de3e-_ewgRLltO--Gk5LOCclYLgo6UPdn6vS4ByN33jbK9zIl8mhSDibl0eSAzn6hpY0nQYMeW_8VSM6Bg62h_7dYvq-XJ_4LuWiJCQ |
CitedBy_id | crossref_primary_10_1016_j_jobe_2022_105196 crossref_primary_10_1016_j_oceaneng_2023_115355 crossref_primary_10_1016_j_jweia_2024_105706 crossref_primary_10_1142_S0219455424500342 crossref_primary_10_1007_s41062_024_01574_7 crossref_primary_10_1016_j_engstruct_2024_117557 crossref_primary_10_3390_buildings14092904 crossref_primary_10_1061__ASCE_ST_1943_541X_0003474 crossref_primary_10_1016_j_jobe_2024_110425 crossref_primary_10_1155_2023_2558070 crossref_primary_10_1016_j_engstruct_2023_115702 crossref_primary_10_1016_j_engstruct_2023_115801 crossref_primary_10_1007_s40996_024_01471_0 crossref_primary_10_1002_eqe_3693 crossref_primary_10_1002_eqe_3891 crossref_primary_10_1016_j_ymssp_2025_112502 crossref_primary_10_1155_2023_5524170 crossref_primary_10_1002_eqe_4302 crossref_primary_10_1016_j_engstruct_2024_119083 |
Cites_doi | 10.1016/j.engstruct.2015.04.033 10.1002/tal.1098 10.1002/stc.1968 10.1002/stc.2437 10.1061/(ASCE)ST.1943‐541X.0000247 10.1193/1.1540999 10.1002/eqe.359 10.1016/j.jweia.2007.06.034 10.1002/stc.2482 10.1002/eqe.3072 10.1002/1096‐9845(200009)29:9%3C1405::AID‐EQE976%3E3.0.CO;2‐4 10.1002/stc.2594 10.1061/(ASCE)ST.1943‐541X.0000830 10.1002/stc.2503 10.1016/j.jweia.2018.07.006 10.1016/S0167‐6105(02)00285‐4 10.1061/(ASCE)ST.1943‐541X.0000616 10.12989/sss.2015.15.3.627 10.1002/tal.1212 10.1088/0964‐1726/24/7/072002 10.1080/13632469.2018.1493004 10.1061/(ASCE)ST.1943‐541X.0001077 10.1061/(ASCE)0733‐9399(2003)129:3(273 10.1016/j.engstruct.2019.04.011 10.1016/j.ymssp.2016.08.018 10.1016/j.engstruct.2020.111615 10.1111/mice.12274 10.1016/j.engstruct.2019.03.110 10.1016/j.jweia.2018.11.026 10.1016/j.engstruct.2017.10.044 10.1061/(ASCE)ST.1943‐541X.0000615 10.1680/stbu.2010.163.2.111 10.1061/(ASCE)ST.1943‐541X.0002846 10.1177/1077546316646514 10.21022/IJHRB.2016.5.1.51 10.1002/eqe.1023 10.1016/j.jweia.2020.104306 10.1016/j.engstruct.2018.09.049 10.1016/j.jsv.2014.06.045 10.1016/j.jsv.2018.12.015 10.1002/tal.413 10.1016/j.compstruc.2017.07.022 10.1680/iicep.1964.10112 10.1002/stc.2067 10.1061/(ASCE)EM.1943‐7889.0001289 10.12989/sss.2013.11.5.435 10.1016/0167‐6105(92)90519‐G 10.1061/(ASCE)ST.1943‐541X.0001455 10.1061/(ASCE)0733‐9445(2001)127:2(105 10.1016/j.jsv.2020.115814 10.1002/stc.1974 10.1016/j.engstruct.2017.10.040 10.1016/j.soildyn.2017.11.023 10.1061/(ASCE)ST.1943‐541X.0001863 10.1016/j.jweia.2019.104031 10.1016/j.jsv.2017.11.006 10.1007/s11803‐014‐0231‐3 10.1016/j.engstruct.2020.110754 10.1002/stc.349 10.1002/stc.2377 10.1002/tal.1554 10.1002/tal.1664 10.1016/j.jweia.2017.10.029 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2988 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2988 STC2988 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2021M700310 – fundername: State Key Laboratory of Disaster Reduction in Civil Engineering of China funderid: SLDRCE19‐B‐16; SLDRCE13‐MB‐01 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2938-d6242db49530e33cfeae5fd94e86d4f0d8d21e9f5c372f39eda0ac682a3510793 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Sat Aug 23 13:01:57 EDT 2025 Tue Jul 01 04:05:46 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Wed Jan 22 16:24:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2938-d6242db49530e33cfeae5fd94e86d4f0d8d21e9f5c372f39eda0ac682a3510793 |
Notes | Funding information China Postdoctoral Science Foundation, Grant/Award Number: 2021M700310; State Key Laboratory of Disaster Reduction in Civil Engineering of China, Grant/Award Numbers: SLDRCE19‐B‐16, SLDRCE13‐MB‐01 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0088-1656 0000-0002-9600-7500 0000-0003-0432-8313 |
PQID | 2700436892 |
PQPubID | 2034347 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2700436892 crossref_primary_10_1002_stc_2988 crossref_citationtrail_10_1002_stc_2988 wiley_primary_10_1002_stc_2988_STC2988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 141 2017; 85 2018; 207 2019; 443 2020; 205 2017; 153 2003; 19 2014; 23 2016; 142 2018; 47 2014; 333 2004; 33 2018; 177 2003; 129 2018; 172 2013; 11 2018; 414 2020; 494 2017; 32 2019; 26 2019; 28 2014; 13 2002; 90 2018; 180 2009; 16 1992; 40 2015; 15 2000; 29 2019; 191 2019; 190 2018; 105 2020; 220 1964; 28 2017; 24 2011; 40 2021; 229 2015; 98 2008 2010; 163 2008; 96 2020; 146 2019; 184 2018; 25 2007; 16 2018; 24 2001; 127 2015; 24 2016; 5 2020; 196 2010; 136 2013; 139 2020; 27 2014; 140 2017; 143 2016; 24 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_66_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_62_1 e_1_2_13_60_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 Gamaliel R (e_1_2_13_64_1) 2008 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 Infanti S (e_1_2_13_21_1) e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_58_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 |
References_xml | – volume: 143 issue: 9 year: 2017 article-title: Wind‐induced vibration mitigation in tall buildings using the tuned mass‐damper‐inerter publication-title: J Struct Eng – volume: 26 issue: 7 year: 2019 article-title: An adaptive‐passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency publication-title: Struct Control Health Monit – volume: 16 start-page: 800 issue: 7‐8 year: 2009 end-page: 841 article-title: Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short‐term Fourier transform publication-title: Struct Control Health Monit – volume: 163 start-page: 111 issue: 2 year: 2010 end-page: 118 article-title: Intrinsic and supplementary damping in tall buildings publication-title: Proc Inst Civ Eng ‐ Struct Build – volume: 13 start-page: 293 issue: 2 year: 2014 end-page: 304 article-title: Dynamic characteristics of a novel damped outrigger system publication-title: Earthq Eng Eng Vib – volume: 129 start-page: 273 issue: 3 year: 2003 end-page: 282 article-title: Seismic analysis and design with maxwell dampers publication-title: J Eng Mech – volume: 32 start-page: 657 issue: 8 year: 2017 end-page: 673 article-title: Optimization of structures subject to stochastic dynamic loading publication-title: Comput Aided Civ Inf Eng – volume: 414 start-page: 31 year: 2018 end-page: 42 article-title: Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system publication-title: J Sound Vib – volume: 27 issue: 9 year: 2020 article-title: A passive negative stiffness damper in series with a flexible support: Theoretical and experimental study publication-title: Struct Control Health Monit – volume: 153 start-page: 404 year: 2017 end-page: 410 article-title: Outrigger tuned inertial mass electromagnetic transducers for high‐rise buildings subject to long period earthquakes publication-title: Eng Struct – volume: 105 start-page: 37 year: 2018 end-page: 53 article-title: Soil‐dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper publication-title: Soil Dyn Earthq Eng – volume: 27 issue: 4 year: 2020 article-title: Performance assessment of the KDamper as a seismic absorption base publication-title: Struct Control Health Monit – volume: 191 start-page: 280 year: 2019 end-page: 291 article-title: Optimization of damped outrigger systems subject to stochastic excitation publication-title: Eng Struct – volume: 23 start-page: 963 issue: 13 year: 2014 end-page: 979 article-title: Analysis of a high‐rise steel structure with viscous damped outriggers publication-title: Struct Design Tall Spec Build – volume: 177 start-page: 30 year: 2018 end-page: 46 article-title: Performance evaluation of existing isolated buildings with supplemental passive pseudo‐negative stiffness devices publication-title: Eng Struct – volume: 98 start-page: 128 year: 2015 end-page: 140 article-title: Dynamic characteristics of novel energy dissipation systems with damped outriggers publication-title: Eng Struct – volume: 28 issue: 15 year: 2019 article-title: Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping publication-title: Struct Design Tall Spec Build – volume: 40 start-page: 33 issue: 1 year: 1992 end-page: 54 article-title: The effect of tuned mass dampers and liquid dampers on cross‐wind response of tall/slender structures publication-title: J Wind Eng Ind Aerodyn – volume: 24 start-page: 797 issue: 12 year: 2015 end-page: 820 article-title: A general solution for performance evaluation of a tall building with multiple damped and undamped outriggers publication-title: Struct Design Tall Spec Build – volume: 85 start-page: 193 year: 2017 end-page: 203 article-title: Analytically optimal parameters of dynamic vibration absorber with negative stiffness publication-title: Mech Syst Signal Process – volume: 16 start-page: 501 issue: 4 year: 2007 end-page: 517 article-title: The damped outrigger concept for tall buildings publication-title: Struct Design Tall Spec Build – volume: 146 issue: 12 year: 2020 article-title: Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness publication-title: J Struct Eng – volume: 29 start-page: 1405 issue: 9 year: 2000 end-page: 1421 article-title: Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration publication-title: Earthq Eng Struct Dyn – volume: 140 issue: 2 year: 2014 article-title: Simulated bilinear‐elastic behavior in a SDOF elastic structure using negative stiffness device: experimental and analytical study publication-title: J Struct Eng – volume: 15 start-page: 627 issue: 3 year: 2015 end-page: 643 article-title: Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics publication-title: Smart Struct Syst – year: 2008 – volume: 28 start-page: 187 issue: 2 year: 1964 end-page: 196 article-title: Note on the distribution of the largest value of a random function with application to gust loading publication-title: Proc Inst Civ Eng – volume: 139 start-page: 1112 issue: 7 year: 2013 end-page: 1123 article-title: Adaptive negative stiffness: new structural modification approach for seismic protection publication-title: J Struct Eng – volume: 443 start-page: 559 year: 2019 end-page: 575 article-title: Study of a novel adaptive passive stiffness device and its application for seismic protection publication-title: J Sound Vib – volume: 141 issue: 4 year: 2015 article-title: Apparent weakening in SDOF yielding structures using a negative stiffness device: experimental and analytical study publication-title: J Struct Eng – volume: 142 issue: 5 year: 2016 article-title: Negative stiffness device for seismic protection of structures: shake table testing of a seismically isolated structure publication-title: J Struct Eng – volume: 90 start-page: 1757 issue: 12 year: 2002 end-page: 1770 article-title: Mathematical model of acrosswind dynamic loads on rectangular tall buildings publication-title: J Wind Eng Ind Aerodyn – volume: 5 start-page: 51 issue: 1 year: 2016 end-page: 62 article-title: Mechanical amplification of relative movements in damped outriggers for wind and seismic response mitigation publication-title: Int J High‐Rise Build – volume: 47 start-page: 2343 issue: 12 year: 2018 end-page: 2365 article-title: Seismic performance evaluation of single damped‐outrigger system incorporating buckling‐restrained braces publication-title: Earthq Eng Struct Dyn – volume: 40 start-page: 75 issue: 1 year: 2011 end-page: 92 article-title: Effects of brace stiffness on performance of structures with supplemental Maxwell model‐based brace–damper systems publication-title: Earthq Eng Struct Dyn – volume: 26 issue: 11 year: 2019 article-title: Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction publication-title: Struct Control Health Monit – volume: 229 year: 2021 article-title: Multi‐objective optimal design and seismic performance of negative stiffness damped outrigger structures considering damping cost publication-title: Eng Struct – volume: 24 issue: 11 year: 2017 article-title: Negative stiffness device for seismic protection of smart base isolated benchmark building publication-title: Struct Control Health Monit – volume: 190 start-page: 128 year: 2019 end-page: 141 article-title: Seismic protection of SDOF systems with a negative stiffness amplifying damper publication-title: Eng Struct – volume: 143 issue: 9 year: 2017 article-title: Experimental study on passive negative stiffness damper for cable vibration mitigation publication-title: J Eng Mech – volume: 180 start-page: 231 year: 2018 end-page: 248 article-title: Impact of structural design criteria on the comfort assessment of tall buildings publication-title: J Wind Eng Ind Aerodyn – volume: 153 start-page: 525 year: 2017 end-page: 539 article-title: KDamper concept in seismic isolation of bridges with flexible piers publication-title: Eng Struct – volume: 196 year: 2020 article-title: Vibration control of super‐tall buildings using combination of tapering method and TMD system publication-title: J Wind Eng Ind Aerodyn – volume: 139 start-page: 1124 issue: 7 year: 2013 end-page: 1133 article-title: Negative stiffness device for seismic protection of structures publication-title: J Struct Eng – volume: 24 start-page: 1 issue: 12 year: 2018 end-page: 29 article-title: Three‐dimensional base isolation using vertical negative stiffness devices publication-title: J Earthq Eng – volume: 172 start-page: 256 year: 2018 end-page: 266 article-title: Wind‐induced vibration control of super‐tall buildings using a new combined structural system publication-title: J Wind Eng Ind Aerodyn – volume: 24 issue: 7 year: 2015 article-title: Magnetic negative stiffness dampers publication-title: Smart Mater Struct – volume: 33 start-page: 465 issue: 4 year: 2004 end-page: 484 article-title: Optimal design of added viscoelastic dampers and supporting braces publication-title: Earthq Eng Struct Dyn – volume: 136 start-page: 1435 issue: 11 year: 2010 end-page: 1443 article-title: Analysis of tall buildings with damped outriggers publication-title: J Struct Eng – volume: 333 start-page: 6676 issue: 24 year: 2014 end-page: 6687 article-title: Chains of oscillators with negative stiffness elements publication-title: J Sound Vib – volume: 11 start-page: 435 issue: 5 year: 2013 end-page: 451 article-title: Semi‐active damped outriggers for seismic protection of high‐rise buildings publication-title: Smart Struct Syst – volume: 24 start-page: 588 issue: 3 year: 2016 end-page: 606 article-title: KDamping: a stiffness based vibration absorption concept publication-title: J Vib Control – volume: 24 issue: 10 year: 2017 article-title: Performance of tuned tandem mass dampers for structures under the ground acceleration publication-title: Struct Control Health Monit – volume: 27 issue: 4 year: 2020 article-title: Multimode vibration control of stay cables using optimized negative stiffness damper publication-title: Struct Control Health Monit – volume: 28 issue: 1 year: 2019 article-title: Energy dissipation and performance assessment of double damped outriggers in tall buildings under strong earthquakes publication-title: Struct Design Tall Spec Build – volume: 207 start-page: 121 year: 2018 end-page: 131 article-title: Effective damping and frequencies of viscous damper braced structures considering the supports flexibility publication-title: Comput Struct – volume: 220 year: 2020 article-title: Apparent‐weakening by adaptive passive stiffness shaping along the height of multistory building using negative stiffness devices and dampers for seismic protection publication-title: Eng Struct – volume: 96 start-page: 1092 issue: 6‐7 year: 2008 end-page: 1102 article-title: Wind‐induced vibration of high‐rise building with tuned mass damper including soil–structure interaction publication-title: J Wind Eng Ind Aerodyn – volume: 184 start-page: 174 year: 2019 end-page: 184 article-title: Observations of typhoon effects on a high‐rise building and verification of wind tunnel predictions publication-title: J Wind Eng Ind Aerodyn – volume: 127 start-page: 105 issue: 2 year: 2001 end-page: 112 article-title: Toggle‐brace‐damper seismic energy dissipation systems publication-title: J Struct Eng – volume: 25 issue: 2 year: 2018 article-title: Enhanced hybrid active tuned mass dampers for structures publication-title: Struct Control Health Monit – volume: 19 start-page: 133 issue: 1 year: 2003 end-page: 158 article-title: Scissor‐jack‐damper energy dissipation system publication-title: Earthquake Spectra – volume: 205 year: 2020 article-title: Study on wind‐induced vibration control of linked high‐rise buildings by using TMDI publication-title: J Wind Eng Ind Aerodyn – volume: 494 year: 2020 article-title: A unified analysis of negative stiffness dampers and inerter‐based absorbers for multimode cable vibration control publication-title: J Sound Vib – ident: e_1_2_13_25_1 doi: 10.1016/j.engstruct.2015.04.033 – ident: e_1_2_13_26_1 doi: 10.1002/tal.1098 – ident: e_1_2_13_53_1 doi: 10.1002/stc.1968 – ident: e_1_2_13_58_1 doi: 10.1002/stc.2437 – ident: e_1_2_13_23_1 doi: 10.1061/(ASCE)ST.1943‐541X.0000247 – ident: e_1_2_13_66_1 doi: 10.1193/1.1540999 – ident: e_1_2_13_35_1 doi: 10.1002/eqe.359 – ident: e_1_2_13_10_1 doi: 10.1016/j.jweia.2007.06.034 – ident: e_1_2_13_17_1 doi: 10.1002/stc.2482 – ident: e_1_2_13_27_1 doi: 10.1002/eqe.3072 – ident: e_1_2_13_11_1 doi: 10.1002/1096‐9845(200009)29:9%3C1405::AID‐EQE976%3E3.0.CO;2‐4 – ident: e_1_2_13_40_1 doi: 10.1002/stc.2594 – ident: e_1_2_13_44_1 doi: 10.1061/(ASCE)ST.1943‐541X.0000830 – ident: e_1_2_13_55_1 doi: 10.1002/stc.2503 – ident: e_1_2_13_5_1 doi: 10.1016/j.jweia.2018.07.006 – ident: e_1_2_13_2_1 doi: 10.1016/S0167‐6105(02)00285‐4 – volume-title: The 14th World Conference on Earthquake Engineering. 2008 ident: e_1_2_13_21_1 – ident: e_1_2_13_43_1 doi: 10.1061/(ASCE)ST.1943‐541X.0000616 – ident: e_1_2_13_46_1 doi: 10.12989/sss.2015.15.3.627 – ident: e_1_2_13_33_1 doi: 10.1002/tal.1212 – ident: e_1_2_13_48_1 doi: 10.1088/0964‐1726/24/7/072002 – ident: e_1_2_13_61_1 doi: 10.1080/13632469.2018.1493004 – ident: e_1_2_13_47_1 doi: 10.1061/(ASCE)ST.1943‐541X.0001077 – volume-title: Department of Civil and Environmental Engineering year: 2008 ident: e_1_2_13_64_1 – ident: e_1_2_13_34_1 doi: 10.1061/(ASCE)0733‐9399(2003)129:3(273 – ident: e_1_2_13_29_1 doi: 10.1016/j.engstruct.2019.04.011 – ident: e_1_2_13_56_1 doi: 10.1016/j.ymssp.2016.08.018 – ident: e_1_2_13_60_1 doi: 10.1016/j.engstruct.2020.111615 – ident: e_1_2_13_63_1 doi: 10.1111/mice.12274 – ident: e_1_2_13_38_1 doi: 10.1016/j.engstruct.2019.03.110 – ident: e_1_2_13_6_1 doi: 10.1016/j.jweia.2018.11.026 – ident: e_1_2_13_57_1 doi: 10.1016/j.engstruct.2017.10.044 – ident: e_1_2_13_42_1 doi: 10.1061/(ASCE)ST.1943‐541X.0000615 – ident: e_1_2_13_7_1 doi: 10.1680/stbu.2010.163.2.111 – ident: e_1_2_13_59_1 doi: 10.1061/(ASCE)ST.1943‐541X.0002846 – ident: e_1_2_13_19_1 doi: 10.1177/1077546316646514 – ident: e_1_2_13_31_1 doi: 10.21022/IJHRB.2016.5.1.51 – ident: e_1_2_13_36_1 doi: 10.1002/eqe.1023 – ident: e_1_2_13_20_1 doi: 10.1016/j.jweia.2020.104306 – ident: e_1_2_13_41_1 doi: 10.1016/j.engstruct.2018.09.049 – ident: e_1_2_13_45_1 doi: 10.1016/j.jsv.2014.06.045 – ident: e_1_2_13_18_1 doi: 10.1016/j.jsv.2018.12.015 – ident: e_1_2_13_22_1 doi: 10.1002/tal.413 – ident: e_1_2_13_37_1 doi: 10.1016/j.compstruc.2017.07.022 – ident: e_1_2_13_62_1 doi: 10.1680/iicep.1964.10112 – ident: e_1_2_13_15_1 doi: 10.1002/stc.2067 – ident: e_1_2_13_54_1 doi: 10.1061/(ASCE)EM.1943‐7889.0001289 – ident: e_1_2_13_30_1 doi: 10.12989/sss.2013.11.5.435 – ident: e_1_2_13_9_1 doi: 10.1016/0167‐6105(92)90519‐G – ident: e_1_2_13_49_1 doi: 10.1061/(ASCE)ST.1943‐541X.0001455 – ident: e_1_2_13_65_1 doi: 10.1061/(ASCE)0733‐9445(2001)127:2(105 – ident: e_1_2_13_52_1 doi: 10.1016/j.jsv.2020.115814 – ident: e_1_2_13_14_1 doi: 10.1002/stc.1974 – ident: e_1_2_13_32_1 doi: 10.1016/j.engstruct.2017.10.040 – ident: e_1_2_13_13_1 doi: 10.1016/j.soildyn.2017.11.023 – ident: e_1_2_13_4_1 doi: 10.1061/(ASCE)ST.1943‐541X.0001863 – ident: e_1_2_13_12_1 doi: 10.1016/j.jweia.2019.104031 – ident: e_1_2_13_50_1 doi: 10.1016/j.jsv.2017.11.006 – ident: e_1_2_13_24_1 doi: 10.1007/s11803‐014‐0231‐3 – ident: e_1_2_13_51_1 doi: 10.1016/j.engstruct.2020.110754 – ident: e_1_2_13_8_1 doi: 10.1002/stc.349 – ident: e_1_2_13_16_1 doi: 10.1002/stc.2377 – ident: e_1_2_13_28_1 doi: 10.1002/tal.1554 – ident: e_1_2_13_39_1 doi: 10.1002/tal.1664 – ident: e_1_2_13_3_1 doi: 10.1016/j.jweia.2017.10.029 |
SSID | ssj0026285 |
Score | 2.409125 |
Snippet | Summary
This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the... This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amplification Columns (structural) crosswind mitigation Crosswinds damped outrigger Dampers damping amplification Energy dissipation negative stiffness Stiffness tall building Tall buildings Viscous damping Wind effects |
Title | A novel crosswind mitigation strategy for tall buildings using negative stiffness damped outrigger systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2988 https://www.proquest.com/docview/2700436892 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKRFET926NNnS4xiOIehBNxh4KPk5prOTdVP0rzevP7YpCuKph75AmuQl3zTvfYLQuXRrjCTauL2JDTxKqPBESJhnmK-YoVxoBQnON7eNbp9eD9ggj6qEXJiMD7H44Qaekc7X4OBCJrUlNDQBAmHIIc8XQrVAD90tyFEEMgNTVCplnhuyrODO-qRWFPy6Ei3l5apITVeZzhZ6KOqXBZc8VeczWVUf39CN__uAbbSZi0_cykbLDloz8S7aWEES7qHHFo4nr2aM00q_uR07fh5lHI5JjJOMZfuOndTFTraPscyv1U4wRNAPcWyGKUrcmY6shXkUa-GkucYT4P4Ph2aKM3p0so_6nateu-vl9zF4yokC7mnIJdESIlJ9EwTKGmGY1SE1vKGp9TXXpG5Cy1TQJDYIjRa-UA1OROA8300EB6gUT2JziLCsE2IC2bTuJeVMibpgda5BXGqquF9Gl0XfRCqHlcOdGeMowyyTyLVeBK1XRmcLy5cM0PGDTaXo3ih30SSCE3fA74ekjC7Sfvq1fHTfa8Pz6K-Gx2idQJpEGotWQaXZdG5OnHiZydN0mH4CpnPvKw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefWDkwDvwaE-XXjITYKZA6dnHEqapAHb8OUCQOkyLHP6qOkqKmZRp_PX5OUmACadophzxLju1nf-289zHAburWmJRq4_YmNgoYZTKQMeWB4aHihgmpFSY4X1w2Ozfs9JbfzsBRlQtT8CGmB27oGX6-RgfHA-mDF2pojgjCWIhPMIsXevv91NWUHUUxN9DDUhkP3KDlFXk2pAdVybdr0YvAfC1T_Tpzsgg_qxoW4SV3-5Nxuq-e_oI3_ucnLMFCqT9JqxgwyzBjshWYf0Ul_AK_WiQbPpoB8bX-7Tbt5L5foDiGGckLnO0f4tQuccp9QNLyZu2cYBB9j2Sm52nizrRvLU6lREunzjUZIvq_1zMjUgCk81W4OTnutjtBeSVDoJwuEIHGdBKdYlBqaKJIWSMNtzpmRjQ1s6EWmjZMbLmKDqmNYqNlKFVTUBk553dzwVeoZcPMrAFJG5SaKD207iUTXMmG5A2hUV9qpkRYh-9V5ySq5JXjtRmDpCAt08S1XoKtV4edqeVDweh4x2az6t-k9NI8wZ_uSOCPaR32fEd9WD657rbxuf6vht9grtO9OE_Of1yebcBnilkTPjRtE2rj0cRsOS0zTrf9mH0GiIXzRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8QwEMcHXUH0wVtczwiiT3W7abKmj6Iu3ogHCD6UNMeirl3Zrop-ejM91gMF8akPnUDazCT_tDO_AKzFbo2JqTZub2IDj1EmPRlS7hnuK26YkFphgfPJaWP_ih1e8-siqxJrYXI-RP-DG0ZGNl9jgD9qW_uAhqZIIAyFGIQh1vAFevTueR8dRbE0MGOlMu45n-UleNantbLl16XoQ19-VqnZMtMch5uyg3l2yf3mUy_eVG_f2I3_e4IJGCvUJ9nO3WUSBkwyBaOfmITTcLdNks6zaZOs0y9uy04ebnMQRychaQ6zfSVO6xKn29skLs7VTgmm0LdIYloZS9yZ3lqLEynR0mlzTToI_m-1TJfk-Oh0Bq6ae5c7-15xIIOnnCoQnsZiEh1jSqpvgkBZIw23OmRGNDSzvhaa1k1ouQq2qA1Co6UvVUNQGbjQdzPBLFSSTmLmgMR1Sk0Qb1l3kwmuZF3yutCoLjVTwq_CRjk2kSpo5XhoRjvKOcs0cm8vwrdXhdW-5WNO6PjBZrEc3qiI0TTCX-7I3w9pFdazcfq1fXRxuYPX-b8arsDw2W4zOj44PVqAEYolE1le2iJUet0ns-SETC9ezjz2HeJd8f4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+crosswind+mitigation+strategy+for+tall+buildings+using+negative+stiffness+damped+outrigger+systems&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Wang%2C+Meng&rft.au=Nagarajaiah%2C+Satish&rft.au=Fei%E2%80%90Fei+Sun&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.2988&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |