A novel crosswind mitigation strategy for tall buildings using negative stiffness damped outrigger systems

Summary This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy di...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 9
Main Authors Wang, Meng, Nagarajaiah, Satish, Sun, Fei‐Fei
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy dissipation for tall buildings. Systematical evaluation and comparison on crosswind performance are carried out for tall buildings using (a) conventional outrigger (CO), (b) conventional damped outrigger (CDO), and (c) NSDO. It is shown that the proposed NSDO is able to achieve a damping amplification factor larger than a unit, which would never be achieved by CDO in practical due to the actual deformation of perimeter columns. In this way, NSDO has the most satisfactory crosswind reduction effect, especially when perimeter column stiffness is insufficient. For example, replacing CDO with NSDO not only attenuates crosswind‐induced harmful drift and structural acceleration by 22% and 36%, respectively, but also further saves about 75% of the size of viscous dampers. In other words, NSDO adopts less outrigger damping coefficient but reduces more crosswind‐induced vibration.
AbstractList This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy dissipation for tall buildings. Systematical evaluation and comparison on crosswind performance are carried out for tall buildings using (a) conventional outrigger (CO), (b) conventional damped outrigger (CDO), and (c) NSDO. It is shown that the proposed NSDO is able to achieve a damping amplification factor larger than a unit, which would never be achieved by CDO in practical due to the actual deformation of perimeter columns. In this way, NSDO has the most satisfactory crosswind reduction effect, especially when perimeter column stiffness is insufficient. For example, replacing CDO with NSDO not only attenuates crosswind‐induced harmful drift and structural acceleration by 22% and 36%, respectively, but also further saves about 75% of the size of viscous dampers. In other words, NSDO adopts less outrigger damping coefficient but reduces more crosswind‐induced vibration.
Summary This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting motion” feature of negative stiffness, NSDO amplifies the motion of viscous damper resulting in and significant improvement of energy dissipation for tall buildings. Systematical evaluation and comparison on crosswind performance are carried out for tall buildings using (a) conventional outrigger (CO), (b) conventional damped outrigger (CDO), and (c) NSDO. It is shown that the proposed NSDO is able to achieve a damping amplification factor larger than a unit, which would never be achieved by CDO in practical due to the actual deformation of perimeter columns. In this way, NSDO has the most satisfactory crosswind reduction effect, especially when perimeter column stiffness is insufficient. For example, replacing CDO with NSDO not only attenuates crosswind‐induced harmful drift and structural acceleration by 22% and 36%, respectively, but also further saves about 75% of the size of viscous dampers. In other words, NSDO adopts less outrigger damping coefficient but reduces more crosswind‐induced vibration.
Author Nagarajaiah, Satish
Wang, Meng
Sun, Fei‐Fei
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0003-0432-8313
  surname: Wang
  fullname: Wang, Meng
  organization: Tongji University
– sequence: 2
  givenname: Satish
  orcidid: 0000-0003-0088-1656
  surname: Nagarajaiah
  fullname: Nagarajaiah, Satish
  email: satish.nagarajaiah@rice.edu
  organization: Rice University
– sequence: 3
  givenname: Fei‐Fei
  orcidid: 0000-0002-9600-7500
  surname: Sun
  fullname: Sun, Fei‐Fei
  email: ffsun@tongji.edu.cn
  organization: Tongji University
BookMark eNp1kD1rwzAQhkVJoUla6E8QdOniVJYsRx5D6BcEOjSdhWKdjIItp5Kc4H9fJykdSjvdDc_7HvdM0Mi1DhC6TcksJYQ-hFjOaCHEBRqnPOMJpTkb_eycX6FJCNuBzKngY7RdYNfuocalb0M4WKdxY6OtVLStwyF6FaHqsWk9jqqu8aaztbauCrgLw8AOjugeBtQa4yAErFWzA43bLnpbVeBx6EOEJlyjS6PqADffc4o-nh7Xy5dk9fb8ulyskpIWTCQ6pxnVm6zgjABjpQEF3OgiA5HrzBAtNE2hMLxkc2pYAVoRVeaCKsZTMi_YFN2de3e-_ewgRLltO--Gk5LOCclYLgo6UPdn6vS4ByN33jbK9zIl8mhSDibl0eSAzn6hpY0nQYMeW_8VSM6Bg62h_7dYvq-XJ_4LuWiJCQ
CitedBy_id crossref_primary_10_1016_j_jobe_2022_105196
crossref_primary_10_1016_j_oceaneng_2023_115355
crossref_primary_10_1016_j_jweia_2024_105706
crossref_primary_10_1142_S0219455424500342
crossref_primary_10_1007_s41062_024_01574_7
crossref_primary_10_1016_j_engstruct_2024_117557
crossref_primary_10_3390_buildings14092904
crossref_primary_10_1061__ASCE_ST_1943_541X_0003474
crossref_primary_10_1016_j_jobe_2024_110425
crossref_primary_10_1155_2023_2558070
crossref_primary_10_1016_j_engstruct_2023_115702
crossref_primary_10_1016_j_engstruct_2023_115801
crossref_primary_10_1007_s40996_024_01471_0
crossref_primary_10_1002_eqe_3693
crossref_primary_10_1002_eqe_3891
crossref_primary_10_1016_j_ymssp_2025_112502
crossref_primary_10_1155_2023_5524170
crossref_primary_10_1002_eqe_4302
crossref_primary_10_1016_j_engstruct_2024_119083
Cites_doi 10.1016/j.engstruct.2015.04.033
10.1002/tal.1098
10.1002/stc.1968
10.1002/stc.2437
10.1061/(ASCE)ST.1943‐541X.0000247
10.1193/1.1540999
10.1002/eqe.359
10.1016/j.jweia.2007.06.034
10.1002/stc.2482
10.1002/eqe.3072
10.1002/1096‐9845(200009)29:9%3C1405::AID‐EQE976%3E3.0.CO;2‐4
10.1002/stc.2594
10.1061/(ASCE)ST.1943‐541X.0000830
10.1002/stc.2503
10.1016/j.jweia.2018.07.006
10.1016/S0167‐6105(02)00285‐4
10.1061/(ASCE)ST.1943‐541X.0000616
10.12989/sss.2015.15.3.627
10.1002/tal.1212
10.1088/0964‐1726/24/7/072002
10.1080/13632469.2018.1493004
10.1061/(ASCE)ST.1943‐541X.0001077
10.1061/(ASCE)0733‐9399(2003)129:3(273
10.1016/j.engstruct.2019.04.011
10.1016/j.ymssp.2016.08.018
10.1016/j.engstruct.2020.111615
10.1111/mice.12274
10.1016/j.engstruct.2019.03.110
10.1016/j.jweia.2018.11.026
10.1016/j.engstruct.2017.10.044
10.1061/(ASCE)ST.1943‐541X.0000615
10.1680/stbu.2010.163.2.111
10.1061/(ASCE)ST.1943‐541X.0002846
10.1177/1077546316646514
10.21022/IJHRB.2016.5.1.51
10.1002/eqe.1023
10.1016/j.jweia.2020.104306
10.1016/j.engstruct.2018.09.049
10.1016/j.jsv.2014.06.045
10.1016/j.jsv.2018.12.015
10.1002/tal.413
10.1016/j.compstruc.2017.07.022
10.1680/iicep.1964.10112
10.1002/stc.2067
10.1061/(ASCE)EM.1943‐7889.0001289
10.12989/sss.2013.11.5.435
10.1016/0167‐6105(92)90519‐G
10.1061/(ASCE)ST.1943‐541X.0001455
10.1061/(ASCE)0733‐9445(2001)127:2(105
10.1016/j.jsv.2020.115814
10.1002/stc.1974
10.1016/j.engstruct.2017.10.040
10.1016/j.soildyn.2017.11.023
10.1061/(ASCE)ST.1943‐541X.0001863
10.1016/j.jweia.2019.104031
10.1016/j.jsv.2017.11.006
10.1007/s11803‐014‐0231‐3
10.1016/j.engstruct.2020.110754
10.1002/stc.349
10.1002/stc.2377
10.1002/tal.1554
10.1002/tal.1664
10.1016/j.jweia.2017.10.029
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2988
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2988
STC2988
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2021M700310
– fundername: State Key Laboratory of Disaster Reduction in Civil Engineering of China
  funderid: SLDRCE19‐B‐16; SLDRCE13‐MB‐01
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2938-d6242db49530e33cfeae5fd94e86d4f0d8d21e9f5c372f39eda0ac682a3510793
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Sat Aug 23 13:01:57 EDT 2025
Tue Jul 01 04:05:46 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Wed Jan 22 16:24:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-d6242db49530e33cfeae5fd94e86d4f0d8d21e9f5c372f39eda0ac682a3510793
Notes Funding information
China Postdoctoral Science Foundation, Grant/Award Number: 2021M700310; State Key Laboratory of Disaster Reduction in Civil Engineering of China, Grant/Award Numbers: SLDRCE19‐B‐16, SLDRCE13‐MB‐01
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0088-1656
0000-0002-9600-7500
0000-0003-0432-8313
PQID 2700436892
PQPubID 2034347
PageCount 22
ParticipantIDs proquest_journals_2700436892
crossref_primary_10_1002_stc_2988
crossref_citationtrail_10_1002_stc_2988
wiley_primary_10_1002_stc_2988_STC2988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 141
2017; 85
2018; 207
2019; 443
2020; 205
2017; 153
2003; 19
2014; 23
2016; 142
2018; 47
2014; 333
2004; 33
2018; 177
2003; 129
2018; 172
2013; 11
2018; 414
2020; 494
2017; 32
2019; 26
2019; 28
2014; 13
2002; 90
2018; 180
2009; 16
1992; 40
2015; 15
2000; 29
2019; 191
2019; 190
2018; 105
2020; 220
1964; 28
2017; 24
2011; 40
2021; 229
2015; 98
2008
2010; 163
2008; 96
2020; 146
2019; 184
2018; 25
2007; 16
2018; 24
2001; 127
2015; 24
2016; 5
2020; 196
2010; 136
2013; 139
2020; 27
2014; 140
2017; 143
2016; 24
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_66_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
Gamaliel R (e_1_2_13_64_1) 2008
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
Infanti S (e_1_2_13_21_1)
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_58_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – volume: 143
  issue: 9
  year: 2017
  article-title: Wind‐induced vibration mitigation in tall buildings using the tuned mass‐damper‐inerter
  publication-title: J Struct Eng
– volume: 26
  issue: 7
  year: 2019
  article-title: An adaptive‐passive retuning device for a pendulum tuned mass damper considering mass uncertainty and optimum frequency
  publication-title: Struct Control Health Monit
– volume: 16
  start-page: 800
  issue: 7‐8
  year: 2009
  end-page: 841
  article-title: Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short‐term Fourier transform
  publication-title: Struct Control Health Monit
– volume: 163
  start-page: 111
  issue: 2
  year: 2010
  end-page: 118
  article-title: Intrinsic and supplementary damping in tall buildings
  publication-title: Proc Inst Civ Eng ‐ Struct Build
– volume: 13
  start-page: 293
  issue: 2
  year: 2014
  end-page: 304
  article-title: Dynamic characteristics of a novel damped outrigger system
  publication-title: Earthq Eng Eng Vib
– volume: 129
  start-page: 273
  issue: 3
  year: 2003
  end-page: 282
  article-title: Seismic analysis and design with maxwell dampers
  publication-title: J Eng Mech
– volume: 32
  start-page: 657
  issue: 8
  year: 2017
  end-page: 673
  article-title: Optimization of structures subject to stochastic dynamic loading
  publication-title: Comput Aided Civ Inf Eng
– volume: 414
  start-page: 31
  year: 2018
  end-page: 42
  article-title: Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system
  publication-title: J Sound Vib
– volume: 27
  issue: 9
  year: 2020
  article-title: A passive negative stiffness damper in series with a flexible support: Theoretical and experimental study
  publication-title: Struct Control Health Monit
– volume: 153
  start-page: 404
  year: 2017
  end-page: 410
  article-title: Outrigger tuned inertial mass electromagnetic transducers for high‐rise buildings subject to long period earthquakes
  publication-title: Eng Struct
– volume: 105
  start-page: 37
  year: 2018
  end-page: 53
  article-title: Soil‐dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper
  publication-title: Soil Dyn Earthq Eng
– volume: 27
  issue: 4
  year: 2020
  article-title: Performance assessment of the KDamper as a seismic absorption base
  publication-title: Struct Control Health Monit
– volume: 191
  start-page: 280
  year: 2019
  end-page: 291
  article-title: Optimization of damped outrigger systems subject to stochastic excitation
  publication-title: Eng Struct
– volume: 23
  start-page: 963
  issue: 13
  year: 2014
  end-page: 979
  article-title: Analysis of a high‐rise steel structure with viscous damped outriggers
  publication-title: Struct Design Tall Spec Build
– volume: 177
  start-page: 30
  year: 2018
  end-page: 46
  article-title: Performance evaluation of existing isolated buildings with supplemental passive pseudo‐negative stiffness devices
  publication-title: Eng Struct
– volume: 98
  start-page: 128
  year: 2015
  end-page: 140
  article-title: Dynamic characteristics of novel energy dissipation systems with damped outriggers
  publication-title: Eng Struct
– volume: 28
  issue: 15
  year: 2019
  article-title: Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping
  publication-title: Struct Design Tall Spec Build
– volume: 40
  start-page: 33
  issue: 1
  year: 1992
  end-page: 54
  article-title: The effect of tuned mass dampers and liquid dampers on cross‐wind response of tall/slender structures
  publication-title: J Wind Eng Ind Aerodyn
– volume: 24
  start-page: 797
  issue: 12
  year: 2015
  end-page: 820
  article-title: A general solution for performance evaluation of a tall building with multiple damped and undamped outriggers
  publication-title: Struct Design Tall Spec Build
– volume: 85
  start-page: 193
  year: 2017
  end-page: 203
  article-title: Analytically optimal parameters of dynamic vibration absorber with negative stiffness
  publication-title: Mech Syst Signal Process
– volume: 16
  start-page: 501
  issue: 4
  year: 2007
  end-page: 517
  article-title: The damped outrigger concept for tall buildings
  publication-title: Struct Design Tall Spec Build
– volume: 146
  issue: 12
  year: 2020
  article-title: Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness
  publication-title: J Struct Eng
– volume: 29
  start-page: 1405
  issue: 9
  year: 2000
  end-page: 1421
  article-title: Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration
  publication-title: Earthq Eng Struct Dyn
– volume: 140
  issue: 2
  year: 2014
  article-title: Simulated bilinear‐elastic behavior in a SDOF elastic structure using negative stiffness device: experimental and analytical study
  publication-title: J Struct Eng
– volume: 15
  start-page: 627
  issue: 3
  year: 2015
  end-page: 643
  article-title: Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics
  publication-title: Smart Struct Syst
– year: 2008
– volume: 28
  start-page: 187
  issue: 2
  year: 1964
  end-page: 196
  article-title: Note on the distribution of the largest value of a random function with application to gust loading
  publication-title: Proc Inst Civ Eng
– volume: 139
  start-page: 1112
  issue: 7
  year: 2013
  end-page: 1123
  article-title: Adaptive negative stiffness: new structural modification approach for seismic protection
  publication-title: J Struct Eng
– volume: 443
  start-page: 559
  year: 2019
  end-page: 575
  article-title: Study of a novel adaptive passive stiffness device and its application for seismic protection
  publication-title: J Sound Vib
– volume: 141
  issue: 4
  year: 2015
  article-title: Apparent weakening in SDOF yielding structures using a negative stiffness device: experimental and analytical study
  publication-title: J Struct Eng
– volume: 142
  issue: 5
  year: 2016
  article-title: Negative stiffness device for seismic protection of structures: shake table testing of a seismically isolated structure
  publication-title: J Struct Eng
– volume: 90
  start-page: 1757
  issue: 12
  year: 2002
  end-page: 1770
  article-title: Mathematical model of acrosswind dynamic loads on rectangular tall buildings
  publication-title: J Wind Eng Ind Aerodyn
– volume: 5
  start-page: 51
  issue: 1
  year: 2016
  end-page: 62
  article-title: Mechanical amplification of relative movements in damped outriggers for wind and seismic response mitigation
  publication-title: Int J High‐Rise Build
– volume: 47
  start-page: 2343
  issue: 12
  year: 2018
  end-page: 2365
  article-title: Seismic performance evaluation of single damped‐outrigger system incorporating buckling‐restrained braces
  publication-title: Earthq Eng Struct Dyn
– volume: 40
  start-page: 75
  issue: 1
  year: 2011
  end-page: 92
  article-title: Effects of brace stiffness on performance of structures with supplemental Maxwell model‐based brace–damper systems
  publication-title: Earthq Eng Struct Dyn
– volume: 26
  issue: 11
  year: 2019
  article-title: Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction
  publication-title: Struct Control Health Monit
– volume: 229
  year: 2021
  article-title: Multi‐objective optimal design and seismic performance of negative stiffness damped outrigger structures considering damping cost
  publication-title: Eng Struct
– volume: 24
  issue: 11
  year: 2017
  article-title: Negative stiffness device for seismic protection of smart base isolated benchmark building
  publication-title: Struct Control Health Monit
– volume: 190
  start-page: 128
  year: 2019
  end-page: 141
  article-title: Seismic protection of SDOF systems with a negative stiffness amplifying damper
  publication-title: Eng Struct
– volume: 143
  issue: 9
  year: 2017
  article-title: Experimental study on passive negative stiffness damper for cable vibration mitigation
  publication-title: J Eng Mech
– volume: 180
  start-page: 231
  year: 2018
  end-page: 248
  article-title: Impact of structural design criteria on the comfort assessment of tall buildings
  publication-title: J Wind Eng Ind Aerodyn
– volume: 153
  start-page: 525
  year: 2017
  end-page: 539
  article-title: KDamper concept in seismic isolation of bridges with flexible piers
  publication-title: Eng Struct
– volume: 196
  year: 2020
  article-title: Vibration control of super‐tall buildings using combination of tapering method and TMD system
  publication-title: J Wind Eng Ind Aerodyn
– volume: 139
  start-page: 1124
  issue: 7
  year: 2013
  end-page: 1133
  article-title: Negative stiffness device for seismic protection of structures
  publication-title: J Struct Eng
– volume: 24
  start-page: 1
  issue: 12
  year: 2018
  end-page: 29
  article-title: Three‐dimensional base isolation using vertical negative stiffness devices
  publication-title: J Earthq Eng
– volume: 172
  start-page: 256
  year: 2018
  end-page: 266
  article-title: Wind‐induced vibration control of super‐tall buildings using a new combined structural system
  publication-title: J Wind Eng Ind Aerodyn
– volume: 24
  issue: 7
  year: 2015
  article-title: Magnetic negative stiffness dampers
  publication-title: Smart Mater Struct
– volume: 33
  start-page: 465
  issue: 4
  year: 2004
  end-page: 484
  article-title: Optimal design of added viscoelastic dampers and supporting braces
  publication-title: Earthq Eng Struct Dyn
– volume: 136
  start-page: 1435
  issue: 11
  year: 2010
  end-page: 1443
  article-title: Analysis of tall buildings with damped outriggers
  publication-title: J Struct Eng
– volume: 333
  start-page: 6676
  issue: 24
  year: 2014
  end-page: 6687
  article-title: Chains of oscillators with negative stiffness elements
  publication-title: J Sound Vib
– volume: 11
  start-page: 435
  issue: 5
  year: 2013
  end-page: 451
  article-title: Semi‐active damped outriggers for seismic protection of high‐rise buildings
  publication-title: Smart Struct Syst
– volume: 24
  start-page: 588
  issue: 3
  year: 2016
  end-page: 606
  article-title: KDamping: a stiffness based vibration absorption concept
  publication-title: J Vib Control
– volume: 24
  issue: 10
  year: 2017
  article-title: Performance of tuned tandem mass dampers for structures under the ground acceleration
  publication-title: Struct Control Health Monit
– volume: 27
  issue: 4
  year: 2020
  article-title: Multimode vibration control of stay cables using optimized negative stiffness damper
  publication-title: Struct Control Health Monit
– volume: 28
  issue: 1
  year: 2019
  article-title: Energy dissipation and performance assessment of double damped outriggers in tall buildings under strong earthquakes
  publication-title: Struct Design Tall Spec Build
– volume: 207
  start-page: 121
  year: 2018
  end-page: 131
  article-title: Effective damping and frequencies of viscous damper braced structures considering the supports flexibility
  publication-title: Comput Struct
– volume: 220
  year: 2020
  article-title: Apparent‐weakening by adaptive passive stiffness shaping along the height of multistory building using negative stiffness devices and dampers for seismic protection
  publication-title: Eng Struct
– volume: 96
  start-page: 1092
  issue: 6‐7
  year: 2008
  end-page: 1102
  article-title: Wind‐induced vibration of high‐rise building with tuned mass damper including soil–structure interaction
  publication-title: J Wind Eng Ind Aerodyn
– volume: 184
  start-page: 174
  year: 2019
  end-page: 184
  article-title: Observations of typhoon effects on a high‐rise building and verification of wind tunnel predictions
  publication-title: J Wind Eng Ind Aerodyn
– volume: 127
  start-page: 105
  issue: 2
  year: 2001
  end-page: 112
  article-title: Toggle‐brace‐damper seismic energy dissipation systems
  publication-title: J Struct Eng
– volume: 25
  issue: 2
  year: 2018
  article-title: Enhanced hybrid active tuned mass dampers for structures
  publication-title: Struct Control Health Monit
– volume: 19
  start-page: 133
  issue: 1
  year: 2003
  end-page: 158
  article-title: Scissor‐jack‐damper energy dissipation system
  publication-title: Earthquake Spectra
– volume: 205
  year: 2020
  article-title: Study on wind‐induced vibration control of linked high‐rise buildings by using TMDI
  publication-title: J Wind Eng Ind Aerodyn
– volume: 494
  year: 2020
  article-title: A unified analysis of negative stiffness dampers and inerter‐based absorbers for multimode cable vibration control
  publication-title: J Sound Vib
– ident: e_1_2_13_25_1
  doi: 10.1016/j.engstruct.2015.04.033
– ident: e_1_2_13_26_1
  doi: 10.1002/tal.1098
– ident: e_1_2_13_53_1
  doi: 10.1002/stc.1968
– ident: e_1_2_13_58_1
  doi: 10.1002/stc.2437
– ident: e_1_2_13_23_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0000247
– ident: e_1_2_13_66_1
  doi: 10.1193/1.1540999
– ident: e_1_2_13_35_1
  doi: 10.1002/eqe.359
– ident: e_1_2_13_10_1
  doi: 10.1016/j.jweia.2007.06.034
– ident: e_1_2_13_17_1
  doi: 10.1002/stc.2482
– ident: e_1_2_13_27_1
  doi: 10.1002/eqe.3072
– ident: e_1_2_13_11_1
  doi: 10.1002/1096‐9845(200009)29:9%3C1405::AID‐EQE976%3E3.0.CO;2‐4
– ident: e_1_2_13_40_1
  doi: 10.1002/stc.2594
– ident: e_1_2_13_44_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0000830
– ident: e_1_2_13_55_1
  doi: 10.1002/stc.2503
– ident: e_1_2_13_5_1
  doi: 10.1016/j.jweia.2018.07.006
– ident: e_1_2_13_2_1
  doi: 10.1016/S0167‐6105(02)00285‐4
– volume-title: The 14th World Conference on Earthquake Engineering. 2008
  ident: e_1_2_13_21_1
– ident: e_1_2_13_43_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0000616
– ident: e_1_2_13_46_1
  doi: 10.12989/sss.2015.15.3.627
– ident: e_1_2_13_33_1
  doi: 10.1002/tal.1212
– ident: e_1_2_13_48_1
  doi: 10.1088/0964‐1726/24/7/072002
– ident: e_1_2_13_61_1
  doi: 10.1080/13632469.2018.1493004
– ident: e_1_2_13_47_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0001077
– volume-title: Department of Civil and Environmental Engineering
  year: 2008
  ident: e_1_2_13_64_1
– ident: e_1_2_13_34_1
  doi: 10.1061/(ASCE)0733‐9399(2003)129:3(273
– ident: e_1_2_13_29_1
  doi: 10.1016/j.engstruct.2019.04.011
– ident: e_1_2_13_56_1
  doi: 10.1016/j.ymssp.2016.08.018
– ident: e_1_2_13_60_1
  doi: 10.1016/j.engstruct.2020.111615
– ident: e_1_2_13_63_1
  doi: 10.1111/mice.12274
– ident: e_1_2_13_38_1
  doi: 10.1016/j.engstruct.2019.03.110
– ident: e_1_2_13_6_1
  doi: 10.1016/j.jweia.2018.11.026
– ident: e_1_2_13_57_1
  doi: 10.1016/j.engstruct.2017.10.044
– ident: e_1_2_13_42_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0000615
– ident: e_1_2_13_7_1
  doi: 10.1680/stbu.2010.163.2.111
– ident: e_1_2_13_59_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0002846
– ident: e_1_2_13_19_1
  doi: 10.1177/1077546316646514
– ident: e_1_2_13_31_1
  doi: 10.21022/IJHRB.2016.5.1.51
– ident: e_1_2_13_36_1
  doi: 10.1002/eqe.1023
– ident: e_1_2_13_20_1
  doi: 10.1016/j.jweia.2020.104306
– ident: e_1_2_13_41_1
  doi: 10.1016/j.engstruct.2018.09.049
– ident: e_1_2_13_45_1
  doi: 10.1016/j.jsv.2014.06.045
– ident: e_1_2_13_18_1
  doi: 10.1016/j.jsv.2018.12.015
– ident: e_1_2_13_22_1
  doi: 10.1002/tal.413
– ident: e_1_2_13_37_1
  doi: 10.1016/j.compstruc.2017.07.022
– ident: e_1_2_13_62_1
  doi: 10.1680/iicep.1964.10112
– ident: e_1_2_13_15_1
  doi: 10.1002/stc.2067
– ident: e_1_2_13_54_1
  doi: 10.1061/(ASCE)EM.1943‐7889.0001289
– ident: e_1_2_13_30_1
  doi: 10.12989/sss.2013.11.5.435
– ident: e_1_2_13_9_1
  doi: 10.1016/0167‐6105(92)90519‐G
– ident: e_1_2_13_49_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0001455
– ident: e_1_2_13_65_1
  doi: 10.1061/(ASCE)0733‐9445(2001)127:2(105
– ident: e_1_2_13_52_1
  doi: 10.1016/j.jsv.2020.115814
– ident: e_1_2_13_14_1
  doi: 10.1002/stc.1974
– ident: e_1_2_13_32_1
  doi: 10.1016/j.engstruct.2017.10.040
– ident: e_1_2_13_13_1
  doi: 10.1016/j.soildyn.2017.11.023
– ident: e_1_2_13_4_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0001863
– ident: e_1_2_13_12_1
  doi: 10.1016/j.jweia.2019.104031
– ident: e_1_2_13_50_1
  doi: 10.1016/j.jsv.2017.11.006
– ident: e_1_2_13_24_1
  doi: 10.1007/s11803‐014‐0231‐3
– ident: e_1_2_13_51_1
  doi: 10.1016/j.engstruct.2020.110754
– ident: e_1_2_13_8_1
  doi: 10.1002/stc.349
– ident: e_1_2_13_16_1
  doi: 10.1002/stc.2377
– ident: e_1_2_13_28_1
  doi: 10.1002/tal.1554
– ident: e_1_2_13_39_1
  doi: 10.1002/tal.1664
– ident: e_1_2_13_3_1
  doi: 10.1016/j.jweia.2017.10.029
SSID ssj0026285
Score 2.409125
Snippet Summary This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the...
This study presents a new crosswind mitigation strategy by using negative stiffness damped outrigger (NSDO) system for tall buildings. Using the “assisting...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amplification
Columns (structural)
crosswind mitigation
Crosswinds
damped outrigger
Dampers
damping amplification
Energy dissipation
negative stiffness
Stiffness
tall building
Tall buildings
Viscous damping
Wind effects
Title A novel crosswind mitigation strategy for tall buildings using negative stiffness damped outrigger systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2988
https://www.proquest.com/docview/2700436892
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHf4vTKRFET926NNnS4xiOIehBNxh4KPk5prOTdVP0rzevP7YpCuKph75AmuQl3zTvfYLQuXRrjCTauL2JDTxKqPBESJhnmK-YoVxoBQnON7eNbp9eD9ggj6qEXJiMD7H44Qaekc7X4OBCJrUlNDQBAmHIIc8XQrVAD90tyFEEMgNTVCplnhuyrODO-qRWFPy6Ei3l5apITVeZzhZ6KOqXBZc8VeczWVUf39CN__uAbbSZi0_cykbLDloz8S7aWEES7qHHFo4nr2aM00q_uR07fh5lHI5JjJOMZfuOndTFTraPscyv1U4wRNAPcWyGKUrcmY6shXkUa-GkucYT4P4Ph2aKM3p0so_6nateu-vl9zF4yokC7mnIJdESIlJ9EwTKGmGY1SE1vKGp9TXXpG5Cy1TQJDYIjRa-UA1OROA8300EB6gUT2JziLCsE2IC2bTuJeVMibpgda5BXGqquF9Gl0XfRCqHlcOdGeMowyyTyLVeBK1XRmcLy5cM0PGDTaXo3ih30SSCE3fA74ekjC7Sfvq1fHTfa8Pz6K-Gx2idQJpEGotWQaXZdG5OnHiZydN0mH4CpnPvKw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT9swFMefWDkwDvwaE-XXjITYKZA6dnHEqapAHb8OUCQOkyLHP6qOkqKmZRp_PX5OUmACadophzxLju1nf-289zHAburWmJRq4_YmNgoYZTKQMeWB4aHihgmpFSY4X1w2Ozfs9JbfzsBRlQtT8CGmB27oGX6-RgfHA-mDF2pojgjCWIhPMIsXevv91NWUHUUxN9DDUhkP3KDlFXk2pAdVybdr0YvAfC1T_Tpzsgg_qxoW4SV3-5Nxuq-e_oI3_ucnLMFCqT9JqxgwyzBjshWYf0Ul_AK_WiQbPpoB8bX-7Tbt5L5foDiGGckLnO0f4tQuccp9QNLyZu2cYBB9j2Sm52nizrRvLU6lREunzjUZIvq_1zMjUgCk81W4OTnutjtBeSVDoJwuEIHGdBKdYlBqaKJIWSMNtzpmRjQ1s6EWmjZMbLmKDqmNYqNlKFVTUBk553dzwVeoZcPMrAFJG5SaKD207iUTXMmG5A2hUV9qpkRYh-9V5ySq5JXjtRmDpCAt08S1XoKtV4edqeVDweh4x2az6t-k9NI8wZ_uSOCPaR32fEd9WD657rbxuf6vht9grtO9OE_Of1yebcBnilkTPjRtE2rj0cRsOS0zTrf9mH0GiIXzRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZS8QwEMcHXUH0wVtczwiiT3W7abKmj6Iu3ogHCD6UNMeirl3Zrop-ejM91gMF8akPnUDazCT_tDO_AKzFbo2JqTZub2IDj1EmPRlS7hnuK26YkFphgfPJaWP_ih1e8-siqxJrYXI-RP-DG0ZGNl9jgD9qW_uAhqZIIAyFGIQh1vAFevTueR8dRbE0MGOlMu45n-UleNantbLl16XoQ19-VqnZMtMch5uyg3l2yf3mUy_eVG_f2I3_e4IJGCvUJ9nO3WUSBkwyBaOfmITTcLdNks6zaZOs0y9uy04ebnMQRychaQ6zfSVO6xKn29skLs7VTgmm0LdIYloZS9yZ3lqLEynR0mlzTToI_m-1TJfk-Oh0Bq6ae5c7-15xIIOnnCoQnsZiEh1jSqpvgkBZIw23OmRGNDSzvhaa1k1ouQq2qA1Co6UvVUNQGbjQdzPBLFSSTmLmgMR1Sk0Qb1l3kwmuZF3yutCoLjVTwq_CRjk2kSpo5XhoRjvKOcs0cm8vwrdXhdW-5WNO6PjBZrEc3qiI0TTCX-7I3w9pFdazcfq1fXRxuYPX-b8arsDw2W4zOj44PVqAEYolE1le2iJUet0ns-SETC9ezjz2HeJd8f4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+crosswind+mitigation+strategy+for+tall+buildings+using+negative+stiffness+damped+outrigger+systems&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Wang%2C+Meng&rft.au=Nagarajaiah%2C+Satish&rft.au=Fei%E2%80%90Fei+Sun&rft.date=2022-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=9&rft_id=info:doi/10.1002%2Fstc.2988&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon