Meshless physics‐informed deep learning method for three‐dimensional solid mechanics
Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo‐Hookean) with large deformation, and von Mises plasticity...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 122; no. 23; pp. 7182 - 7201 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.12.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo‐Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening. The performance of this deep collocation method (DCM) depends on the architecture of the neural network and the corresponding hyperparameters. The presented DCM is meshfree and avoids any spatial discretization, which is usually needed for the finite element method (FEM). We show that the DCM can capture the response qualitatively and quantitatively, without the need for any data generation using other numerical methods such as the FEM. Data generation usually is the main bottleneck in most data‐driven models. The DL model is trained to learn the model's parameters yielding accurate approximate solutions. Once the model is properly trained, solutions can be obtained almost instantly at any point in the domain, given its spatial coordinates. Therefore, the DCM is potentially a promising standalone technique to solve PDEs involved in the deformation of materials and structural systems as well as other physical phenomena. |
---|---|
AbstractList | Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo‐Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening. The performance of this deep collocation method (DCM) depends on the architecture of the neural network and the corresponding hyperparameters. The presented DCM is meshfree and avoids any spatial discretization, which is usually needed for the finite element method (FEM). We show that the DCM can capture the response qualitatively and quantitatively, without the need for any data generation using other numerical methods such as the FEM. Data generation usually is the main bottleneck in most data‐driven models. The DL model is trained to learn the model's parameters yielding accurate approximate solutions. Once the model is properly trained, solutions can be obtained almost instantly at any point in the domain, given its spatial coordinates. Therefore, the DCM is potentially a promising standalone technique to solve PDEs involved in the deformation of materials and structural systems as well as other physical phenomena. |
Author | Koric, Seid Abueidda, Diab W. Lu, Qiyue |
Author_xml | – sequence: 1 givenname: Diab W. orcidid: 0000-0003-3594-2455 surname: Abueidda fullname: Abueidda, Diab W. email: abueidd2@illinois.edu organization: University of Illinois at Urbana‐Champaign – sequence: 2 givenname: Qiyue surname: Lu fullname: Lu, Qiyue organization: University of Illinois at Urbana‐Champaign – sequence: 3 givenname: Seid surname: Koric fullname: Koric, Seid organization: University of Illinois at Urbana‐Champaign |
BookMark | eNp1kE1OwzAUhC0EEm1B4giR2LBJ8U-dxEtUlR-phQ1I7CzHfiGuEifYqVB3HIEzchJcygrB6i3mm9GbGaND1zlA6IzgKcGYXroWpllBiwM0IljkKaY4P0SjKImUi4Ico3EIa4wJ4ZiN0PMKQt1ACElfb4PV4fP9w7qq8y2YxAD0SQPKO-tekhaGujNJ1JKh9gCRNLYFF2znVJOErrEmQrpWLuacoKNKNQFOf-4EPV0vHue36fLh5m5-tUw1FaxItSkLXAkxU5rODKeFgQwXnJai5Fwww01sISqtZ4RxysqSa5ypPDOYQWZyyibofJ_b--51A2GQ627j40NBUi4ySnLOSKQu9pT2XQgeKtl72yq_lQTL3W4y7iZ3u0V0-gvVdlBDLDl4ZZu_DOne8GYb2P4bLO9Xi2_-CxU_gtU |
CitedBy_id | crossref_primary_10_1016_j_cma_2024_117226 crossref_primary_10_1007_s11837_024_06681_5 crossref_primary_10_1016_j_cma_2023_116578 crossref_primary_10_1142_S1758825122500272 crossref_primary_10_1007_s00521_024_10132_2 crossref_primary_10_1007_s11831_024_10063_0 crossref_primary_10_1016_j_mlwa_2024_100600 crossref_primary_10_1016_j_cma_2024_117268 crossref_primary_10_1111_mice_13208 crossref_primary_10_1111_mice_13405 crossref_primary_10_1016_j_engappai_2023_107258 crossref_primary_10_1016_j_engfracmech_2025_110800 crossref_primary_10_1016_j_finel_2022_103893 crossref_primary_10_1007_s10483_023_2995_8 crossref_primary_10_1111_mice_13367 crossref_primary_10_1007_s00466_023_02365_0 crossref_primary_10_1016_j_jmps_2022_105177 crossref_primary_10_1016_j_mechmat_2024_105141 crossref_primary_10_1007_s41365_023_01313_0 crossref_primary_10_1007_s00707_023_03691_3 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123809 crossref_primary_10_1016_j_euromechsol_2022_104639 crossref_primary_10_1002_nme_7444 crossref_primary_10_1016_j_compgeo_2025_107110 crossref_primary_10_1016_j_ijplas_2023_103524 crossref_primary_10_1016_j_engstruct_2025_120018 crossref_primary_10_1016_j_probengmech_2023_103534 crossref_primary_10_1016_j_cma_2023_116343 crossref_primary_10_1016_j_cma_2024_117655 crossref_primary_10_1080_15376494_2024_2439557 crossref_primary_10_1016_j_cma_2025_117755 crossref_primary_10_1016_j_cma_2025_117797 crossref_primary_10_1111_mice_13292 crossref_primary_10_3390_polym16223222 crossref_primary_10_1016_j_apm_2023_11_006 crossref_primary_10_1364_AO_498872 crossref_primary_10_1016_j_eml_2023_102103 crossref_primary_10_1016_j_ijsolstr_2025_113315 crossref_primary_10_1007_s00366_024_02090_z crossref_primary_10_1088_2515_7639_ad33a4 crossref_primary_10_1080_19648189_2024_2416441 crossref_primary_10_2478_bhee_2022_0006 crossref_primary_10_1002_adem_202401299 crossref_primary_10_1016_j_enganabound_2024_01_004 crossref_primary_10_2139_ssrn_4785058 crossref_primary_10_1007_s13131_024_2329_4 crossref_primary_10_1098_rsos_231606 crossref_primary_10_1016_j_compstruc_2022_106843 crossref_primary_10_1016_j_ijplas_2023_103531 crossref_primary_10_1016_j_mechmat_2023_104642 crossref_primary_10_1007_s00466_022_02252_0 crossref_primary_10_1007_s40192_022_00283_2 crossref_primary_10_1016_j_addma_2022_103237 crossref_primary_10_1016_j_cma_2024_117122 crossref_primary_10_1016_j_cma_2024_117004 crossref_primary_10_1038_s43588_023_00412_7 crossref_primary_10_1680_jgeot_22_00046 crossref_primary_10_1017_dce_2024_33 crossref_primary_10_1016_j_apm_2022_02_036 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_1002_nme_7146 crossref_primary_10_1002_nme_7388 crossref_primary_10_1038_s41524_024_01307_5 crossref_primary_10_20948_mm_2024_06_12 crossref_primary_10_1016_j_compgeo_2025_107137 crossref_primary_10_1016_j_ijmecsci_2024_109783 crossref_primary_10_1016_j_jrmge_2024_10_025 crossref_primary_10_1007_s00366_023_01914_8 crossref_primary_10_1016_j_compstruct_2024_118171 crossref_primary_10_1016_j_cma_2023_116120 crossref_primary_10_1109_ACCESS_2022_3160186 crossref_primary_10_1016_j_cma_2024_117474 crossref_primary_10_1016_j_cma_2024_117355 crossref_primary_10_1007_s10409_024_24159_x crossref_primary_10_3389_fmech_2024_1417606 crossref_primary_10_1142_S0219876223500135 crossref_primary_10_1007_s00158_022_03369_9 crossref_primary_10_1007_s00707_022_03449_3 crossref_primary_10_1016_j_oceaneng_2024_117372 crossref_primary_10_1177_09544062231164575 crossref_primary_10_1016_j_tws_2023_111540 crossref_primary_10_1016_j_engappai_2025_110097 crossref_primary_10_1002_nme_7455 crossref_primary_10_1016_j_tws_2024_112495 crossref_primary_10_1002_nme_7377 crossref_primary_10_1111_str_12431 crossref_primary_10_1002_nme_7176 crossref_primary_10_1002_nme_7296 crossref_primary_10_1007_s00366_024_02033_8 crossref_primary_10_1016_j_cma_2023_115902 crossref_primary_10_1007_s00366_023_01822_x crossref_primary_10_1016_j_enganabound_2022_08_035 |
Cites_doi | 10.1109/72.712178 10.1007/s00158-018-2076-2 10.1016/S0045-7825(00)00278-4 10.1016/j.amc.2006.05.068 10.1016/j.compstruc.2006.02.015 10.1007/BF02551274 10.1016/S0927-0507(03)10006-0 10.1109/APSIPA.2016.7820699 10.1002/pamm.201900470 10.1016/j.cma.2020.113184 10.1126/science.aaw4741 10.1016/j.compstruct.2019.111264 10.1073/pnas.1911815116 10.1016/0021-9991(90)90007-N 10.1017/jfm.2016.615 10.1007/s00521-020-05035-x 10.1007/s11837-018-2894-0 10.1016/j.cma.2020.113299 10.1016/j.cma.2019.112623 10.1063/5.0006153 10.1016/j.matdes.2020.108509 10.1016/j.compscitech.2019.107861 10.1016/j.ijplas.2020.102852 10.1016/j.matdes.2020.109098 10.1016/j.compstruc.2014.05.009 10.1002/adma.201301986 10.1016/j.finel.2019.07.001 10.1016/j.jcp.2021.110839 10.1007/978-90-481-2331-5 10.1016/j.advwatres.2020.103610 10.1016/j.compstruc.2020.106283 10.1371/journal.pone.0232683 10.3390/met11030494 10.1073/pnas.1718942115 10.1002/adma.201904845 10.1016/j.cma.2014.11.012 10.1016/j.cam.2019.112626 10.1016/j.eml.2017.10.001 10.1016/j.euromechsol.2019.103874 10.1016/B978-0-12-811718-7.00018-6 10.1016/j.cma.2019.112790 10.1016/j.taml.2020.01.038 10.1007/978-3-030-59851-8_9 10.1016/j.jcp.2018.08.029 10.1007/s11012-020-01179-1 10.1016/j.apm.2020.06.051 10.1017/jfm.2021.135 10.1016/j.jcp.2018.10.045 10.1016/j.mechmat.2019.01.015 10.1002/nme.905 10.1016/j.finel.2003.08.011 10.1007/s40304-017-0117-6 10.1142/6141 10.3390/app10175917 10.1016/j.est.2020.101280 10.1016/j.compfluid.2018.01.040 10.1016/j.jcp.2016.10.070 10.1109/72.870037 10.1016/j.media.2016.06.032 10.1007/BF01589116 10.1002/nme.2476 10.1007/s40304-018-0127-z 10.1063/1.5046105 10.1016/0893-6080(91)90009-T 10.1007/s10107-012-0514-2 10.1016/j.eml.2020.100688 10.1002/advs.201902607 10.1007/978-3-319-94911-6_4 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.6828 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 7201 |
ExternalDocumentID | 10_1002_nme_6828 NME6828 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2938-cdb80f994ac24d528de60852b9b5593d5d1099fcc413523bb5c06a76d03e6d723 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 25 12:15:48 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Tue Jul 01 04:32:08 EDT 2025 Wed Jan 22 16:26:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2938-cdb80f994ac24d528de60852b9b5593d5d1099fcc413523bb5c06a76d03e6d723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3594-2455 |
PQID | 2596217531 |
PQPubID | 996376 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2596217531 crossref_primary_10_1002_nme_6828 crossref_citationtrail_10_1002_nme_6828 wiley_primary_10_1002_nme_6828_NME6828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 December 2021 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 15 December 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 5 2013; 25 1989; 45 2009; 160 2020; 362 2018; 124 2019; 59 2020; 369 2019; 19 2020; 128 2020; 15 2020; 367 2020; 10 915 2003; 10 2016; 33 2019; 165 2020; 7 2018; 6 2018; 375 2018; 173 2020; 371 2000; 11 2018; 70 2019; 116 2020; 88 1990; 91 1991; 4 1989; 2 2004; 40 2019; 6 2012 2019; 31 2020; 141 2019; 32 2016; 807 2020; 80 2015; 285 2009 2006; 18 2020; 37 2013; 141 2020; 189 2019; 227 2020; 33 2017; 330 2019; 184 2009; 78 2018; 18 2021; 56 2021; 11 2006; 84 2001; 190 2020; 196 2021; 136 2004; 59 2018; 115 2020; 237 2020; 358 2020; 28 2018 1963 2019; 378 2017; 18 2006; 183 2013 2014; 141 2019; 131 1998; 9 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Michalski RS (e_1_2_9_70_1) 2013 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 McDowell DL (e_1_2_9_16_1) 2009 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_60_1 e_1_2_9_2_1 Thorat Z (e_1_2_9_18_1) 2019; 6 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 Paszke A (e_1_2_9_68_1) 2019 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Wilkins ML (e_1_2_9_76_1) 1963 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 Hughes TJ (e_1_2_9_4_1) 2012 Baydin AG (e_1_2_9_47_1) 2017; 18 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 Huerta A (e_1_2_9_3_1) 2018 e_1_2_9_29_1 |
References_xml | – volume: 25 start-page: 5044 issue: 36 year: 2013 end-page: 5049 article-title: 3D soft metamaterials with negative poisson's ratio publication-title: Adv Mater – year: 2009 – volume: 190 start-page: 3443 issue: 26‐27 year: 2001 end-page: 3459 article-title: Topology optimization of non‐linear elastic structures and compliant mechanisms publication-title: Comput Methods Appl Mech Eng – volume: 91 start-page: 110 issue: 1 year: 1990 end-page: 131 article-title: Neural algorithm for solving differential equations publication-title: J Comput Phys – volume: 56 start-page: 1505 year: 2021 end-page: 1521 article-title: On the two‐potential constitutive modeling of dielectric elastomers publication-title: Meccanica – volume: 369 start-page: 113184 year: 2020 article-title: Computational thermomechanics for crystalline rock Part II: chemo‐damage‐plasticity and healing in strongly anisotropic polycrystals publication-title: Comput Methods Appl Mech Eng – volume: 9 start-page: 987 issue: 5 year: 1998 end-page: 1000 article-title: Artificial neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans Neural Netw – volume: 375 start-page: 1339 year: 2018 end-page: 1364 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J Comput Phys – volume: 184 start-page: 107861 year: 2019 article-title: Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods publication-title: Compos Sci Technol – volume: 59 start-page: 989 issue: 7 year: 2004 end-page: 1005 article-title: Numerical implementation of a neural network based material model in finite element analysis publication-title: Int J Numer Methods Eng – volume: 196 start-page: 109098 year: 2020 article-title: Deep learning for topology optimization of 2D metamaterials publication-title: Mater Des – volume: 10 start-page: 202 issue: 3 year: 2020 end-page: 206 article-title: Learning material law from displacement fields by artificial neural network publication-title: Theor Appl Mech Lett – volume: 37 year: 2020 article-title: Compression and buckling of microarchitectured Neovius‐lattice publication-title: Extreme Mech Lett – volume: 10 start-page: 5917 issue: 17 year: 2020 article-title: Solving partial differential equations using deep learning and physical constraints publication-title: Appl Sci – volume: 141 year: 2020 article-title: Physics‐informed neural networks for multiphysics data assimilation with application to subsurface transport publication-title: Adv Water Resour – volume: 362 start-page: 112790 year: 2020 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications publication-title: Comput Methods Appl Mech Eng – volume: 18 year: 2006 – volume: 227 start-page: 111264 year: 2019 article-title: Prediction and optimization of mechanical properties of composites using convolutional neural networks publication-title: Compos Struct – volume: 371 start-page: 113299 year: 2020 article-title: Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity publication-title: Comput Methods Appl Mech Eng – volume: 6 start-page: 969 year: 2019 end-page: 972 article-title: Self driving car using raspberry‐Pi and machine learning publication-title: Int Res J Eng Technol – volume: 33 start-page: 94 year: 2016 end-page: 97 article-title: Machine learning approaches in medical image analysis: from detection to diagnosis publication-title: Med Image Anal – volume: 15 issue: 5 year: 2020 article-title: Physics‐informed neural networks for solving nonlinear diffusivity and Biot's equations publication-title: PLoS One – volume: 10 start-page: 353 year: 2003 end-page: 425 – volume: 131 start-page: 1 year: 2019 end-page: 10 article-title: Constitutive modeling of plastic deformation behavior of open‐cell foam structures using neural networks publication-title: Mech Mater – volume: 78 start-page: 1 issue: 1 year: 2009 end-page: 31 article-title: Explicit coupled thermo‐mechanical finite element model of steel solidification publication-title: Int J Numer Methods Eng – volume: 84 start-page: 955 issue: 15‐16 year: 2006 end-page: 963 article-title: Neural network constitutive model for rate‐dependent materials publication-title: Comput Struct – volume: 32 start-page: 8024 year: 2019 end-page: 8035 – start-page: 237 year: 2018 end-page: 315 – volume: 45 start-page: 503 issue: 1‐3 year: 1989 end-page: 528 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math Program – volume: 173 start-page: 264 year: 2018 end-page: 272 article-title: Parallel mesh partitioning based on space filling curves publication-title: Comput Fluids – volume: 59 start-page: 461 issue: 2 year: 2019 end-page: 483 article-title: Design of periodic elastoplastic energy dissipating microstructures publication-title: Struct Multidiscip Optim – start-page: 1 year: 2018 end-page: 38 – volume: 19 issue: 1 year: 2019 article-title: Evaluating artificial neural networks and quantum computing for mechanics publication-title: PAMM – volume: 358 start-page: 112623 year: 2020 article-title: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non‐invasive 4d flow MRI data using physics‐informed neural networks publication-title: Comput Methods Appl Mech Eng – volume: 11 start-page: 1041 issue: 5 year: 2000 end-page: 1049 article-title: Neural‐network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans Neural Netw – volume: 18 start-page: 5595 issue: 1 year: 2017 end-page: 5637 article-title: Automatic differentiation in machine learning: a survey publication-title: J Mach Learn Res – volume: 141 start-page: 135 issue: 1‐2 year: 2013 end-page: 163 article-title: Nonsmooth optimization via quasi‐Newton methods publication-title: Math Program – volume: 7 start-page: 1902607 issue: 5 year: 2020 article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning publication-title: Adv Sci – volume: 160 year: 2009 – volume: 183 start-page: 260 issue: 1 year: 2006 end-page: 271 article-title: Numerical solution for high order differential equations using a hybrid neural network—optimization method publication-title: Appl Math Comput – volume: 189 start-page: 108509 year: 2020 article-title: Prediction of composite microstructure stress‐strain curves using convolutional neural networks publication-title: Mater Des – volume: 237 start-page: 106283 year: 2020 article-title: Topology optimization of 2D structures with nonlinearities using deep learning publication-title: Comput Struct – volume: 6 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: The deep Ritz method: a deep learning‐based numerical algorithm for solving variational problems publication-title: Commun Math Stat – volume: 915 article-title: Flow over an espresso cup: inferring 3‐D velocity and pressure fields from tomographic background oriented Schlieren via physics‐informed neural networks publication-title: J Fluid Mech – start-page: 325 year: 2018 end-page: 339 – volume: 378 start-page: 686 year: 2019 end-page: 707 article-title: Physics‐informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J Comput Phys – volume: 18 start-page: 19 year: 2018 end-page: 28 article-title: De novo composite design based on machine learning algorithm publication-title: Extreme Mech Lett – volume: 136 start-page: 102852 year: 2021 article-title: Deep learning for plasticity and thermo‐viscoplasticity publication-title: Int J Plast – volume: 165 start-page: 21 year: 2019 end-page: 30 article-title: A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization publication-title: Finite Elem Anal Des – volume: 115 start-page: 8505 issue: 34 year: 2018 end-page: 8510 article-title: Solving high‐dimensional partial differential equations using deep learning publication-title: Proc Natl Acad Sci – volume: 367 start-page: 1026 issue: 6481 year: 2020 end-page: 1030 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science – volume: 80 start-page: 103874 year: 2020 article-title: A deep energy method for finite deformation hyperelasticity publication-title: Eur J Mech A/Solids – volume: 11 start-page: 494 issue: 3 year: 2021 article-title: Deep learning sequence methods in multiphysics modeling of steel solidification publication-title: Metals – year: 2012 – volume: 40 start-page: 1417 issue: 11 year: 2004 end-page: 1427 article-title: Topology optimization of nonlinear structures publication-title: Finite Elem Anal Des – volume: 70 start-page: 1143 issue: 7 year: 2018 end-page: 1146 article-title: Data‐driven materials investigations: the next frontier in understanding and predicting fatigue behavior publication-title: JOM – volume: 128 issue: 2 year: 2020 article-title: A machine learning based approach for phononic crystal property discovery publication-title: J Appl Phys – volume: 807 start-page: 155 year: 2016 end-page: 166 article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance publication-title: J Fluid Mech – volume: 88 start-page: 224 year: 2020 end-page: 237 article-title: Fluid sensing using microcantilevers: from physics‐based modeling to deep learning publication-title: Appl Math Model – volume: 31 start-page: 1904845 issue: 48 year: 2019 article-title: Bayesian machine learning in metamaterial design: fragile becomes supercompressible publication-title: Adv Mater – volume: 371 start-page: 112626 year: 2020 article-title: Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for b‐splines publication-title: J Comput Appl Math – volume: 33 start-page: 1923 issue: 6 year: 2020 end-page: 1933 article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm publication-title: Neural Comput Appl – volume: 124 start-page: 175102 issue: 17 year: 2018 article-title: Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz primitive surface publication-title: J Appl Phys – volume: 4 start-page: 251 issue: 2 year: 1991 end-page: 257 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw – start-page: 1 year: 1963 end-page: 36 article-title: Calculation of elastic‐plastic flow publication-title: California Univ Livermore Radiation Lab – volume: 5 start-page: 349 issue: 4 year: 2017 end-page: 380 article-title: Deep learning‐based numerical methods for high‐dimensional parabolic partial differential equations and backward stochastic differential equations publication-title: Commun Math Stat – volume: 141 start-page: 19 year: 2014 end-page: 25 article-title: Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes publication-title: Comput Struct – volume: 28 start-page: 101280 year: 2020 article-title: A deep collocation method for heat transfer in porous media: verification from the finite element method publication-title: J Energy Storage – volume: 2 start-page: 303 issue: 4 year: 1989 end-page: 314 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math Control Signals Syst – volume: 116 start-page: 26414 issue: 52 year: 2019 end-page: 26420 article-title: Deep learning predicts path‐dependent plasticity publication-title: Proc Natl Acad Sci – volume: 330 start-page: 192 year: 2017 end-page: 220 article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials publication-title: J Comput Phys – volume: 285 start-page: 166 year: 2015 end-page: 187 article-title: Topology optimization of viscoelastic structures using a time‐dependent adjoint method publication-title: Comput Methods Appl Mech Eng – year: 2013 – volume-title: Mitchell, Machine Learning: An Artificial Intelligence Approach year: 2013 ident: e_1_2_9_70_1 – ident: e_1_2_9_44_1 doi: 10.1109/72.712178 – ident: e_1_2_9_11_1 doi: 10.1007/s00158-018-2076-2 – ident: e_1_2_9_13_1 doi: 10.1016/S0045-7825(00)00278-4 – ident: e_1_2_9_46_1 doi: 10.1016/j.amc.2006.05.068 – ident: e_1_2_9_36_1 doi: 10.1016/j.compstruc.2006.02.015 – ident: e_1_2_9_71_1 doi: 10.1007/BF02551274 – ident: e_1_2_9_65_1 – ident: e_1_2_9_73_1 doi: 10.1016/S0927-0507(03)10006-0 – ident: e_1_2_9_17_1 doi: 10.1109/APSIPA.2016.7820699 – ident: e_1_2_9_20_1 doi: 10.1002/pamm.201900470 – ident: e_1_2_9_26_1 doi: 10.1016/j.cma.2020.113184 – start-page: 8024 volume-title: Advances in Neural Information Processing Systems year: 2019 ident: e_1_2_9_68_1 – ident: e_1_2_9_54_1 doi: 10.1126/science.aaw4741 – volume: 6 start-page: 969 year: 2019 ident: e_1_2_9_18_1 article-title: Self driving car using raspberry‐Pi and machine learning publication-title: Int Res J Eng Technol – ident: e_1_2_9_24_1 doi: 10.1016/j.compstruct.2019.111264 – ident: e_1_2_9_27_1 doi: 10.1073/pnas.1911815116 – ident: e_1_2_9_43_1 doi: 10.1016/0021-9991(90)90007-N – ident: e_1_2_9_58_1 doi: 10.1017/jfm.2016.615 – ident: e_1_2_9_80_1 doi: 10.1007/s00521-020-05035-x – ident: e_1_2_9_32_1 doi: 10.1007/s11837-018-2894-0 – ident: e_1_2_9_25_1 doi: 10.1016/j.cma.2020.113299 – ident: e_1_2_9_51_1 doi: 10.1016/j.cma.2019.112623 – ident: e_1_2_9_69_1 – ident: e_1_2_9_34_1 doi: 10.1063/5.0006153 – ident: e_1_2_9_31_1 doi: 10.1016/j.matdes.2020.108509 – ident: e_1_2_9_23_1 doi: 10.1016/j.compscitech.2019.107861 – ident: e_1_2_9_29_1 doi: 10.1016/j.ijplas.2020.102852 – ident: e_1_2_9_40_1 doi: 10.1016/j.matdes.2020.109098 – ident: e_1_2_9_79_1 doi: 10.1016/j.compstruc.2014.05.009 – volume-title: Integrated Design of Multiscale, Multifunctional Materials and Products year: 2009 ident: e_1_2_9_16_1 – ident: e_1_2_9_9_1 doi: 10.1002/adma.201301986 – volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis year: 2012 ident: e_1_2_9_4_1 – ident: e_1_2_9_33_1 doi: 10.1016/j.finel.2019.07.001 – ident: e_1_2_9_81_1 doi: 10.1016/j.jcp.2021.110839 – ident: e_1_2_9_5_1 doi: 10.1007/978-90-481-2331-5 – ident: e_1_2_9_53_1 doi: 10.1016/j.advwatres.2020.103610 – ident: e_1_2_9_39_1 doi: 10.1016/j.compstruc.2020.106283 – ident: e_1_2_9_52_1 doi: 10.1371/journal.pone.0232683 – ident: e_1_2_9_30_1 doi: 10.3390/met11030494 – ident: e_1_2_9_57_1 doi: 10.1073/pnas.1718942115 – ident: e_1_2_9_37_1 doi: 10.1002/adma.201904845 – ident: e_1_2_9_12_1 doi: 10.1016/j.cma.2014.11.012 – ident: e_1_2_9_22_1 doi: 10.1016/j.cam.2019.112626 – start-page: 1 year: 1963 ident: e_1_2_9_76_1 article-title: Calculation of elastic‐plastic flow publication-title: California Univ Livermore Radiation Lab – ident: e_1_2_9_42_1 doi: 10.1016/j.eml.2017.10.001 – ident: e_1_2_9_64_1 doi: 10.1016/j.euromechsol.2019.103874 – ident: e_1_2_9_77_1 doi: 10.1016/B978-0-12-811718-7.00018-6 – ident: e_1_2_9_63_1 doi: 10.1016/j.cma.2019.112790 – ident: e_1_2_9_41_1 doi: 10.1016/j.taml.2020.01.038 – ident: e_1_2_9_56_1 doi: 10.1007/978-3-030-59851-8_9 – ident: e_1_2_9_62_1 doi: 10.1016/j.jcp.2018.08.029 – ident: e_1_2_9_7_1 doi: 10.1007/s11012-020-01179-1 – ident: e_1_2_9_21_1 doi: 10.1016/j.apm.2020.06.051 – ident: e_1_2_9_55_1 doi: 10.1017/jfm.2021.135 – ident: e_1_2_9_48_1 doi: 10.1016/j.jcp.2018.10.045 – ident: e_1_2_9_28_1 doi: 10.1016/j.mechmat.2019.01.015 – ident: e_1_2_9_35_1 doi: 10.1002/nme.905 – ident: e_1_2_9_14_1 doi: 10.1016/j.finel.2003.08.011 – ident: e_1_2_9_59_1 doi: 10.1007/s40304-017-0117-6 – ident: e_1_2_9_6_1 doi: 10.1142/6141 – ident: e_1_2_9_49_1 doi: 10.3390/app10175917 – ident: e_1_2_9_60_1 doi: 10.1016/j.est.2020.101280 – volume: 18 start-page: 5595 issue: 1 year: 2017 ident: e_1_2_9_47_1 article-title: Automatic differentiation in machine learning: a survey publication-title: J Mach Learn Res – ident: e_1_2_9_78_1 doi: 10.1016/j.compfluid.2018.01.040 – ident: e_1_2_9_15_1 doi: 10.1016/j.jcp.2016.10.070 – ident: e_1_2_9_45_1 doi: 10.1109/72.870037 – ident: e_1_2_9_19_1 doi: 10.1016/j.media.2016.06.032 – ident: e_1_2_9_66_1 doi: 10.1007/BF01589116 – ident: e_1_2_9_67_1 doi: 10.1002/nme.2476 – ident: e_1_2_9_61_1 doi: 10.1007/s40304-018-0127-z – ident: e_1_2_9_75_1 – ident: e_1_2_9_10_1 doi: 10.1063/1.5046105 – ident: e_1_2_9_72_1 doi: 10.1016/0893-6080(91)90009-T – ident: e_1_2_9_74_1 doi: 10.1007/s10107-012-0514-2 – ident: e_1_2_9_8_1 doi: 10.1016/j.eml.2020.100688 – ident: e_1_2_9_38_1 doi: 10.1002/advs.201902607 – ident: e_1_2_9_50_1 – start-page: 1 volume-title: Encyclopedia of Computational Mechanics year: 2018 ident: e_1_2_9_3_1 – ident: e_1_2_9_2_1 doi: 10.1007/978-3-319-94911-6_4 |
SSID | ssj0011503 |
Score | 2.6382701 |
Snippet | Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7182 |
SubjectTerms | Collocation methods computational mechanics Deep learning Deformation Finite element method machine learning Mathematical models meshfree method Meshless methods Neural networks Numerical methods Partial differential equations physics‐informed learning Solid mechanics |
Title | Meshless physics‐informed deep learning method for three‐dimensional solid mechanics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6828 https://www.proquest.com/docview/2596217531 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6kJz1YrYrVKiuIntImm2SbHEVaipAexELBQ8j-qai1mPbiyUfwGX0SZ7pJrKIgnkLI7JLszOx-s5n9hpBjZYzwZIY77lHoBBkz6FKZEzA3dHlspBJ4djgZ8sEouBiH4yKrEs_CWH6IasMNPWMxX6ODZyLvLJGGPuo2h3gBpl9M1UI8dFkxRyHO8cvsjjCOvJJ31mWdsuHXlegTXi6D1MUq06-T6_L9bHLJfXs-E2358o268X8fsEHWC_BJz6y1bJIVPWmQegFEaeHmeYOsLbEUwl1SUbvmW2Sc6Pz2AeZHajdF8vfXN8u-Cl0orae0KERxQ211agrP6AxMRoOkwmIClgiEgtXfKRDCs8fQzzYZ9XtX5wOnKM_gSMAIkQNqjFwTx0EmWaBCFinNQeFMxALCFF-FCv-6GSlhnYRwV4hQujzrcuX6mqsu83dIbfI00buEMqF810BsZTjH-lmRr_yMdbsG1lLOI94kp6WqUllwl2MJjYfUsi6zFAYzxcFskqNKcmr5On6QaZXaTguPzVOGZYiQttRrkpOF2n5tnw6THl73_iq4T1YZpsJ4zPHCFqnNnuf6ALDMTBwurPYDCony0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcgAODaRFTVvoIiE4ObHX9sYWJ4RahRLngFopByTL-0erhrSqnQsnHqHP2CfpjNc2AYGEOFmWZ1f2zszuzHj3-wBea2tloAqquCexFxXckksVXsT92BepVVrS2eFsJiZn0ck8nm_Au_YsjMOH6Apu5Bn1fE0OTgXp0Rpq6DczFJgwPICHROhd51OfO-woinTCdn9HnCZBizzr81Hb8te16GeAuR6m1uvMcQ--tG_otpdcDleVHKrvv4E3_ucnPIWtJv5k753BPIMNs-xDr4lFWePpZR-erAEV4l3WobuW2zDPTHm-wCmSubpIeffj1gGwYhfamGvWcFF8ZY6gmuEzVqHVGJTUxCfgsEAYGv6FRiE6foz97MDZ8dHph4nXMDR4CsOExENNJr5N06hQPNIxT7QRqHMuU4mZSqhjTT_erFK4VGLGK2WsfFGMhfZDI_SYh89hc3m1NLvAuNShbzG9skIQhVYS6rDg47HF5VSIRAzgbaurXDXw5cSiscgd8DLPcTBzGswBvOokrx1kxx9kDlp1543TljknJiJCLg0G8KbW21_b57PsiK57_yp4CI8mp9k0n36cfdqHx5x2xgTcC-ID2KxuVuYFhjaVfFmb8D0qHPbs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8oJkQeQEHCIcqaGHzq0W672_bRyF1OtBdDILmEh6b7TwlwXOjxwpMfwc_oJ3Hmtq2n0cT41DSd3bQ7Mzt_OvsbgNfGORXpijLumQiSijtSqSpIeChCmTttFJ0dLsZydJYcT8SkqaqkszAeH6JLuJFmLPZrUvCZcYdLoKHXti8xXngIjxIZZiTRRycddBQ5OnFb3iHyLGqBZ0N-2I781RT99C-XvdSFmRluwHn7gr665LJ_N1d9ff8bduP_fcETWG-8T_bWi8tTeGCnm7DReKKs0fN6E9aWYArxruiwXestmBS2_nKFGyTzWZH6-9dvHn4VpzDWzljTieIz8-2pGT5jc5QZi5SGugl4JBCGYn9hkIgOH-M8z-BsODh9Nwqa_gyBRichC5CPWejyPKk0T4zgmbHICMFVrjBOiY0w9NvNaY2GEuNdpYQOZZVKE8ZWmpTH27AyvZnaHWBcmTh0GFw5KamBVhabuOJp6tCYSpnJHrxpWVXqBrycemhclR52mZe4mCUtZg9edZQzD9jxB5q9lttlo7J1yakPEeGWRj04WLDtr-PLcTGg6-6_Eu7D6qejYfnx_fjDc3jMqSwm4kEk9mBlfntnX6BfM1cvFwL8A3Kk9aQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meshless+physics%E2%80%90informed+deep+learning+method+for+three%E2%80%90dimensional+solid+mechanics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Abueidda%2C+Diab+W&rft.au=Lu%2C+Qiyue&rft.au=Koric%2C+Seid&rft.date=2021-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=23&rft.spage=7182&rft.epage=7201&rft_id=info:doi/10.1002%2Fnme.6828&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |