Meshless physics‐informed deep learning method for three‐dimensional solid mechanics

Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo‐Hookean) with large deformation, and von Mises plasticity...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 122; no. 23; pp. 7182 - 7201
Main Authors Abueidda, Diab W., Lu, Qiyue, Koric, Seid
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.12.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo‐Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening. The performance of this deep collocation method (DCM) depends on the architecture of the neural network and the corresponding hyperparameters. The presented DCM is meshfree and avoids any spatial discretization, which is usually needed for the finite element method (FEM). We show that the DCM can capture the response qualitatively and quantitatively, without the need for any data generation using other numerical methods such as the FEM. Data generation usually is the main bottleneck in most data‐driven models. The DL model is trained to learn the model's parameters yielding accurate approximate solutions. Once the model is properly trained, solutions can be obtained almost instantly at any point in the domain, given its spatial coordinates. Therefore, the DCM is potentially a promising standalone technique to solve PDEs involved in the deformation of materials and structural systems as well as other physical phenomena.
AbstractList Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have considered different types of materials: linear elasticity, hyperelasticity (neo‐Hookean) with large deformation, and von Mises plasticity with isotropic and kinematic hardening. The performance of this deep collocation method (DCM) depends on the architecture of the neural network and the corresponding hyperparameters. The presented DCM is meshfree and avoids any spatial discretization, which is usually needed for the finite element method (FEM). We show that the DCM can capture the response qualitatively and quantitatively, without the need for any data generation using other numerical methods such as the FEM. Data generation usually is the main bottleneck in most data‐driven models. The DL model is trained to learn the model's parameters yielding accurate approximate solutions. Once the model is properly trained, solutions can be obtained almost instantly at any point in the domain, given its spatial coordinates. Therefore, the DCM is potentially a promising standalone technique to solve PDEs involved in the deformation of materials and structural systems as well as other physical phenomena.
Author Koric, Seid
Abueidda, Diab W.
Lu, Qiyue
Author_xml – sequence: 1
  givenname: Diab W.
  orcidid: 0000-0003-3594-2455
  surname: Abueidda
  fullname: Abueidda, Diab W.
  email: abueidd2@illinois.edu
  organization: University of Illinois at Urbana‐Champaign
– sequence: 2
  givenname: Qiyue
  surname: Lu
  fullname: Lu, Qiyue
  organization: University of Illinois at Urbana‐Champaign
– sequence: 3
  givenname: Seid
  surname: Koric
  fullname: Koric, Seid
  organization: University of Illinois at Urbana‐Champaign
BookMark eNp1kE1OwzAUhC0EEm1B4giR2LBJ8U-dxEtUlR-phQ1I7CzHfiGuEifYqVB3HIEzchJcygrB6i3mm9GbGaND1zlA6IzgKcGYXroWpllBiwM0IljkKaY4P0SjKImUi4Ico3EIa4wJ4ZiN0PMKQt1ACElfb4PV4fP9w7qq8y2YxAD0SQPKO-tekhaGujNJ1JKh9gCRNLYFF2znVJOErrEmQrpWLuacoKNKNQFOf-4EPV0vHue36fLh5m5-tUw1FaxItSkLXAkxU5rODKeFgQwXnJai5Fwww01sISqtZ4RxysqSa5ypPDOYQWZyyibofJ_b--51A2GQ627j40NBUi4ySnLOSKQu9pT2XQgeKtl72yq_lQTL3W4y7iZ3u0V0-gvVdlBDLDl4ZZu_DOne8GYb2P4bLO9Xi2_-CxU_gtU
CitedBy_id crossref_primary_10_1016_j_cma_2024_117226
crossref_primary_10_1007_s11837_024_06681_5
crossref_primary_10_1016_j_cma_2023_116578
crossref_primary_10_1142_S1758825122500272
crossref_primary_10_1007_s00521_024_10132_2
crossref_primary_10_1007_s11831_024_10063_0
crossref_primary_10_1016_j_mlwa_2024_100600
crossref_primary_10_1016_j_cma_2024_117268
crossref_primary_10_1111_mice_13208
crossref_primary_10_1111_mice_13405
crossref_primary_10_1016_j_engappai_2023_107258
crossref_primary_10_1016_j_engfracmech_2025_110800
crossref_primary_10_1016_j_finel_2022_103893
crossref_primary_10_1007_s10483_023_2995_8
crossref_primary_10_1111_mice_13367
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1016_j_jmps_2022_105177
crossref_primary_10_1016_j_mechmat_2024_105141
crossref_primary_10_1007_s41365_023_01313_0
crossref_primary_10_1007_s00707_023_03691_3
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123809
crossref_primary_10_1016_j_euromechsol_2022_104639
crossref_primary_10_1002_nme_7444
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1016_j_ijplas_2023_103524
crossref_primary_10_1016_j_engstruct_2025_120018
crossref_primary_10_1016_j_probengmech_2023_103534
crossref_primary_10_1016_j_cma_2023_116343
crossref_primary_10_1016_j_cma_2024_117655
crossref_primary_10_1080_15376494_2024_2439557
crossref_primary_10_1016_j_cma_2025_117755
crossref_primary_10_1016_j_cma_2025_117797
crossref_primary_10_1111_mice_13292
crossref_primary_10_3390_polym16223222
crossref_primary_10_1016_j_apm_2023_11_006
crossref_primary_10_1364_AO_498872
crossref_primary_10_1016_j_eml_2023_102103
crossref_primary_10_1016_j_ijsolstr_2025_113315
crossref_primary_10_1007_s00366_024_02090_z
crossref_primary_10_1088_2515_7639_ad33a4
crossref_primary_10_1080_19648189_2024_2416441
crossref_primary_10_2478_bhee_2022_0006
crossref_primary_10_1002_adem_202401299
crossref_primary_10_1016_j_enganabound_2024_01_004
crossref_primary_10_2139_ssrn_4785058
crossref_primary_10_1007_s13131_024_2329_4
crossref_primary_10_1098_rsos_231606
crossref_primary_10_1016_j_compstruc_2022_106843
crossref_primary_10_1016_j_ijplas_2023_103531
crossref_primary_10_1016_j_mechmat_2023_104642
crossref_primary_10_1007_s00466_022_02252_0
crossref_primary_10_1007_s40192_022_00283_2
crossref_primary_10_1016_j_addma_2022_103237
crossref_primary_10_1016_j_cma_2024_117122
crossref_primary_10_1016_j_cma_2024_117004
crossref_primary_10_1038_s43588_023_00412_7
crossref_primary_10_1680_jgeot_22_00046
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1002_nme_7146
crossref_primary_10_1002_nme_7388
crossref_primary_10_1038_s41524_024_01307_5
crossref_primary_10_20948_mm_2024_06_12
crossref_primary_10_1016_j_compgeo_2025_107137
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_jrmge_2024_10_025
crossref_primary_10_1007_s00366_023_01914_8
crossref_primary_10_1016_j_compstruct_2024_118171
crossref_primary_10_1016_j_cma_2023_116120
crossref_primary_10_1109_ACCESS_2022_3160186
crossref_primary_10_1016_j_cma_2024_117474
crossref_primary_10_1016_j_cma_2024_117355
crossref_primary_10_1007_s10409_024_24159_x
crossref_primary_10_3389_fmech_2024_1417606
crossref_primary_10_1142_S0219876223500135
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1007_s00707_022_03449_3
crossref_primary_10_1016_j_oceaneng_2024_117372
crossref_primary_10_1177_09544062231164575
crossref_primary_10_1016_j_tws_2023_111540
crossref_primary_10_1016_j_engappai_2025_110097
crossref_primary_10_1002_nme_7455
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1002_nme_7377
crossref_primary_10_1111_str_12431
crossref_primary_10_1002_nme_7176
crossref_primary_10_1002_nme_7296
crossref_primary_10_1007_s00366_024_02033_8
crossref_primary_10_1016_j_cma_2023_115902
crossref_primary_10_1007_s00366_023_01822_x
crossref_primary_10_1016_j_enganabound_2022_08_035
Cites_doi 10.1109/72.712178
10.1007/s00158-018-2076-2
10.1016/S0045-7825(00)00278-4
10.1016/j.amc.2006.05.068
10.1016/j.compstruc.2006.02.015
10.1007/BF02551274
10.1016/S0927-0507(03)10006-0
10.1109/APSIPA.2016.7820699
10.1002/pamm.201900470
10.1016/j.cma.2020.113184
10.1126/science.aaw4741
10.1016/j.compstruct.2019.111264
10.1073/pnas.1911815116
10.1016/0021-9991(90)90007-N
10.1017/jfm.2016.615
10.1007/s00521-020-05035-x
10.1007/s11837-018-2894-0
10.1016/j.cma.2020.113299
10.1016/j.cma.2019.112623
10.1063/5.0006153
10.1016/j.matdes.2020.108509
10.1016/j.compscitech.2019.107861
10.1016/j.ijplas.2020.102852
10.1016/j.matdes.2020.109098
10.1016/j.compstruc.2014.05.009
10.1002/adma.201301986
10.1016/j.finel.2019.07.001
10.1016/j.jcp.2021.110839
10.1007/978-90-481-2331-5
10.1016/j.advwatres.2020.103610
10.1016/j.compstruc.2020.106283
10.1371/journal.pone.0232683
10.3390/met11030494
10.1073/pnas.1718942115
10.1002/adma.201904845
10.1016/j.cma.2014.11.012
10.1016/j.cam.2019.112626
10.1016/j.eml.2017.10.001
10.1016/j.euromechsol.2019.103874
10.1016/B978-0-12-811718-7.00018-6
10.1016/j.cma.2019.112790
10.1016/j.taml.2020.01.038
10.1007/978-3-030-59851-8_9
10.1016/j.jcp.2018.08.029
10.1007/s11012-020-01179-1
10.1016/j.apm.2020.06.051
10.1017/jfm.2021.135
10.1016/j.jcp.2018.10.045
10.1016/j.mechmat.2019.01.015
10.1002/nme.905
10.1016/j.finel.2003.08.011
10.1007/s40304-017-0117-6
10.1142/6141
10.3390/app10175917
10.1016/j.est.2020.101280
10.1016/j.compfluid.2018.01.040
10.1016/j.jcp.2016.10.070
10.1109/72.870037
10.1016/j.media.2016.06.032
10.1007/BF01589116
10.1002/nme.2476
10.1007/s40304-018-0127-z
10.1063/1.5046105
10.1016/0893-6080(91)90009-T
10.1007/s10107-012-0514-2
10.1016/j.eml.2020.100688
10.1002/advs.201902607
10.1007/978-3-319-94911-6_4
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6828
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 7201
ExternalDocumentID 10_1002_nme_6828
NME6828
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-cdb80f994ac24d528de60852b9b5593d5d1099fcc413523bb5c06a76d03e6d723
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri Jul 25 12:15:48 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Tue Jul 01 04:32:08 EDT 2025
Wed Jan 22 16:26:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-cdb80f994ac24d528de60852b9b5593d5d1099fcc413523bb5c06a76d03e6d723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3594-2455
PQID 2596217531
PQPubID 996376
PageCount 20
ParticipantIDs proquest_journals_2596217531
crossref_primary_10_1002_nme_6828
crossref_citationtrail_10_1002_nme_6828
wiley_primary_10_1002_nme_6828_NME6828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 December 2021
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 15 December 2021
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2013; 25
1989; 45
2009; 160
2020; 362
2018; 124
2019; 59
2020; 369
2019; 19
2020; 128
2020; 15
2020; 367
2020; 10
915
2003; 10
2016; 33
2019; 165
2020; 7
2018; 6
2018; 375
2018; 173
2020; 371
2000; 11
2018; 70
2019; 116
2020; 88
1990; 91
1991; 4
1989; 2
2004; 40
2019; 6
2012
2019; 31
2020; 141
2019; 32
2016; 807
2020; 80
2015; 285
2009
2006; 18
2020; 37
2013; 141
2020; 189
2019; 227
2020; 33
2017; 330
2019; 184
2009; 78
2018; 18
2021; 56
2021; 11
2006; 84
2001; 190
2020; 196
2021; 136
2004; 59
2018; 115
2020; 237
2020; 358
2020; 28
2018
1963
2019; 378
2017; 18
2006; 183
2013
2014; 141
2019; 131
1998; 9
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Michalski RS (e_1_2_9_70_1) 2013
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
McDowell DL (e_1_2_9_16_1) 2009
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_60_1
e_1_2_9_2_1
Thorat Z (e_1_2_9_18_1) 2019; 6
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
Paszke A (e_1_2_9_68_1) 2019
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Wilkins ML (e_1_2_9_76_1) 1963
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
Hughes TJ (e_1_2_9_4_1) 2012
Baydin AG (e_1_2_9_47_1) 2017; 18
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
Huerta A (e_1_2_9_3_1) 2018
e_1_2_9_29_1
References_xml – volume: 25
  start-page: 5044
  issue: 36
  year: 2013
  end-page: 5049
  article-title: 3D soft metamaterials with negative poisson's ratio
  publication-title: Adv Mater
– year: 2009
– volume: 190
  start-page: 3443
  issue: 26‐27
  year: 2001
  end-page: 3459
  article-title: Topology optimization of non‐linear elastic structures and compliant mechanisms
  publication-title: Comput Methods Appl Mech Eng
– volume: 91
  start-page: 110
  issue: 1
  year: 1990
  end-page: 131
  article-title: Neural algorithm for solving differential equations
  publication-title: J Comput Phys
– volume: 56
  start-page: 1505
  year: 2021
  end-page: 1521
  article-title: On the two‐potential constitutive modeling of dielectric elastomers
  publication-title: Meccanica
– volume: 369
  start-page: 113184
  year: 2020
  article-title: Computational thermomechanics for crystalline rock Part II: chemo‐damage‐plasticity and healing in strongly anisotropic polycrystals
  publication-title: Comput Methods Appl Mech Eng
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  end-page: 1000
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans Neural Netw
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J Comput Phys
– volume: 184
  start-page: 107861
  year: 2019
  article-title: Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods
  publication-title: Compos Sci Technol
– volume: 59
  start-page: 989
  issue: 7
  year: 2004
  end-page: 1005
  article-title: Numerical implementation of a neural network based material model in finite element analysis
  publication-title: Int J Numer Methods Eng
– volume: 196
  start-page: 109098
  year: 2020
  article-title: Deep learning for topology optimization of 2D metamaterials
  publication-title: Mater Des
– volume: 10
  start-page: 202
  issue: 3
  year: 2020
  end-page: 206
  article-title: Learning material law from displacement fields by artificial neural network
  publication-title: Theor Appl Mech Lett
– volume: 37
  year: 2020
  article-title: Compression and buckling of microarchitectured Neovius‐lattice
  publication-title: Extreme Mech Lett
– volume: 10
  start-page: 5917
  issue: 17
  year: 2020
  article-title: Solving partial differential equations using deep learning and physical constraints
  publication-title: Appl Sci
– volume: 141
  year: 2020
  article-title: Physics‐informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv Water Resour
– volume: 362
  start-page: 112790
  year: 2020
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications
  publication-title: Comput Methods Appl Mech Eng
– volume: 18
  year: 2006
– volume: 227
  start-page: 111264
  year: 2019
  article-title: Prediction and optimization of mechanical properties of composites using convolutional neural networks
  publication-title: Compos Struct
– volume: 371
  start-page: 113299
  year: 2020
  article-title: Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity
  publication-title: Comput Methods Appl Mech Eng
– volume: 6
  start-page: 969
  year: 2019
  end-page: 972
  article-title: Self driving car using raspberry‐Pi and machine learning
  publication-title: Int Res J Eng Technol
– volume: 33
  start-page: 94
  year: 2016
  end-page: 97
  article-title: Machine learning approaches in medical image analysis: from detection to diagnosis
  publication-title: Med Image Anal
– volume: 15
  issue: 5
  year: 2020
  article-title: Physics‐informed neural networks for solving nonlinear diffusivity and Biot's equations
  publication-title: PLoS One
– volume: 10
  start-page: 353
  year: 2003
  end-page: 425
– volume: 131
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Constitutive modeling of plastic deformation behavior of open‐cell foam structures using neural networks
  publication-title: Mech Mater
– volume: 78
  start-page: 1
  issue: 1
  year: 2009
  end-page: 31
  article-title: Explicit coupled thermo‐mechanical finite element model of steel solidification
  publication-title: Int J Numer Methods Eng
– volume: 84
  start-page: 955
  issue: 15‐16
  year: 2006
  end-page: 963
  article-title: Neural network constitutive model for rate‐dependent materials
  publication-title: Comput Struct
– volume: 32
  start-page: 8024
  year: 2019
  end-page: 8035
– start-page: 237
  year: 2018
  end-page: 315
– volume: 45
  start-page: 503
  issue: 1‐3
  year: 1989
  end-page: 528
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math Program
– volume: 173
  start-page: 264
  year: 2018
  end-page: 272
  article-title: Parallel mesh partitioning based on space filling curves
  publication-title: Comput Fluids
– volume: 59
  start-page: 461
  issue: 2
  year: 2019
  end-page: 483
  article-title: Design of periodic elastoplastic energy dissipating microstructures
  publication-title: Struct Multidiscip Optim
– start-page: 1
  year: 2018
  end-page: 38
– volume: 19
  issue: 1
  year: 2019
  article-title: Evaluating artificial neural networks and quantum computing for mechanics
  publication-title: PAMM
– volume: 358
  start-page: 112623
  year: 2020
  article-title: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non‐invasive 4d flow MRI data using physics‐informed neural networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  end-page: 1049
  article-title: Neural‐network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans Neural Netw
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  end-page: 5637
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J Mach Learn Res
– volume: 141
  start-page: 135
  issue: 1‐2
  year: 2013
  end-page: 163
  article-title: Nonsmooth optimization via quasi‐Newton methods
  publication-title: Math Program
– volume: 7
  start-page: 1902607
  issue: 5
  year: 2020
  article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning
  publication-title: Adv Sci
– volume: 160
  year: 2009
– volume: 183
  start-page: 260
  issue: 1
  year: 2006
  end-page: 271
  article-title: Numerical solution for high order differential equations using a hybrid neural network—optimization method
  publication-title: Appl Math Comput
– volume: 189
  start-page: 108509
  year: 2020
  article-title: Prediction of composite microstructure stress‐strain curves using convolutional neural networks
  publication-title: Mater Des
– volume: 237
  start-page: 106283
  year: 2020
  article-title: Topology optimization of 2D structures with nonlinearities using deep learning
  publication-title: Comput Struct
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: The deep Ritz method: a deep learning‐based numerical algorithm for solving variational problems
  publication-title: Commun Math Stat
– volume: 915
  article-title: Flow over an espresso cup: inferring 3‐D velocity and pressure fields from tomographic background oriented Schlieren via physics‐informed neural networks
  publication-title: J Fluid Mech
– start-page: 325
  year: 2018
  end-page: 339
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  article-title: Physics‐informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J Comput Phys
– volume: 18
  start-page: 19
  year: 2018
  end-page: 28
  article-title: De novo composite design based on machine learning algorithm
  publication-title: Extreme Mech Lett
– volume: 136
  start-page: 102852
  year: 2021
  article-title: Deep learning for plasticity and thermo‐viscoplasticity
  publication-title: Int J Plast
– volume: 165
  start-page: 21
  year: 2019
  end-page: 30
  article-title: A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization
  publication-title: Finite Elem Anal Des
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  end-page: 8510
  article-title: Solving high‐dimensional partial differential equations using deep learning
  publication-title: Proc Natl Acad Sci
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  end-page: 1030
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 80
  start-page: 103874
  year: 2020
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur J Mech A/Solids
– volume: 11
  start-page: 494
  issue: 3
  year: 2021
  article-title: Deep learning sequence methods in multiphysics modeling of steel solidification
  publication-title: Metals
– year: 2012
– volume: 40
  start-page: 1417
  issue: 11
  year: 2004
  end-page: 1427
  article-title: Topology optimization of nonlinear structures
  publication-title: Finite Elem Anal Des
– volume: 70
  start-page: 1143
  issue: 7
  year: 2018
  end-page: 1146
  article-title: Data‐driven materials investigations: the next frontier in understanding and predicting fatigue behavior
  publication-title: JOM
– volume: 128
  issue: 2
  year: 2020
  article-title: A machine learning based approach for phononic crystal property discovery
  publication-title: J Appl Phys
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J Fluid Mech
– volume: 88
  start-page: 224
  year: 2020
  end-page: 237
  article-title: Fluid sensing using microcantilevers: from physics‐based modeling to deep learning
  publication-title: Appl Math Model
– volume: 31
  start-page: 1904845
  issue: 48
  year: 2019
  article-title: Bayesian machine learning in metamaterial design: fragile becomes supercompressible
  publication-title: Adv Mater
– volume: 371
  start-page: 112626
  year: 2020
  article-title: Efficient mass and stiffness matrix assembly via weighted Gaussian quadrature rules for b‐splines
  publication-title: J Comput Appl Math
– volume: 33
  start-page: 1923
  issue: 6
  year: 2020
  end-page: 1933
  article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm
  publication-title: Neural Comput Appl
– volume: 124
  start-page: 175102
  issue: 17
  year: 2018
  article-title: Shielding effectiveness and bandgaps of interpenetrating phase composites based on the Schwarz primitive surface
  publication-title: J Appl Phys
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  end-page: 257
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw
– start-page: 1
  year: 1963
  end-page: 36
  article-title: Calculation of elastic‐plastic flow
  publication-title: California Univ Livermore Radiation Lab
– volume: 5
  start-page: 349
  issue: 4
  year: 2017
  end-page: 380
  article-title: Deep learning‐based numerical methods for high‐dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun Math Stat
– volume: 141
  start-page: 19
  year: 2014
  end-page: 25
  article-title: Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes
  publication-title: Comput Struct
– volume: 28
  start-page: 101280
  year: 2020
  article-title: A deep collocation method for heat transfer in porous media: verification from the finite element method
  publication-title: J Energy Storage
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math Control Signals Syst
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  end-page: 26420
  article-title: Deep learning predicts path‐dependent plasticity
  publication-title: Proc Natl Acad Sci
– volume: 330
  start-page: 192
  year: 2017
  end-page: 220
  article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
  publication-title: J Comput Phys
– volume: 285
  start-page: 166
  year: 2015
  end-page: 187
  article-title: Topology optimization of viscoelastic structures using a time‐dependent adjoint method
  publication-title: Comput Methods Appl Mech Eng
– year: 2013
– volume-title: Mitchell, Machine Learning: An Artificial Intelligence Approach
  year: 2013
  ident: e_1_2_9_70_1
– ident: e_1_2_9_44_1
  doi: 10.1109/72.712178
– ident: e_1_2_9_11_1
  doi: 10.1007/s00158-018-2076-2
– ident: e_1_2_9_13_1
  doi: 10.1016/S0045-7825(00)00278-4
– ident: e_1_2_9_46_1
  doi: 10.1016/j.amc.2006.05.068
– ident: e_1_2_9_36_1
  doi: 10.1016/j.compstruc.2006.02.015
– ident: e_1_2_9_71_1
  doi: 10.1007/BF02551274
– ident: e_1_2_9_65_1
– ident: e_1_2_9_73_1
  doi: 10.1016/S0927-0507(03)10006-0
– ident: e_1_2_9_17_1
  doi: 10.1109/APSIPA.2016.7820699
– ident: e_1_2_9_20_1
  doi: 10.1002/pamm.201900470
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cma.2020.113184
– start-page: 8024
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: e_1_2_9_68_1
– ident: e_1_2_9_54_1
  doi: 10.1126/science.aaw4741
– volume: 6
  start-page: 969
  year: 2019
  ident: e_1_2_9_18_1
  article-title: Self driving car using raspberry‐Pi and machine learning
  publication-title: Int Res J Eng Technol
– ident: e_1_2_9_24_1
  doi: 10.1016/j.compstruct.2019.111264
– ident: e_1_2_9_27_1
  doi: 10.1073/pnas.1911815116
– ident: e_1_2_9_43_1
  doi: 10.1016/0021-9991(90)90007-N
– ident: e_1_2_9_58_1
  doi: 10.1017/jfm.2016.615
– ident: e_1_2_9_80_1
  doi: 10.1007/s00521-020-05035-x
– ident: e_1_2_9_32_1
  doi: 10.1007/s11837-018-2894-0
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cma.2020.113299
– ident: e_1_2_9_51_1
  doi: 10.1016/j.cma.2019.112623
– ident: e_1_2_9_69_1
– ident: e_1_2_9_34_1
  doi: 10.1063/5.0006153
– ident: e_1_2_9_31_1
  doi: 10.1016/j.matdes.2020.108509
– ident: e_1_2_9_23_1
  doi: 10.1016/j.compscitech.2019.107861
– ident: e_1_2_9_29_1
  doi: 10.1016/j.ijplas.2020.102852
– ident: e_1_2_9_40_1
  doi: 10.1016/j.matdes.2020.109098
– ident: e_1_2_9_79_1
  doi: 10.1016/j.compstruc.2014.05.009
– volume-title: Integrated Design of Multiscale, Multifunctional Materials and Products
  year: 2009
  ident: e_1_2_9_16_1
– ident: e_1_2_9_9_1
  doi: 10.1002/adma.201301986
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 2012
  ident: e_1_2_9_4_1
– ident: e_1_2_9_33_1
  doi: 10.1016/j.finel.2019.07.001
– ident: e_1_2_9_81_1
  doi: 10.1016/j.jcp.2021.110839
– ident: e_1_2_9_5_1
  doi: 10.1007/978-90-481-2331-5
– ident: e_1_2_9_53_1
  doi: 10.1016/j.advwatres.2020.103610
– ident: e_1_2_9_39_1
  doi: 10.1016/j.compstruc.2020.106283
– ident: e_1_2_9_52_1
  doi: 10.1371/journal.pone.0232683
– ident: e_1_2_9_30_1
  doi: 10.3390/met11030494
– ident: e_1_2_9_57_1
  doi: 10.1073/pnas.1718942115
– ident: e_1_2_9_37_1
  doi: 10.1002/adma.201904845
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cma.2014.11.012
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cam.2019.112626
– start-page: 1
  year: 1963
  ident: e_1_2_9_76_1
  article-title: Calculation of elastic‐plastic flow
  publication-title: California Univ Livermore Radiation Lab
– ident: e_1_2_9_42_1
  doi: 10.1016/j.eml.2017.10.001
– ident: e_1_2_9_64_1
  doi: 10.1016/j.euromechsol.2019.103874
– ident: e_1_2_9_77_1
  doi: 10.1016/B978-0-12-811718-7.00018-6
– ident: e_1_2_9_63_1
  doi: 10.1016/j.cma.2019.112790
– ident: e_1_2_9_41_1
  doi: 10.1016/j.taml.2020.01.038
– ident: e_1_2_9_56_1
  doi: 10.1007/978-3-030-59851-8_9
– ident: e_1_2_9_62_1
  doi: 10.1016/j.jcp.2018.08.029
– ident: e_1_2_9_7_1
  doi: 10.1007/s11012-020-01179-1
– ident: e_1_2_9_21_1
  doi: 10.1016/j.apm.2020.06.051
– ident: e_1_2_9_55_1
  doi: 10.1017/jfm.2021.135
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jcp.2018.10.045
– ident: e_1_2_9_28_1
  doi: 10.1016/j.mechmat.2019.01.015
– ident: e_1_2_9_35_1
  doi: 10.1002/nme.905
– ident: e_1_2_9_14_1
  doi: 10.1016/j.finel.2003.08.011
– ident: e_1_2_9_59_1
  doi: 10.1007/s40304-017-0117-6
– ident: e_1_2_9_6_1
  doi: 10.1142/6141
– ident: e_1_2_9_49_1
  doi: 10.3390/app10175917
– ident: e_1_2_9_60_1
  doi: 10.1016/j.est.2020.101280
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: e_1_2_9_47_1
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J Mach Learn Res
– ident: e_1_2_9_78_1
  doi: 10.1016/j.compfluid.2018.01.040
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jcp.2016.10.070
– ident: e_1_2_9_45_1
  doi: 10.1109/72.870037
– ident: e_1_2_9_19_1
  doi: 10.1016/j.media.2016.06.032
– ident: e_1_2_9_66_1
  doi: 10.1007/BF01589116
– ident: e_1_2_9_67_1
  doi: 10.1002/nme.2476
– ident: e_1_2_9_61_1
  doi: 10.1007/s40304-018-0127-z
– ident: e_1_2_9_75_1
– ident: e_1_2_9_10_1
  doi: 10.1063/1.5046105
– ident: e_1_2_9_72_1
  doi: 10.1016/0893-6080(91)90009-T
– ident: e_1_2_9_74_1
  doi: 10.1007/s10107-012-0514-2
– ident: e_1_2_9_8_1
  doi: 10.1016/j.eml.2020.100688
– ident: e_1_2_9_38_1
  doi: 10.1002/advs.201902607
– ident: e_1_2_9_50_1
– start-page: 1
  volume-title: Encyclopedia of Computational Mechanics
  year: 2018
  ident: e_1_2_9_3_1
– ident: e_1_2_9_2_1
  doi: 10.1007/978-3-319-94911-6_4
SSID ssj0011503
Score 2.6382701
Snippet Deep learning (DL) and the collocation method are merged and used to solve partial differential equations (PDEs) describing structures' deformation. We have...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7182
SubjectTerms Collocation methods
computational mechanics
Deep learning
Deformation
Finite element method
machine learning
Mathematical models
meshfree method
Meshless methods
Neural networks
Numerical methods
Partial differential equations
physics‐informed learning
Solid mechanics
Title Meshless physics‐informed deep learning method for three‐dimensional solid mechanics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6828
https://www.proquest.com/docview/2596217531
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6kJz1YrYrVKiuIntImm2SbHEVaipAexELBQ8j-qai1mPbiyUfwGX0SZ7pJrKIgnkLI7JLszOx-s5n9hpBjZYzwZIY77lHoBBkz6FKZEzA3dHlspBJ4djgZ8sEouBiH4yKrEs_CWH6IasMNPWMxX6ODZyLvLJGGPuo2h3gBpl9M1UI8dFkxRyHO8cvsjjCOvJJ31mWdsuHXlegTXi6D1MUq06-T6_L9bHLJfXs-E2358o268X8fsEHWC_BJz6y1bJIVPWmQegFEaeHmeYOsLbEUwl1SUbvmW2Sc6Pz2AeZHajdF8vfXN8u-Cl0orae0KERxQ211agrP6AxMRoOkwmIClgiEgtXfKRDCs8fQzzYZ9XtX5wOnKM_gSMAIkQNqjFwTx0EmWaBCFinNQeFMxALCFF-FCv-6GSlhnYRwV4hQujzrcuX6mqsu83dIbfI00buEMqF810BsZTjH-lmRr_yMdbsG1lLOI94kp6WqUllwl2MJjYfUsi6zFAYzxcFskqNKcmr5On6QaZXaTguPzVOGZYiQttRrkpOF2n5tnw6THl73_iq4T1YZpsJ4zPHCFqnNnuf6ALDMTBwurPYDCony0Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcgAODaRFTVvoIiE4ObHX9sYWJ4RahRLngFopByTL-0erhrSqnQsnHqHP2CfpjNc2AYGEOFmWZ1f2zszuzHj3-wBea2tloAqquCexFxXckksVXsT92BepVVrS2eFsJiZn0ck8nm_Au_YsjMOH6Apu5Bn1fE0OTgXp0Rpq6DczFJgwPICHROhd51OfO-woinTCdn9HnCZBizzr81Hb8te16GeAuR6m1uvMcQ--tG_otpdcDleVHKrvv4E3_ucnPIWtJv5k753BPIMNs-xDr4lFWePpZR-erAEV4l3WobuW2zDPTHm-wCmSubpIeffj1gGwYhfamGvWcFF8ZY6gmuEzVqHVGJTUxCfgsEAYGv6FRiE6foz97MDZ8dHph4nXMDR4CsOExENNJr5N06hQPNIxT7QRqHMuU4mZSqhjTT_erFK4VGLGK2WsfFGMhfZDI_SYh89hc3m1NLvAuNShbzG9skIQhVYS6rDg47HF5VSIRAzgbaurXDXw5cSiscgd8DLPcTBzGswBvOokrx1kxx9kDlp1543TljknJiJCLg0G8KbW21_b57PsiK57_yp4CI8mp9k0n36cfdqHx5x2xgTcC-ID2KxuVuYFhjaVfFmb8D0qHPbs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8oJkQeQEHCIcqaGHzq0W672_bRyF1OtBdDILmEh6b7TwlwXOjxwpMfwc_oJ3Hmtq2n0cT41DSd3bQ7Mzt_OvsbgNfGORXpijLumQiSijtSqSpIeChCmTttFJ0dLsZydJYcT8SkqaqkszAeH6JLuJFmLPZrUvCZcYdLoKHXti8xXngIjxIZZiTRRycddBQ5OnFb3iHyLGqBZ0N-2I781RT99C-XvdSFmRluwHn7gr665LJ_N1d9ff8bduP_fcETWG-8T_bWi8tTeGCnm7DReKKs0fN6E9aWYArxruiwXestmBS2_nKFGyTzWZH6-9dvHn4VpzDWzljTieIz8-2pGT5jc5QZi5SGugl4JBCGYn9hkIgOH-M8z-BsODh9Nwqa_gyBRichC5CPWejyPKk0T4zgmbHICMFVrjBOiY0w9NvNaY2GEuNdpYQOZZVKE8ZWmpTH27AyvZnaHWBcmTh0GFw5KamBVhabuOJp6tCYSpnJHrxpWVXqBrycemhclR52mZe4mCUtZg9edZQzD9jxB5q9lttlo7J1yakPEeGWRj04WLDtr-PLcTGg6-6_Eu7D6qejYfnx_fjDc3jMqSwm4kEk9mBlfntnX6BfM1cvFwL8A3Kk9aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meshless+physics%E2%80%90informed+deep+learning+method+for+three%E2%80%90dimensional+solid+mechanics&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Abueidda%2C+Diab+W&rft.au=Lu%2C+Qiyue&rft.au=Koric%2C+Seid&rft.date=2021-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=23&rft.spage=7182&rft.epage=7201&rft_id=info:doi/10.1002%2Fnme.6828&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon