Gröbner bases plugged into graphical skills to solve a set of multiple bifurcation equations in structural compound stability problems

A core issue in structural multiple bifurcations (MB) in computational engineering is to identify all existing branching paths emanating from the MB point in compound stability problems. The governing MB equations (MBEs) will commonly result in a set of three (or occasionally two) polynomial equatio...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 123; no. 23; pp. 5779 - 5800
Main Authors Tanaka, Masato, Matsubara, Seishiro, Schröder, Jörg, Fujii, Fumio
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.12.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A core issue in structural multiple bifurcations (MB) in computational engineering is to identify all existing branching paths emanating from the MB point in compound stability problems. The governing MB equations (MBEs) will commonly result in a set of three (or occasionally two) polynomial equations in asymptotic stability theory when the singular stiffness matrix is subject to a rank deficiency of two (i.e., two null eigenvalues). However, no general solution strategy has been established to solve MBEs so far. This study proposes innovative graphical solution ideas to intuitively visualize multiple path branching in 2D‐ and 3D‐spaces of variables. Although the graphical skills display real solutions in specified search areas on a graphical monitor, it is not assured that “all” real roots are detected. The total number of identified real and complex roots of simultaneous equations must be generally consistent with that predicted algebraically to ensure that all real and complex roots are captured in MB. In computational algebra, Gröbner bases are employed to convert a set of polynomial equations into single recursively solvable equations and can be plugged into visualization steps. Therefore, Gröbner bases and graphical skills are complementary and can be applied to numerically solve a set of plate/shell structural MBEs.
AbstractList A core issue in structural multiple bifurcations (MB) in computational engineering is to identify all existing branching paths emanating from the MB point in compound stability problems. The governing MB equations (MBEs) will commonly result in a set of three (or occasionally two) polynomial equations in asymptotic stability theory when the singular stiffness matrix is subject to a rank deficiency of two (i.e., two null eigenvalues). However, no general solution strategy has been established to solve MBEs so far. This study proposes innovative graphical solution ideas to intuitively visualize multiple path branching in 2D‐ and 3D‐spaces of variables. Although the graphical skills display real solutions in specified search areas on a graphical monitor, it is not assured that “all” real roots are detected. The total number of identified real and complex roots of simultaneous equations must be generally consistent with that predicted algebraically to ensure that all real and complex roots are captured in MB. In computational algebra, Gröbner bases are employed to convert a set of polynomial equations into single recursively solvable equations and can be plugged into visualization steps. Therefore, Gröbner bases and graphical skills are complementary and can be applied to numerically solve a set of plate/shell structural MBEs.
Abstract A core issue in structural multiple bifurcations (MB) in computational engineering is to identify all existing branching paths emanating from the MB point in compound stability problems. The governing MB equations (MBEs) will commonly result in a set of three (or occasionally two) polynomial equations in asymptotic stability theory when the singular stiffness matrix is subject to a rank deficiency of two (i.e., two null eigenvalues). However, no general solution strategy has been established to solve MBEs so far. This study proposes innovative graphical solution ideas to intuitively visualize multiple path branching in 2D‐ and 3D‐spaces of variables. Although the graphical skills display real solutions in specified search areas on a graphical monitor, it is not assured that “all” real roots are detected. The total number of identified real and complex roots of simultaneous equations must be generally consistent with that predicted algebraically to ensure that all real and complex roots are captured in MB. In computational algebra, Gröbner bases are employed to convert a set of polynomial equations into single recursively solvable equations and can be plugged into visualization steps. Therefore, Gröbner bases and graphical skills are complementary and can be applied to numerically solve a set of plate/shell structural MBEs.
Author Fujii, Fumio
Tanaka, Masato
Schröder, Jörg
Matsubara, Seishiro
Author_xml – sequence: 1
  givenname: Masato
  orcidid: 0000-0003-0787-0335
  surname: Tanaka
  fullname: Tanaka, Masato
  email: masato.tanaka@toyota.com
  organization: Toyota Motor North America
– sequence: 2
  givenname: Seishiro
  surname: Matsubara
  fullname: Matsubara, Seishiro
  organization: Nagoya University
– sequence: 3
  givenname: Jörg
  surname: Schröder
  fullname: Schröder, Jörg
  organization: Universität Duisburg‐Essen
– sequence: 4
  givenname: Fumio
  surname: Fujii
  fullname: Fujii, Fumio
  organization: Gifu University (Emeritus)
BookMark eNp1kEFOwzAURC1UJNqCxBEssWETsJMmdpaoKgWpwAbWkeN8F4MTBzsG9QYcg1NwALgYLmXLar7mP81IM0GjznaA0DElZ5SQ9Lxr4YwRzvfQmJKSJSQlbITG8VUmecnpAZp4_0QIpTnJxuh96b4_6w4croUHj3sT1mtosO4Gi9dO9I9aCoP9szbG4-h5a14BC-xhwFZ9fbTBDLo3gGutgpNi0LbD8BJ-Dx9zsB9ckENwMUbatreha6Inam30sMG9s7WB1h-ifSWMh6M_naKHy8X9_CpZ3S2v5xerRKZlxhPJZwxylaeK8xmlqZCyIGmheFE2AjIlZFMQLkRZN4qRrAZS5JypUmYArOEsm6KTXW4sfgngh-rJBtfFyiplWVbmMxJlik53lHTWeweq6p1uhdtUlFTbnau4c7XdOaLJDn3TBjb_ctXtzeKX_wGjA4W9
CitedBy_id crossref_primary_10_1016_j_cma_2022_115719
Cites_doi 10.1016/j.ijsolstr.2020.03.020
10.1007/978-1-4419-7296-5
10.1016/0747-7171(92)90023-W
10.1002/nme.708
10.1016/j.cma.2021.113702
10.1016/j.jsc.2005.09.007
10.1038/natrevmats.2017.66
10.1016/j.cma.2014.08.020
10.1016/j.mechmachtheory.2012.01.015
10.1299/transjsme.18-00346
10.1016/j.tws.2021.108010
10.1016/j.tws.2014.04.008
10.1299/transjsme.15-00419
10.1016/j.cma.2015.12.010
10.1016/0263-8231(94)90024-8
10.1016/j.finel.2011.07.004
10.1090/S0273-0979-1980-14823-5
10.1016/0045-7825(93)90022-P
10.1007/3-540-45654-6_1
10.1007/978-3-319-16721-3
10.1016/j.cma.2019.112763
10.1016/j.cma.2017.06.028
10.1016/S0045-7825(00)00249-8
10.1016/0045-7825(88)90049-7
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.7088
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 5800
ExternalDocumentID 10_1002_nme_7088
NME7088
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-c847e5f52f884112acc6026f869dae3facd608aa9bdf703be06587f9c3ee7d873
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Thu Oct 10 18:00:48 EDT 2024
Fri Aug 23 00:51:24 EDT 2024
Sat Aug 24 01:06:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-c847e5f52f884112acc6026f869dae3facd608aa9bdf703be06587f9c3ee7d873
ORCID 0000-0003-0787-0335
PQID 2733954073
PQPubID 996376
PageCount 22
ParticipantIDs proquest_journals_2733954073
crossref_primary_10_1002_nme_7088
wiley_primary_10_1002_nme_7088_NME7088
PublicationCentury 2000
PublicationDate 15 December 2022
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 15 December 2022
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 283
2017; 2
2010
2020; 362
1998
2003; 57
1973
2021; 381
2018; 84
1992; 14
2021; 166
2016; 301
2012; 52
2009; 57
2014; 81
2006; 41
2001
2015; 81
1994; 19
2001; 190
1980; 3
1988; 67
2020; 199
2015
2011; 47
1970; 315
1993; 110
2017; 325
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
Morgan A (e_1_2_12_24_1) 2009; 57
Thompson J (e_1_2_12_3_1) 1973
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_25_1
e_1_2_12_26_1
Sewell MJ (e_1_2_12_7_1) 1970; 315
Rondal J (e_1_2_12_10_1) 1998
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_9_1
References_xml – volume: 81
  year: 2014
  article-title: Coupled instabilities in metal structures
  publication-title: Thin‐Walled Struct
– volume: 381
  year: 2021
  article-title: Multiple bifurcation paths visualized by a computational asymptotic stability theory
  publication-title: Comput Methods Appl Mech Eng
– volume: 283
  start-page: 22
  year: 2015
  end-page: 45
  article-title: A highly accurate 1st‐ and 2nd‐order differentiation scheme for hyperelastic material models based on hyper‐dual numbers
  publication-title: Comput Methods Appl Mech Eng
– volume: 362
  year: 2020
  article-title: Hill‐top branching: Its asymptotically expanded and visually solved bifurcation equations
  publication-title: Comput Methods Appl Mech Eng
– year: 1973
– start-page: 1
  year: 2001
  end-page: 19
– volume: 47
  start-page: 1306
  issue: 12
  year: 2011
  end-page: 1314
  article-title: On the performances of parametric finite elements when geometry distortions occur
  publication-title: Finite Elem Anal Des
– volume: 325
  start-page: 666
  year: 2017
  end-page: 688
  article-title: Computational two‐mode asymptotic bifurcation theory combined with hyper dual numbers and applied to plate/shell buckling
  publication-title: Comput Methods Appl Mech Eng
– volume: 57
  year: 2009
  article-title: Solving polynomial systems using continuation for engineering and scientific problems
  publication-title: Soc Ind Appl Math
– volume: 166
  year: 2021
  article-title: Mathematical design and graphical solution of the multiple bifurcation equations of a 4‐dof benchmark model
  publication-title: Thin‐Walled Struct
– volume: 110
  start-page: 103
  issue: 1
  year: 1993
  end-page: 111
  article-title: Computer‐based manipulation of systems of equations in elasticity problems with gröbner bases
  publication-title: Comput Methods Appl Mech Eng
– volume: 81
  issue: 830
  year: 2015
  article-title: Validating a 2‐mode asymptotic expansion in computational bifurcation theory (before introducing HDN for differential operation)
  publication-title: Trans JSME (in Japanese)
– year: 1998
– year: 2010
– volume: 14
  start-page: 1
  issue: 1
  year: 1992
  end-page: 29
  article-title: Comprehensive gröbner bases
  publication-title: J Symbol Comput
– volume: 67
  start-page: 257
  issue: 3
  year: 1988
  end-page: 295
  article-title: A group‐theoretic approach to computational bifurcation problems with symmetry
  publication-title: Comput Methods Appl Mech Eng
– volume: 84
  start-page: 18
  issue: 868
  year: 2018
  end-page: 00346
  article-title: Formulation of a computational asymptotic bifurcation theory applicable to hill‐top branching and multiple bifurcation analyses
  publication-title: Trans JSME (in Japanese)
– volume: 19
  start-page: 81
  issue: 2
  year: 1994
  end-page: 127
  article-title: General theory of coupled instabilities
  publication-title: Thin‐Walled Struct
– volume: 190
  start-page: 2499
  issue: 18
  year: 2001
  end-page: 2522
  article-title: Modified stiffness iteration to pinpoint multiple bifurcation points
  publication-title: Comput Methods Appl Mech Eng
– volume: 301
  start-page: 216
  year: 2016
  end-page: 241
  article-title: Implementation of incremental variational formulations based on the numerical calculation of derivatives using hyper dual numbers
  publication-title: Comput Methods Appl Mech Eng
– volume: 52
  start-page: 144
  year: 2012
  end-page: 157
  article-title: Using gröbner bases to generate efficient kinematic solutions for the dynamic simulation of multi‐loop mechanisms
  publication-title: Mech Mach Theory
– volume: 199
  start-page: 57
  year: 2020
  end-page: 84
  article-title: Tensile buckling of repetitive rods systems with overlapping
  publication-title: Int J Solids Struct
– volume: 41
  start-page: 475
  issue: 3
  year: 2006
  end-page: 511
  article-title: Bruno Buchberger's ph.d thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal
  publication-title: J Symbol Comput
– volume: 2
  issue: 11
  year: 2017
  article-title: Flexible mechanical metamaterials
  publication-title: Nature Rev Mater
– volume: 315
  start-page: 499
  issue: 1523
  year: 1970
  end-page: 518
  article-title: On the branching of equilibrium paths
  publication-title: Proc Royal Soc Lond A. Math Phys Sci
– volume: 3
  start-page: 779
  issue: 2
  year: 1980
  end-page: 819
  article-title: Bifurcation and symmetry breaking in applied mathematics
  publication-title: Bulletin (New Ser) Am Math Soc
– year: 2015
– volume: 57
  start-page: 1039
  issue: 8
  year: 2003
  end-page: 1052
  article-title: A shell problem 'highly sensitive' to thickness changes
  publication-title: Int J Numer Methods Eng
– ident: e_1_2_12_13_1
– volume: 57
  year: 2009
  ident: e_1_2_12_24_1
  article-title: Solving polynomial systems using continuation for engineering and scientific problems
  publication-title: Soc Ind Appl Math
  contributor:
    fullname: Morgan A
– ident: e_1_2_12_8_1
  doi: 10.1016/j.ijsolstr.2020.03.020
– ident: e_1_2_12_16_1
  doi: 10.1007/978-1-4419-7296-5
– ident: e_1_2_12_26_1
  doi: 10.1016/0747-7171(92)90023-W
– ident: e_1_2_12_27_1
– ident: e_1_2_12_2_1
– volume-title: General Theory of Elastic Stability
  year: 1973
  ident: e_1_2_12_3_1
  contributor:
    fullname: Thompson J
– ident: e_1_2_12_33_1
  doi: 10.1002/nme.708
– ident: e_1_2_12_20_1
  doi: 10.1016/j.cma.2021.113702
– ident: e_1_2_12_28_1
  doi: 10.1016/j.jsc.2005.09.007
– ident: e_1_2_12_9_1
  doi: 10.1038/natrevmats.2017.66
– ident: e_1_2_12_22_1
  doi: 10.1016/j.cma.2014.08.020
– ident: e_1_2_12_32_1
  doi: 10.1016/j.mechmachtheory.2012.01.015
– ident: e_1_2_12_18_1
  doi: 10.1299/transjsme.18-00346
– ident: e_1_2_12_21_1
  doi: 10.1016/j.tws.2021.108010
– ident: e_1_2_12_11_1
  doi: 10.1016/j.tws.2014.04.008
– ident: e_1_2_12_5_1
  doi: 10.1299/transjsme.15-00419
– ident: e_1_2_12_6_1
– ident: e_1_2_12_23_1
  doi: 10.1016/j.cma.2015.12.010
– ident: e_1_2_12_12_1
  doi: 10.1016/0263-8231(94)90024-8
– ident: e_1_2_12_31_1
  doi: 10.1016/j.finel.2011.07.004
– ident: e_1_2_12_14_1
  doi: 10.1090/S0273-0979-1980-14823-5
– ident: e_1_2_12_30_1
  doi: 10.1016/0045-7825(93)90022-P
– ident: e_1_2_12_29_1
  doi: 10.1007/3-540-45654-6_1
– ident: e_1_2_12_25_1
  doi: 10.1007/978-3-319-16721-3
– volume-title: Coupled Instabilities in Metal Structures, CISM International Centre for Mechanical Sciences, Theoretical and Design Aspects
  year: 1998
  ident: e_1_2_12_10_1
  contributor:
    fullname: Rondal J
– ident: e_1_2_12_19_1
  doi: 10.1016/j.cma.2019.112763
– ident: e_1_2_12_4_1
  doi: 10.1016/j.cma.2017.06.028
– ident: e_1_2_12_17_1
  doi: 10.1016/S0045-7825(00)00249-8
– ident: e_1_2_12_15_1
  doi: 10.1016/0045-7825(88)90049-7
– volume: 315
  start-page: 499
  issue: 1523
  year: 1970
  ident: e_1_2_12_7_1
  article-title: On the branching of equilibrium paths
  publication-title: Proc Royal Soc Lond A. Math Phys Sci
  contributor:
    fullname: Sewell MJ
SSID ssj0011503
Score 2.4406834
Snippet A core issue in structural multiple bifurcations (MB) in computational engineering is to identify all existing branching paths emanating from the MB point in...
Abstract A core issue in structural multiple bifurcations (MB) in computational engineering is to identify all existing branching paths emanating from the MB...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 5779
SubjectTerms bifurcation equations
Bifurcations
compound stability
Eigenvalues
graphical solution
Gröbner bases
multiple bifurcation
Polynomials
rank deficiency two
Simultaneous equations
Skills
Stiffness matrix
Structural stability
Title Gröbner bases plugged into graphical skills to solve a set of multiple bifurcation equations in structural compound stability problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.7088
https://www.proquest.com/docview/2733954073
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3RatswFIZFyVV7sXbtxrJ2RYOyOyexJdvS5eiSlkJyURYI7MJYslRCMqeNksL2BHuMPcUeoH2xnWPZaTYYjILBWFjGlnR0fouj7xBypgsmtIx0wA1XAbfSgM3BzwoHZyOs6JlQ4kbh4Si5HPOrSTypoypxL4znQ2wW3NAyqvkaDTxXrrsFDf1qOinYCEy_IUsxmuvT9YYchTqHNdEdsRRhw53tRd2m4p-e6ElebovUyssM9smX5v18cMmss16pjv7-F7rxeR9wQF7U4pN-9KPlJdkx5SHZr4Uorc3cHZK9LUohXA03aFd3RH5cLB9_qdIsKTpAR2_n65sbqD0tVwta4a-x26mbTedzR6EMBve9oTl1ZkUX9uFnE8JI1dSul37FkJo7jxx38BzqmbbIA6EY8Y6Jn6DMA8W_0ToFjntFxoP-5_PLoE7nEGjQFCLQ4AhNbOPICsFB5uVaY_4rKxJZ5IbZXBdJT-S5VIWFeUgZVEeplZoZkxYiZa9Jq1yU5g2hvbRQaRHxRMUJ16HMtRCKJyzCHEgJl23yvuna7NZTOzLPZ44yaPYMm71NTpo-z2q7dRmIOSaRScja5EPVef-sn42GfTy__d8bj8luhHsnQjjiE9KCtjTvQNGs1Gk1dn8DvTP3Og
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMePxrgALhgMJgoDjIS4S9fGTmKLq2kfFFh7gTZpF0hR7NhTtZKOup00noDH4Cl4gPFinBMnpSAhIaRIUaw4Smwfn3-s498BeGlKLo2KTSSs0JFwyqLN4c-KQGcjnezZvqKNwsNROjgR706T0zV43e6FCXyI5YIbWUY9X5OB04L0zgo19JPtZmgkN-AmWjunvA37H5bsKFI6vI3vSJTst-TZXrzT1vzdF_0SmKsytfYzhxvwsX3DEF5y3l3Mddd8-QPe-J-fcA_uNvqT7YYBcx_WbLUJG40WZY2l-024swIqxKvhku7qH8DXN7Mf33VlZ4x8oGcXk8XZGdYeV_MpqwnY1PPMn48nE8-wDMf3pWUF83bOpu76WxvFyPTYLWZh0ZDZz4E67vE5LGBtCQnCKOidcj9hWWCKX7EmC45_CCeHB8d7g6jJ6BAZlBUyMugLbeKS2EkpUOkVxlAKLCdTVRaWu8KUaU8WhdKlw6lIWxJImVOGW5uVMuNbsF5NK_sIWC8rdVbGItVJKkxfFUZKLVIeUxqkVKgOvGj7Nr8I4I48IJrjHJs9p2bvwHbb6Xljuj5HPccVYQl5B17VvffX-vloeEDnx_9643O4NTgeHuVHb0fvn8DtmLZS9PFItmEd29U-RYEz18_qgfwTD0L7Ug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3datswFMcPXQtlu1i7rmNZvzQou3Oa2LItXY6tadctYZQWCrswliyV0MzJomSwPUEfY0-xB9hebOdYdpYNBmVgMBaWsSUdnb_F0e8AHOoiElqGOuCGq4BbadDm8GeFo7MRVnRMV9JG4f4gOb3kZ1fxVR1VSXthPB9iseBGllHN12Tgk8IeLUFDP5p2ijZyD9Z4gsKXBNH5Ah1FQidqwjtiKboNeLYTHjU1_3RFv_Xlskqt3ExvAz40L-ijS27a85lq669_sRv_7ws24WGtPtlLP1wewYopt2CjVqKstnO3BQ-WMIV41V-wXd1juD2Z_vyuSjNl5AEdm4zm19dYe1jOxqziX1O_M3czHI0cwzIc3Z8Ny5kzMza2P741MYxMDe186pcMmfnkmeMOn8M81JaAIIxC3inzE5Z5ovgXVufAcdtw2Tu-eHUa1PkcAo2iQgQaPaGJbRxaITjqvFxrSoBlRSKL3EQ210XSEXkuVWFxIlKG5FFqpY6MSQuRRk9gtRyX5imwTlqotAh5ouKE667MtRAKh0FISZASLlvwvOnabOKxHZkHNIcZNntGzd6C3abPs9pwXYZqLpIEJYxa8KLqvH_Wzwb9Yzo_u-uNB7D-_nUve_dm8HYH7oe0j6KLR7wLq9isZg_VzUztV8P4FzVi-gE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gr%C3%B6bner+bases+plugged+into+graphical+skills+to+solve+a+set+of%C2%A0multiple+bifurcation+equations+in+structural+compound+stability+problems&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Tanaka%2C+Masato&rft.au=Matsubara%2C+Seishiro&rft.au=Schr%C3%B6der%2C+J%C3%B6rg&rft.au=Fujii%2C+Fumio&rft.date=2022-12-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=23&rft.spage=5779&rft.epage=5800&rft_id=info:doi/10.1002%2Fnme.7088&rft.externalDBID=10.1002%252Fnme.7088&rft.externalDocID=NME7088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon