Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems
Summary The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional to the relative acceleration between its terminals, thus providing beneficial mass‐amplification effects. This paper deals with a dyna...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 47; no. 12; pp. 2539 - 2560 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
10.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0098-8847 1096-9845 |
DOI | 10.1002/eqe.3098 |
Cover
Loading…
Abstract | Summary
The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional to the relative acceleration between its terminals, thus providing beneficial mass‐amplification effects. This paper deals with a dynamic layout in which the TMDI is installed below the isolation floor of base‐isolated structures in order to enhance the earthquake resilience and reduce the displacement demand. Unlike most of the literature studies that assumed a linearized behavior of the isolators, the aim of this paper is to investigate the effectiveness of the TMDI while accounting for the nonlinearity of the isolators. Two nonlinear constitutive behaviors are considered, a Coulomb friction model and a Bouc‐Wen hysteretic model, representative of friction pendulum and of lead‐rubber‐bearing isolators, respectively. Optimal design is based on the stochastic dynamic analysis of the system, by modeling the base acceleration as a Kanai‐Tajimi filtered stationary random process and resorting to the stochastic linearization technique to handle the nonlinear terms. Different tuning criteria based on displacement, acceleration, and energy‐based performance indices are defined, and their implications in a design process are discussed. It is proven that the improved robustness of the TMDI reduces its performance sensitivity to the tuning frequency and to the earthquake frequency content, which are well‐known shortcomings of TMD‐like systems. This important feature makes the TMDI particularly suitable for nonlinear base‐isolated structures that are affected by unavoidable uncertainties in the isolators' properties and that may experience changes of isolators effective stiffness depending on the excitation level. |
---|---|
AbstractList | The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional to the relative acceleration between its terminals, thus providing beneficial mass‐amplification effects. This paper deals with a dynamic layout in which the TMDI is installed below the isolation floor of base‐isolated structures in order to enhance the earthquake resilience and reduce the displacement demand. Unlike most of the literature studies that assumed a linearized behavior of the isolators, the aim of this paper is to investigate the effectiveness of the TMDI while accounting for the nonlinearity of the isolators. Two nonlinear constitutive behaviors are considered, a Coulomb friction model and a Bouc‐Wen hysteretic model, representative of friction pendulum and of lead‐rubber‐bearing isolators, respectively. Optimal design is based on the stochastic dynamic analysis of the system, by modeling the base acceleration as a Kanai‐Tajimi filtered stationary random process and resorting to the stochastic linearization technique to handle the nonlinear terms. Different tuning criteria based on displacement, acceleration, and energy‐based performance indices are defined, and their implications in a design process are discussed. It is proven that the improved robustness of the TMDI reduces its performance sensitivity to the tuning frequency and to the earthquake frequency content, which are well‐known shortcomings of TMD‐like systems. This important feature makes the TMDI particularly suitable for nonlinear base‐isolated structures that are affected by unavoidable uncertainties in the isolators' properties and that may experience changes of isolators effective stiffness depending on the excitation level. Summary The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional to the relative acceleration between its terminals, thus providing beneficial mass‐amplification effects. This paper deals with a dynamic layout in which the TMDI is installed below the isolation floor of base‐isolated structures in order to enhance the earthquake resilience and reduce the displacement demand. Unlike most of the literature studies that assumed a linearized behavior of the isolators, the aim of this paper is to investigate the effectiveness of the TMDI while accounting for the nonlinearity of the isolators. Two nonlinear constitutive behaviors are considered, a Coulomb friction model and a Bouc‐Wen hysteretic model, representative of friction pendulum and of lead‐rubber‐bearing isolators, respectively. Optimal design is based on the stochastic dynamic analysis of the system, by modeling the base acceleration as a Kanai‐Tajimi filtered stationary random process and resorting to the stochastic linearization technique to handle the nonlinear terms. Different tuning criteria based on displacement, acceleration, and energy‐based performance indices are defined, and their implications in a design process are discussed. It is proven that the improved robustness of the TMDI reduces its performance sensitivity to the tuning frequency and to the earthquake frequency content, which are well‐known shortcomings of TMD‐like systems. This important feature makes the TMDI particularly suitable for nonlinear base‐isolated structures that are affected by unavoidable uncertainties in the isolators' properties and that may experience changes of isolators effective stiffness depending on the excitation level. |
Author | Michael, Fardis Ricciardi, Giuseppe De Domenico, Dario |
Author_xml | – sequence: 1 givenname: Fardis surname: Michael fullname: Michael, Fardis – sequence: 2 givenname: Dario orcidid: 0000-0003-1279-9529 surname: De Domenico fullname: De Domenico, Dario email: dario.dedomenico@unime.it organization: University of Messina – sequence: 3 givenname: Giuseppe surname: Ricciardi fullname: Ricciardi, Giuseppe organization: University of Messina |
BookMark | eNp1kE1LAzEQhoMoWKvgTwh4qYetk81-dI9S6wcoItTzEjcTjexmayZL6cm_bmo9iZ4GJs9M3nmO2L7rHTJ2KmAqANIL_MCphGq2x0YCqiKpZlm-z0YQW8lslpWH7IjoHQBkAeWIfT6ugu1UyzWSfXVcOc0JLXW24Sv0pvedcg3y3vAwONS8U0Rcqy4-cuvQh1gny4eru3MeYU7BD00YPBJf2_DGY7o2YsrzF0XILfWtCrZ3nDYUsKNjdmBUS3jyU8fs-XqxnN8m9483d_PL-6RJKxmTp7IpsCzSRmTSZCYXOgehDGRCZKpIjcZ4rRQ5lhIyKY3OQFeFNiWkL0IrOWZnu70r338MSKF-7wfv4pd1GtXkefQEkZruqMb3RB5N3djwnTd4ZdtaQL2VXEfJ9VZyHJj8Glj5qNNv_kKTHbq2LW7-5erF0-Kb_wJwXo4- |
CitedBy_id | crossref_primary_10_1002_tal_1803 crossref_primary_10_1016_j_jobe_2023_107001 crossref_primary_10_1016_j_engstruct_2024_118187 crossref_primary_10_1002_eqe_3519 crossref_primary_10_3390_app132312566 crossref_primary_10_1016_j_engstruct_2020_111422 crossref_primary_10_1016_j_soildyn_2023_107857 crossref_primary_10_1016_j_iintel_2023_100038 crossref_primary_10_1063_5_0234339 crossref_primary_10_1080_13632469_2022_2123413 crossref_primary_10_1061_JENMDT_EMENG_6850 crossref_primary_10_1002_stc_3104 crossref_primary_10_1142_S0219455424502419 crossref_primary_10_1007_s42417_023_01163_5 crossref_primary_10_1016_j_ymssp_2019_106337 crossref_primary_10_1007_s00707_023_03556_9 crossref_primary_10_1007_s10518_022_01457_1 crossref_primary_10_3390_vibration2030015 crossref_primary_10_3390_machines8030050 crossref_primary_10_1142_S0219455422501371 crossref_primary_10_1177_10775463211013221 crossref_primary_10_1016_j_jobe_2024_111455 crossref_primary_10_1177_1077546320951662 crossref_primary_10_1016_j_engstruct_2020_111312 crossref_primary_10_1016_j_engstruct_2020_111554 crossref_primary_10_1007_s10518_021_01236_4 crossref_primary_10_1016_j_engstruct_2019_109324 crossref_primary_10_1016_j_istruc_2024_106955 crossref_primary_10_1016_j_istruc_2024_105860 crossref_primary_10_1002_stc_2929 crossref_primary_10_1016_j_jsv_2019_06_019 crossref_primary_10_1016_j_soildyn_2024_109092 crossref_primary_10_1016_j_jcsr_2022_107233 crossref_primary_10_1016_j_engstruct_2019_109470 crossref_primary_10_1016_j_strusafe_2022_102222 crossref_primary_10_1016_j_jobe_2024_110597 crossref_primary_10_1016_j_heliyon_2024_e35870 crossref_primary_10_1007_s42417_023_01125_x crossref_primary_10_1038_s41598_024_59380_1 crossref_primary_10_1002_stc_2357 crossref_primary_10_1016_j_jobe_2024_110239 crossref_primary_10_1016_j_ijmecsci_2020_105762 crossref_primary_10_1016_j_soildyn_2020_106474 crossref_primary_10_1016_j_soildyn_2024_109068 crossref_primary_10_1007_s00707_023_03749_2 crossref_primary_10_1177_1077546320951329 crossref_primary_10_3389_fbuil_2020_00092 crossref_primary_10_1155_2019_7091819 crossref_primary_10_1002_eqe_3507 crossref_primary_10_1016_j_engstruct_2020_110928 crossref_primary_10_1016_j_soildyn_2021_106653 crossref_primary_10_1007_s11071_024_09892_2 crossref_primary_10_1016_j_engstruct_2019_109464 crossref_primary_10_1016_j_engstruct_2019_109585 crossref_primary_10_1155_2023_3694995 crossref_primary_10_1016_j_jobe_2025_111853 crossref_primary_10_1007_s42417_024_01383_3 crossref_primary_10_1016_j_jobe_2022_105488 crossref_primary_10_1016_j_ijmecsci_2024_109394 crossref_primary_10_1016_j_jsv_2024_118510 crossref_primary_10_3390_buildings12122200 crossref_primary_10_1016_j_engstruct_2024_119079 crossref_primary_10_1007_s10518_022_01372_5 crossref_primary_10_1016_j_jfranklin_2018_11_012 crossref_primary_10_1016_j_ymssp_2019_106259 crossref_primary_10_1016_j_engstruct_2020_110536 crossref_primary_10_1016_j_engstruct_2018_09_076 crossref_primary_10_1016_j_engstruct_2023_116764 crossref_primary_10_1007_s42417_023_00918_4 crossref_primary_10_1016_j_istruc_2023_07_052 crossref_primary_10_1007_s11803_021_2047_2 crossref_primary_10_1038_s41598_024_75996_9 crossref_primary_10_1016_j_soildyn_2019_05_007 crossref_primary_10_1061_PPSCFX_SCENG_1306 crossref_primary_10_1016_j_jweia_2020_104306 crossref_primary_10_1016_j_engstruct_2020_110427 crossref_primary_10_1061__ASCE_EM_1943_7889_0002083 crossref_primary_10_1007_s11071_021_06303_8 crossref_primary_10_1007_s42417_024_01387_z crossref_primary_10_1155_stc_1806600 crossref_primary_10_1002_eqe_3416 crossref_primary_10_1061__ASCE_EM_1943_7889_0001786 crossref_primary_10_1016_j_engstruct_2024_119416 crossref_primary_10_1016_j_engstruct_2025_119978 crossref_primary_10_1016_j_jobe_2025_112060 crossref_primary_10_3390_buildings12050661 crossref_primary_10_1016_j_engstruct_2022_114963 crossref_primary_10_1016_j_ijmecsci_2020_105840 crossref_primary_10_1002_eqe_3770 crossref_primary_10_1016_j_net_2024_103394 crossref_primary_10_1002_eqe_4069 crossref_primary_10_1016_j_tust_2022_104395 crossref_primary_10_1177_0954407019894189 crossref_primary_10_1115_1_4042934 crossref_primary_10_1007_s42417_024_01301_7 crossref_primary_10_1142_S0219455423501900 crossref_primary_10_1177_1077546320985335 crossref_primary_10_1016_j_jobe_2025_111898 crossref_primary_10_1155_2023_8392421 crossref_primary_10_1016_j_istruc_2025_108609 crossref_primary_10_1016_j_engstruct_2022_115265 crossref_primary_10_1016_j_engstruct_2020_111661 crossref_primary_10_3390_buildings12050558 crossref_primary_10_1177_13694332241252283 crossref_primary_10_1016_j_compstruct_2019_03_059 crossref_primary_10_1016_j_engstruct_2019_05_024 crossref_primary_10_1002_stc_3068 crossref_primary_10_1002_stc_2890 crossref_primary_10_3390_app10010257 crossref_primary_10_1016_j_ijmecsci_2022_107568 crossref_primary_10_1016_j_soildyn_2020_106099 crossref_primary_10_1109_ACCESS_2020_3007918 crossref_primary_10_1016_j_jsv_2019_04_010 crossref_primary_10_1002_stc_2887 crossref_primary_10_1016_j_istruc_2022_06_044 crossref_primary_10_1002_stc_2881 crossref_primary_10_1007_s42417_021_00334_6 crossref_primary_10_1002_stc_2763 crossref_primary_10_32604_cmes_2023_043936 crossref_primary_10_1016_j_ymssp_2023_110733 crossref_primary_10_1016_j_compstruct_2019_02_013 crossref_primary_10_1016_j_jsv_2020_115427 crossref_primary_10_1007_s00419_024_02599_1 crossref_primary_10_1080_13287982_2019_1635307 crossref_primary_10_1155_2023_4024741 crossref_primary_10_1016_j_net_2024_06_025 crossref_primary_10_1016_j_engstruct_2020_111169 crossref_primary_10_1016_j_istruc_2020_01_019 crossref_primary_10_1002_tal_1781 crossref_primary_10_1016_j_jsv_2020_115893 crossref_primary_10_1007_s11803_023_2163_2 crossref_primary_10_1007_s10518_021_01196_9 crossref_primary_10_1016_j_jsv_2024_118474 crossref_primary_10_1002_eqe_3469 crossref_primary_10_1016_j_engstruct_2023_117420 crossref_primary_10_1016_j_engstruct_2023_117303 crossref_primary_10_1142_S0219455425500154 crossref_primary_10_1016_j_soildyn_2022_107526 crossref_primary_10_1016_j_ymssp_2021_108553 crossref_primary_10_1007_s41062_022_00904_x crossref_primary_10_1016_j_istruc_2024_106459 crossref_primary_10_1016_j_compstruc_2021_106485 crossref_primary_10_3390_s19051133 crossref_primary_10_1016_j_jfranklin_2019_02_040 crossref_primary_10_1007_s40430_022_03895_z crossref_primary_10_1007_s10518_021_01279_7 crossref_primary_10_3390_app9183919 crossref_primary_10_1007_s10518_022_01376_1 crossref_primary_10_1002_stc_2853 crossref_primary_10_1177_1369433220908110 crossref_primary_10_1016_j_engstruct_2024_118268 crossref_primary_10_1016_j_soildyn_2018_12_024 crossref_primary_10_1016_j_ymssp_2022_108965 crossref_primary_10_3390_app9235045 crossref_primary_10_1007_s00419_023_02462_9 crossref_primary_10_1016_j_conengprac_2020_104423 crossref_primary_10_1016_j_soildyn_2019_105989 crossref_primary_10_1007_s10518_021_01284_w crossref_primary_10_1016_j_engstruct_2021_113411 crossref_primary_10_1016_j_ymssp_2023_110889 crossref_primary_10_1007_s42107_021_00394_9 crossref_primary_10_3390_app13095373 crossref_primary_10_3390_app10041230 crossref_primary_10_1016_j_engstruct_2023_115819 crossref_primary_10_1016_j_soildyn_2021_106830 crossref_primary_10_1155_2020_8875268 crossref_primary_10_1016_j_istruc_2024_107966 crossref_primary_10_3390_ma12081329 crossref_primary_10_1177_1077546320940175 crossref_primary_10_1016_j_soildyn_2023_108062 crossref_primary_10_1016_j_jsv_2024_118698 crossref_primary_10_1016_j_ijmecsci_2022_108084 crossref_primary_10_1016_j_engstruct_2020_111003 crossref_primary_10_1016_j_engstruct_2020_111127 crossref_primary_10_1002_stc_3127 crossref_primary_10_1007_s10518_022_01378_z crossref_primary_10_1016_j_engstruct_2019_03_072 crossref_primary_10_3390_app14031056 crossref_primary_10_1016_j_istruc_2024_107998 crossref_primary_10_1016_j_ymssp_2022_109237 crossref_primary_10_1016_j_ymssp_2023_110506 crossref_primary_10_1016_j_engstruct_2021_112421 crossref_primary_10_1007_s40435_022_00911_x crossref_primary_10_1016_j_ymssp_2022_109915 crossref_primary_10_1016_j_engstruct_2021_113072 crossref_primary_10_1016_j_ijnonlinmec_2024_104816 crossref_primary_10_1080_15732479_2024_2345280 crossref_primary_10_1016_j_jobe_2019_100847 crossref_primary_10_1016_j_jsv_2019_114941 crossref_primary_10_1016_j_jweia_2022_105178 crossref_primary_10_1007_s11803_021_2066_z crossref_primary_10_1002_eqe_3948 crossref_primary_10_1016_j_engstruct_2018_11_020 crossref_primary_10_1002_eqe_3709 crossref_primary_10_1007_s10483_022_2911_9 crossref_primary_10_1061_AJRUA6_RUENG_1360 crossref_primary_10_1016_j_istruc_2023_105265 |
Cites_doi | 10.1002/eqe.2390 10.1016/S0020-7462(01)00099-3 10.1002/eqe.1117 10.1002/eqe.461 10.1002/tal.244 10.1002/9780470172742 10.1186/s40984-015-0007-6 10.1016/j.soildyn.2013.02.013 10.1061/(ASCE)0733-9399(2008)134:2(163) 10.1002/stc.1556 10.1126/science.267.5195.206 10.1002/eqe.4290210805 10.12989/eas.2017.12.3.285 10.1016/j.probengmech.2014.03.007 10.1002/eqe.22 10.1002/(SICI)1096-9845(199601)25:1<65::AID-EQE536>3.0.CO;2-A 10.1002/eqe.2548 10.1002/eqe.4290210402 10.1080/13632460701242757 10.1016/j.soildyn.2017.11.023 10.1002/stc.419 10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D 10.1016/S0141-0296(97)00078-3 10.1002/eqe.2861 10.1002/eqe.589 10.1115/1.3153594 10.1016/j.soildyn.2017.12.019 10.1680/sdfe.25592 10.1016/j.ymssp.2010.01.009 10.1002/stc.2082 10.1016/j.strusafe.2017.12.008 10.1016/j.engstruct.2008.05.027 10.1016/j.jsv.2006.09.027 10.1016/0267-7261(86)90006-0 10.1002/eqe.3011 10.1109/TAC.2002.803532 10.1061/(ASCE)0733-9399(1991)117:4(836) 10.1002/(SICI)1096-9845(199911)28:11<1255::AID-EQE865>3.0.CO;2-C 10.1115/1.3119501 10.1016/j.engstruct.2015.03.053 10.1016/0020-7683(94)00150-U 10.1002/tal.298 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3098 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 2560 |
ExternalDocumentID | 10_1002_eqe_3098 EQE3098 |
Genre | article |
GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c2938-823c6e762c143f4f51d501af04114a62fde109315e730433fd40d96df702b1da3 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 22:35:01 EDT 2025 Tue Jul 01 02:21:57 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Jan 22 16:20:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2938-823c6e762c143f4f51d501af04114a62fde109315e730433fd40d96df702b1da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1279-9529 |
PQID | 2098559840 |
PQPubID | 866380 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2098559840 crossref_citationtrail_10_1002_eqe_3098 crossref_primary_10_1002_eqe_3098 wiley_primary_10_1002_eqe_3098_EQE3098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 October 2018 |
PublicationDateYYYYMMDD | 2018-10-10 |
PublicationDate_xml | – month: 10 year: 2018 text: 10 October 2018 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 301 1980; 47 2002; 37 2013; 49 2018; 106 2006; 35 2018; 105 2015; 95 1999; 28 2017; 46 2006; 15 1995; 32 2015; 1:9 1997 2012; 19 2004 2008; 30 2003 1991; 117 2007; 11 1998; 20 2014; 21 2014; 43 2018; 25 2018; 47 1999 2002; 47 2010; 24 1990 1991; 44 1986; 5 2015; 44 2017; 12 2004; 13 2014; 38 1995; 267 2018; 72 1996; 25 2008; 134 1992; 21 2001; 30 2005; 34 2012; 41 1988 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 Hashimoto T (e_1_2_8_24_1) 2015; 1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Clough RW (e_1_2_8_33_1) 2003 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 Roberts JB (e_1_2_8_34_1) 1990 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 32 start-page: 1195 year: 1995 end-page: 1210 article-title: The effect of tuned‐mass dampers on the seismic response of base‐isolated structures publication-title: Int J Solids Struct – volume: 34 start-page: 847 issue: 7 year: 2005 end-page: 865 article-title: On tuned mass dampers for reducing the seismic response of structures publication-title: Earthquake Eng Struct Dyn – volume: 267 start-page: 206 year: 1995 end-page: 211 article-title: Response of high‐rise and base‐isolated buildings to a hypothetical Mw 7.0 blind thrust earthquake publication-title: Science – volume: 47 start-page: 1648 issue: 10 year: 2002 end-page: 1662 article-title: Synthesis of mechanical networks: the inerter publication-title: IEEE Trans Autom Control – volume: 301 start-page: 106 issue: 1‐2 year: 2007 end-page: 125 article-title: Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices publication-title: J Sound Vib – volume: 46 start-page: 1367 issue: 8 year: 2017 end-page: 1388 article-title: Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI) publication-title: Earthquake Eng Struct Dyn – volume: 21 start-page: 289 year: 1992 end-page: 302 article-title: An investigation of earthquake induced pounding between adjacent buildings publication-title: Earthquake Eng Struct Dyn – volume: 21 start-page: 713 year: 1992 end-page: 740 article-title: Response spectrum method for multi‐support seismic excitations publication-title: Earthquake Eng Struct Dyn – volume: 106 start-page: 131 year: 2018 end-page: 147 article-title: Analytical and finite element investigation on the thermo‐mechanical coupled response of friction isolators under bidirectional excitation publication-title: Soil Dyn Earthquake Eng – volume: 19 start-page: 246 year: 2012 end-page: 259 article-title: On the performance of gyro‐mass devices for displacement mitigation in base isolation systems publication-title: Struct Control Health Monit – volume: 24 start-page: 1739 issue: 6 year: 2010 end-page: 1755 article-title: Optimum design of linear tuned mass dampers for structures with nonlinear behaviour publication-title: Mech Syst Sig Process – volume: 30 start-page: 537 issue: 4 year: 2001 end-page: 551 article-title: Inelastic buildings with tuned mass dampers under moderate ground motions from distant earthquakes publication-title: Earthquake Eng Struct Dyn – year: 2003 – volume: 20 start-page: 193 issue: 3 year: 1998 end-page: 204 article-title: Parametric study and simplified design of tuned mass dampers publication-title: Eng Struct – volume: 41 start-page: 41 issue: 1 year: 2012 end-page: 60 article-title: Dynamic response and optimal design of structures with large mass ratio TMD publication-title: Earthquake Eng Struct Dyn – volume: 72 start-page: 84 year: 2018 end-page: 98 article-title: A novel stochastic linearization framework for seismic demand estimation of hysteretic MDOF systems subject to linear response spectra publication-title: Struct Saf – volume: 25 start-page: e2082 issue: 2 year: 2018 article-title: Optimal tuned mass‐damper‐inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria publication-title: Struct Control Health Monit – volume: 21 start-page: 98 year: 2014 end-page: 114 article-title: Optimum design for more effective tuned mass damper system and its application to base‐isolated buildings publication-title: Struct Control Health Monit – volume: 1:9 start-page: 1 year: 2015 end-page: 19 article-title: Innovative base‐isolated building with large mass‐ratio TMD at basement for greater earthquake resilience publication-title: Future Cities Environ – volume: 11 start-page: 903 year: 2007 end-page: 924 article-title: Stochastic seismic response and reliability analysis of base‐isolated structures publication-title: J Earthq Eng – volume: 117 start-page: 836 year: 1991 end-page: 853 article-title: Aseismic hybrid control systems for building structures publication-title: J Eng Mech – volume: 13 start-page: 105 issue: 2 year: 2004 end-page: 121 article-title: Energy dissipation of tuned mass dampers during earthquake excitations publication-title: Struct Des Tall Special Build – year: 1990 – volume: 134 start-page: 163 issue: 2 year: 2008 end-page: 172 article-title: Seismic energy dissipation of inelastic structures with tuned mass dampers publication-title: J Eng Mech – volume: 47 start-page: 150 issue: 1 year: 1980 end-page: 154 article-title: Equivalent linearization for hysteretic systems under random excitation publication-title: J App Mech – volume: 28 start-page: 3 year: 1999 end-page: 20 article-title: The role of damping in seismic isolation publication-title: Earthquake Eng Struct Dyn – volume: 5 start-page: 202 issue: 4 year: 1986 end-page: 216 article-title: Aseismic base isolation: review and bibliography publication-title: Soil Dyn Earthquake Eng – volume: 30 start-page: 3478 year: 2008 end-page: 3488 article-title: Effect of tuned mass damper on displacement demand of base‐isolated structures publication-title: Eng Struct – volume: 38 start-page: 156 year: 2014 end-page: 164 article-title: Optimal design of a novel tuned mass‐damper‐inerter (TMDI) passive vibration control configuration for stochastically support‐excited structural systems publication-title: Prob Eng Mech – start-page: paper year: 2004 – volume: 43 start-page: 1129 year: 2014 end-page: 1147 article-title: Using an inerter‐based device for structural vibration suppression publication-title: Earthquake Eng Struct Dyn – volume: 95 start-page: 80 year: 2015 end-page: 93 article-title: Seismic reliability of base‐isolated structures with friction pendulum bearings publication-title: Eng Struct – volume: 12 start-page: 285 issue: 3 year: 2017 end-page: 296 article-title: Exploring the effects of tuned mass dampers on the seismic performance of structures with nonlinear base isolation systems publication-title: Earthquakes Struct – volume: 35 start-page: 1403 year: 2006 end-page: 1424 article-title: Behaviour of the double concave Friction Pendulum bearing publication-title: Earthquake Eng Struct Dyn – volume: 44 start-page: 1623 issue: 10 year: 2015 end-page: 1642 article-title: Optimal energy‐based seismic design of non‐conventional tuned mass damper (TMD) implemented via inter‐story isolation publication-title: Earthquake Eng Struct Dyn – volume: 15 start-page: 325 year: 2006 end-page: 338 article-title: Resonant behaviour of base‐isolated high‐rise buildings under long‐period ground motions publication-title: Struct Des Tall Special Build – volume: 28 start-page: 1255 issue: 11 year: 1999 end-page: 1272 article-title: Influence of ground motion intensity on the effectiveness of tuned mass dampers publication-title: Earthquake Eng Struct Dyn – year: 1988 – volume: 49 start-page: 243 year: 2013 end-page: 253 article-title: Optimum design of tuned mass dampers by displacement and energy perspectives publication-title: Soil Dyn Earthquake Eng – year: 1997 – volume: 47 start-page: 1169 year: 2018 end-page: 1192 article-title: An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI) publication-title: Earthquake Eng Struct Dyn – volume: 37 start-page: 785 issue: 4 year: 2002 end-page: 800 article-title: A novel local stochastic linearization method via two extremum entropy principles publication-title: Int J Nonlinear Mech – volume: 25 start-page: 65 issue: 1 year: 1996 end-page: 78 article-title: Experimental study of FPS system in bridge seismic isolation publication-title: Earthquake Eng Struct Dyn – volume: 44 start-page: 191 issue: 4 year: 1991 end-page: 203 article-title: Simulation of stochastic processes by spectral representation publication-title: App Mech Rev – year: 1999 – volume: 105 start-page: 37 year: 2018 end-page: 53 article-title: Soil‐dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper publication-title: Soil Dyn Earthquake Eng – ident: e_1_2_8_18_1 doi: 10.1002/eqe.2390 – ident: e_1_2_8_41_1 doi: 10.1016/S0020-7462(01)00099-3 – ident: e_1_2_8_46_1 doi: 10.1002/eqe.1117 – ident: e_1_2_8_29_1 doi: 10.1002/eqe.461 – ident: e_1_2_8_30_1 doi: 10.1002/tal.244 – ident: e_1_2_8_5_1 doi: 10.1002/9780470172742 – volume: 1 start-page: 1 year: 2015 ident: e_1_2_8_24_1 article-title: Innovative base‐isolated building with large mass‐ratio TMD at basement for greater earthquake resilience publication-title: Future Cities Environ doi: 10.1186/s40984-015-0007-6 – ident: e_1_2_8_44_1 doi: 10.1016/j.soildyn.2013.02.013 – ident: e_1_2_8_31_1 doi: 10.1061/(ASCE)0733-9399(2008)134:2(163) – ident: e_1_2_8_14_1 doi: 10.1002/stc.1556 – ident: e_1_2_8_8_1 doi: 10.1126/science.267.5195.206 – ident: e_1_2_8_37_1 doi: 10.1002/eqe.4290210805 – ident: e_1_2_8_22_1 – ident: e_1_2_8_27_1 doi: 10.12989/eas.2017.12.3.285 – ident: e_1_2_8_16_1 doi: 10.1016/j.probengmech.2014.03.007 – ident: e_1_2_8_28_1 doi: 10.1002/eqe.22 – ident: e_1_2_8_3_1 doi: 10.1002/(SICI)1096-9845(199601)25:1<65::AID-EQE536>3.0.CO;2-A – ident: e_1_2_8_43_1 doi: 10.1002/eqe.2548 – ident: e_1_2_8_7_1 doi: 10.1002/eqe.4290210402 – ident: e_1_2_8_35_1 doi: 10.1080/13632460701242757 – ident: e_1_2_8_21_1 doi: 10.1016/j.soildyn.2017.11.023 – ident: e_1_2_8_23_1 doi: 10.1002/stc.419 – ident: e_1_2_8_10_1 doi: 10.1002/(SICI)1096-9845(199901)28:1<3::AID-EQE801>3.0.CO;2-D – volume-title: Random Vibration and Statistical Linearization year: 1990 ident: e_1_2_8_34_1 – ident: e_1_2_8_45_1 doi: 10.1016/S0141-0296(97)00078-3 – ident: e_1_2_8_17_1 doi: 10.1002/eqe.2861 – volume-title: Dynamics of Structures year: 2003 ident: e_1_2_8_33_1 – ident: e_1_2_8_6_1 doi: 10.1002/eqe.589 – ident: e_1_2_8_32_1 doi: 10.1115/1.3153594 – ident: e_1_2_8_47_1 doi: 10.1016/j.soildyn.2017.12.019 – ident: e_1_2_8_36_1 doi: 10.1680/sdfe.25592 – ident: e_1_2_8_26_1 doi: 10.1016/j.ymssp.2010.01.009 – ident: e_1_2_8_19_1 doi: 10.1002/stc.2082 – ident: e_1_2_8_39_1 doi: 10.1016/j.strusafe.2017.12.008 – ident: e_1_2_8_13_1 doi: 10.1016/j.engstruct.2008.05.027 – ident: e_1_2_8_40_1 doi: 10.1016/j.jsv.2006.09.027 – ident: e_1_2_8_2_1 doi: 10.1016/0267-7261(86)90006-0 – ident: e_1_2_8_20_1 doi: 10.1002/eqe.3011 – ident: e_1_2_8_15_1 doi: 10.1109/TAC.2002.803532 – ident: e_1_2_8_11_1 doi: 10.1061/(ASCE)0733-9399(1991)117:4(836) – ident: e_1_2_8_25_1 doi: 10.1002/(SICI)1096-9845(199911)28:11<1255::AID-EQE865>3.0.CO;2-C – ident: e_1_2_8_38_1 doi: 10.1115/1.3119501 – ident: e_1_2_8_4_1 doi: 10.1016/j.engstruct.2015.03.053 – ident: e_1_2_8_12_1 doi: 10.1016/0020-7683(94)00150-U – ident: e_1_2_8_42_1 – ident: e_1_2_8_9_1 doi: 10.1002/tal.298 |
SSID | ssj0003607 |
Score | 2.6172795 |
Snippet | Summary
The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is... The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2539 |
SubjectTerms | Acceleration Bouc‐Wen hysteretic model Coulomb friction Design Design optimization Displacement Dynamic analysis Earthquake dampers Earthquake resistance Earthquakes Friction friction pendulum isolators inerter Isolation systems Lead Linearization Mass Mechanical devices Modelling Nonlinear systems Nonlinearity optimal design Performance indices Rubber Seismic activity seismic base isolation Seismic design Seismic engineering Seismic isolation Seismic response Stiffness Stochastic processes Structures tuned mass damper Tuning Vibration isolators |
Title | Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3098 https://www.proquest.com/docview/2098559840 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i_XFCOLjsDW7yabbo2ilCiqKhYKHJc0DirZWt7148a872ey2KgriaQ87YbMzk5kvYeYLIXu482csZirQltmAmzAJpJIiqIc6xoQhladruroWrTa_7MSdoqrS9cJ4fojJgZtbGXm8dgtcdrPjKWmoeTE1Rhuuz9eVajk8dDdljmKCTugyE4zAJe8sjY7LgV8z0RRefgapeZY5XyAP5fx8ccljbTzq1tTbN-rG__3AIpkvwCeceG9ZIjNmsEzmPlESrpD3G4whfRTSeWkHyIGGzPSyfk_BcNpkAM8WRmMM0dBH9A1aIvp-BddIiHaCw_urs4sjQGHw_LRj3NSDO_KFgZ-5fAWXP6GHrp_7BnhK6WyVtM-b96etoLikIVCIFFC5EVPCYEhViLwstzEamYbSUo47LSkiq41jrApjg7GEM2Y1p7ohtK3TqBtqydZIBT9t1glIrXBDxBJrEs0FbyTCJkyzSDIRyrjeqJKD0mCpKhjM3UUaT6nnXo5SVGnqVFoluxPJoWft-EFmq7R5WqzbLI3whaOs57RK9nPj_To-bd423XPjr4KbZBbRVk6mG9ItUkH9m21ENKPuTu67H_ws80M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTxsxEIdHFA4tBx6lFeHVQapKe9jgXXudjTghCAqUULUKEodKK8cPKYKER5ILF_51xutsQhFIFac97Fjr9djj31j2Z4CvlPlznnIdGcddJGycRUorGdVik9KEoXTANbXOZPNcnFykFzOwV56FCXyIyYKbHxlFvPYD3C9I706pofbWVjmrZ-9gzl_oXeRTf6bsKC7ZBJiZUQwuybMs2S1L_jsXTQXmU5lazDNHi_C3rGHYXnJZHQ07VX3_DN74xl9YgoWx_sT90GGWYcb2P8L8EyrhCjz8ojDSIyNT7O5A1Tc4sN1Br6vxZnrOAK8dDkcUpbFHAhyNIgF-h_4sIbkKv7dbh8c_kIwxIGpHlNejX_XFfqi6ukM_hWKXen_RPTBQpQef4Pyo0T5oRuN7GiJNYoFaN-FaWoqqmsSXEy4lP7NYOSYo2VIyccZ6aFWcWgongnNnBDN1aVyNJZ3YKP4ZZunTdhVQGU05Ec-czYyQop5Jl3HDE8VlrNJavQI7pcdyPYaY-7s0rvKAX05yatLcN2kFtieWNwHc8YLNRun0fDx0B3lCLzy1XrAKfCu892r5vPG74Z9r_2v4Bd43263T_PT47Oc6fCDxVbB1Y7YBs-QLu0kCZ9jZKjryIyaX914 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTxsxEIdHFCRUDrzaqinQDhKi7WGDd-11NkfUJOJNW4GExGHl-CFFkJCS5NJL_3XG692EolZCnPawY63XMx7_bNmfAXZo5s95ynVkHHeRsHEWKa1k1IhNSgOG0gHXdHomDy7F0VV6Ve6q9GdhAh9iuuDme0aRr30HHxq3N4OG2l-2zlkzewULQrLMR3Tr5wwdxSWb8jIzSsEVeJYle1XJv4eimb58rFKLYaazAtdVBcPukpv6ZNyt699P2I0v-4NVWC7VJ-6HcFmDOTtYh6VHTMI38OeckkifjEyxtwPVwODI9kb9nsbh7JQB3jkcTyhHY5_kNxpF8vse_UlCchR-uThtHX5FMsYAqJ3QrB79mi8OQs3VPfoBFHsU-0VwYGBKj97CZad98e0gKm9piDRJBWrchGtpKadqkl5OuJS8zGLlmKCplpKJM9Yjq-LUUjIRnDsjmGlK4xos6cZG8XcwT5-27wGV0TQj4pmzmRFSNDPpMm54oriMVdpo1uBz5bBclwhzf5PGbR7gy0lOTZr7Jq3B9tRyGLAd_7DZrHyelx13lCf0wjPrBavBbuG8_5bP2z_a_vnhuYafYPF7q5OfHJ4db8BrUl4FWDdmmzBPrrBbpG7G3Y9FGD8Aakr2Fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+and+seismic+performance+of+tuned+mass+damper+inerter+%28TMDI%29+for+structures+with+nonlinear+base+isolation+systems&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Michael%2C+Fardis&rft.au=De+Domenico%2C+Dario&rft.au=Ricciardi%2C+Giuseppe&rft.date=2018-10-10&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=47&rft.issue=12&rft.spage=2539&rft.epage=2560&rft_id=info:doi/10.1002%2Feqe.3098&rft.externalDBID=10.1002%252Feqe.3098&rft.externalDocID=EQE3098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |