Unraveling complexation and enantioseparation of a new chiral‐at‐uranium complex to chiral pesticides R/S‐malaoxons

Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX),...

Full description

Saved in:
Bibliographic Details
Published inApplied organometallic chemistry Vol. 38; no. 5
Main Authors Guo, Meng‐zhen, Ouyang, Wen‐jun, Wang, Yun, Kong, Xiang‐he, Xiao, Xi‐lin, Nie, Chang‐ming, Peng, Guo‐wen
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1H‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1H‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O5) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors (SFR/S) ranged 21–853, and the enantioselectivity coefficients (ESCR/S) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors. A novel chiral‐at‐uranium complex (Uranyl‐HPIDO) was designed for enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory, we unraveled complexation between Uranyl‐HPIDO and R/S‐MLXs. The results indicated that Uranyl‐HPIDO preferred to bind to phosphoryl oxygen of R/S‐MLXs to form stable complexes and realized the enantioseparation of chiral MLXs.
AbstractList Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1H‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1H‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O5) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors (SFR/S) ranged 21–853, and the enantioselectivity coefficients (ESCR/S) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors. A novel chiral‐at‐uranium complex (Uranyl‐HPIDO) was designed for enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory, we unraveled complexation between Uranyl‐HPIDO and R/S‐MLXs. The results indicated that Uranyl‐HPIDO preferred to bind to phosphoryl oxygen of R/S‐MLXs to form stable complexes and realized the enantioseparation of chiral MLXs.
Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1 H ‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1 H ‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O 5 ) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors ( SF R/S ) ranged 21–853, and the enantioselectivity coefficients ( ESC R/S ) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors.
Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1H‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1H‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O5) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors (SFR/S) ranged 21–853, and the enantioselectivity coefficients (ESCR/S) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors.
Author Nie, Chang‐ming
Kong, Xiang‐he
Xiao, Xi‐lin
Wang, Yun
Peng, Guo‐wen
Ouyang, Wen‐jun
Guo, Meng‐zhen
Author_xml – sequence: 1
  givenname: Meng‐zhen
  orcidid: 0009-0004-1509-6057
  surname: Guo
  fullname: Guo, Meng‐zhen
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
– sequence: 2
  givenname: Wen‐jun
  orcidid: 0009-0004-5883-3889
  surname: Ouyang
  fullname: Ouyang, Wen‐jun
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
– sequence: 3
  givenname: Yun
  orcidid: 0009-0004-0765-5058
  surname: Wang
  fullname: Wang, Yun
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
– sequence: 4
  givenname: Xiang‐he
  orcidid: 0000-0002-0650-7596
  surname: Kong
  fullname: Kong, Xiang‐he
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
– sequence: 5
  givenname: Xi‐lin
  orcidid: 0000-0001-8754-7743
  surname: Xiao
  fullname: Xiao, Xi‐lin
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
– sequence: 6
  givenname: Chang‐ming
  orcidid: 0000-0003-2744-8924
  surname: Nie
  fullname: Nie, Chang‐ming
  email: changmingnie@usc.edu.cn
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
– sequence: 7
  givenname: Guo‐wen
  orcidid: 0000-0003-3402-1830
  surname: Peng
  fullname: Peng, Guo‐wen
  email: pgwnh78@163.com
  organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes
BookMark eNp1kE1OwzAQhS1UJFpA4giW2LBJO3HsxFlWFX9SJSR-1tHUdcBVYgc7oXTHETgjJyHQskGwmdGMvvdm9EZkYJ3VhJzEMI4B2ASdGmecyT0yjCHPI8iSfECGwFIZsRTEARmFsAKAPI35kGwerMcXXRn7SJWrm0q_YmucpWiXVFu0_RB0g367dSVFavWaqifjsfp4e8e2L51Ha7r6x4G2bgfQRofWKLPUgd5O7nq0xgrdq7PhiOyXWAV9vOuH5OHi_H52Fc1vLq9n03mkWJ7ISCQl8JxJoZhKeLwQ2SITjCcgOIgMhUItkadSM4lC5iUHWS5jTJlUGqVeJIfkdOvbePfc9e8UK9d5258sEuAJhxQY9NTZllLeheB1WTTe1Og3RQzFV7BFH2zxFWyPjn-hyrTf8bQeTfWXINoK1qbSm3-Ni-nN7Jv_BAu6j2U
CitedBy_id crossref_primary_10_1007_s10967_024_09782_2
Cites_doi 10.1002/aoc.6331
10.3749/canmin.1500078
10.1007/s00214-010-0846-z
10.1039/D1CP03900H
10.1016/0009-2614(83)80005-0
10.1063/1.1700523
10.1021/j100046a014
10.1016/j.chemosphere.2023.137898
10.1016/0263-7855(96)00018-5
10.1103/PhysRev.136.B864
10.1021/acs.inorgchem.2c03823
10.1016/j.eehl.2023.09.001
10.1002/chir.23229
10.1080/15287394.2017.1357305
10.1038/nmat4226
10.1016/S1002-0160(18)60017-7
10.1016/j.molliq.2023.123108
10.1002/anie.202303129
10.1021/acs.jpca.8b00177
10.1002/aoc.6686
10.1021/jacsau.2c00614
10.1002/aoc.6999
10.2174/138527211797636228
10.1007/s10967-020-07137-1
10.1021/acs.iecr.1c01236
10.1021/jp907550k
10.1021/acs.inorgchem.2c00232
10.1103/PhysRev.140.A1133
10.1016/j.ejmech.2020.112792
10.1021/acs.inorgchem.9b01200
10.1021/acs.inorgchem.2c01379
10.1002/jcc.26812
10.1177/1747519820907243
10.1016/j.scitotenv.2016.12.092
10.1063/1.1501133
10.1007/s00894-011-1023-6
10.1021/jp205508z
10.1063/1.1740412
10.1002/wcms.1601
10.1039/D3RA02253F
10.1007/s00214-007-0310-x
10.1002/cmtd.202100007
10.1021/jp810292n
10.1016/j.molstruc.2023.136348
10.1021/jp107136j
10.1063/1.466847
10.1021/jp4010345
10.1016/j.chempr.2022.07.009
10.1016/j.eehl.2023.07.001
10.1021/acs.chemrev.1c00846
10.1021/acs.inorgchem.3c01297
10.1039/b102094n
10.1039/b508541a
10.1002/jcc.22885
10.1126/science.218.4574.747
10.1080/09593330.2021.1921055
10.1021/jp203797y
10.1021/ja00353a035
10.1021/ic991316e
10.1039/c2cs15354h
10.1021/acs.jcim.9b00946
10.1021/acs.jchemed.7b00511
10.1002/anie.201308609
10.1016/j.jchromb.2009.11.022
10.1007/s10311-010-0288-9
10.1016/j.theochem.2003.12.015
10.1080/01496395.2023.2212858
10.1007/s10967-021-07653-8
10.1002/aoc.5486
10.1016/j.scitotenv.2022.157294
10.1016/j.jes.2023.06.037
10.1021/acs.jpca.5b03043
10.3390/ijms241814213
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/aoc.7428
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0739
EndPage n/a
ExternalDocumentID 10_1002_aoc_7428
AOC7428
Genre article
GrantInformation_xml – fundername: Hunan Provincial Natural Science Foundation of China
  funderid: 2020JJ6049
– fundername: National Natural Science Foundation of China
  funderid: 42377076
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWK
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2938-53f049285c2c341b57b75243054057a5cae8a468e28a589f408fd1a628cea8eb3
IEDL.DBID DR2
ISSN 0268-2605
IngestDate Fri Jul 25 04:57:52 EDT 2025
Tue Jul 01 03:21:29 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Wed Jan 22 17:19:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-53f049285c2c341b57b75243054057a5cae8a468e28a589f408fd1a628cea8eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3402-1830
0009-0004-5883-3889
0000-0001-8754-7743
0009-0004-0765-5058
0000-0002-0650-7596
0009-0004-1509-6057
0000-0003-2744-8924
PQID 3043406020
PQPubID 2045198
PageCount 18
ParticipantIDs proquest_journals_3043406020
crossref_primary_10_1002_aoc_7428
crossref_citationtrail_10_1002_aoc_7428
wiley_primary_10_1002_aoc_7428_AOC7428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Applied organometallic chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2018; 122
2017; 80
2021; 23
2023; 37
2020; 60
1965; 140
2023; 1294
2021; 328
2019; 58
2002; 99
1983; 97
2002; 117
2020; 324
2024; 141
2009; 113
2023; 2
2011; 15
2023; 3
2011; 17
2020; 208
1964; 136
2022; 122
2021; 35
1983; 105
1952; 20
2023; 62
1994; 100
2023; 24
2011; 128
1982; 218
2010; 878
2010; 114
2013; 117
2022; 36
2020; 44
2011; 69
2022; 846
2001; 14
2010; 9
2014; 53
2015; 14
2018; 28
2021; 43
2023; 13
2023; 58
1954; 22
2020; 34
2022; 43
2020; 32
1996; 14
2021; 1
2008; 120
2012; 33
2004; 673
2023; 390
2000; 39
2022; 61
2017; 54
2022; 8
2022; 12
2005; 7
2017; 580
2016
2015; 119
2023; 318
2018; 95
2021; 60
2012; 41
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
Lu T. (e_1_2_9_69_1) 2011; 69
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 8
  start-page: 2749
  issue: 10
  year: 2022
  publication-title: Chem
– volume: 2
  start-page: 117
  issue: 3
  year: 2023
  publication-title: Eco‐Environ. Health
– volume: 44
  start-page: 482
  issue: 7–8
  year: 2020
  publication-title: J. Chem. Res.
– volume: 54
  start-page: 177
  issue: 1
  year: 2017
  publication-title: Can. Mineral.
– volume: 120
  start-page: 215
  issue: 1–3
  year: 2008
  publication-title: Theor. Chem. Acc.
– volume: 136
  start-page: B864
  issue: 3B
  year: 1964
  publication-title: Phys. Rev.
– volume: 80
  start-page: 1106
  issue: 19–21
  year: 2017
  publication-title: J. Toxicol. Env. Health Part a
– volume: 115
  start-page: 14556
  issue: 49
  year: 2011
  publication-title: J. Phys. Chem. B
– volume: 324
  start-page: 993
  issue: 3
  year: 2020
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 12
  issue: 5
  year: 2022
  publication-title: Wiley Interdiscip. Rev.‐Comput. Mol. Sci.
– volume: 97
  start-page: 270
  issue: 3
  year: 1983
  publication-title: Chem. Phys. Lett.
– volume: 113
  start-page: 6378
  issue: 18
  year: 2009
  publication-title: J. Phys. Chem. B
– volume: 1294
  year: 2023
  publication-title: J. Mol. Struct.
– volume: 114
  start-page: 13442
  issue: 51
  year: 2010
  publication-title: J. Phys. Chem. A
– volume: 140
  start-page: A1133
  issue: 4A
  year: 1965
  publication-title: Phys. Rev.
– volume: 7
  start-page: 3297
  issue: 18
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  start-page: 2095
  year: 2001
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 22
  start-page: 1433
  issue: 8
  year: 1954
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 1053
  issue: 8
  year: 2020
  publication-title: Chirality
– volume: 33
  start-page: 580
  issue: 5
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 28
  start-page: 190
  issue: 2
  year: 2018
  publication-title: Pedosphere
– volume: 14
  start-page: 33
  issue: 1
  year: 1996
  publication-title: J. Mol. Graph.
– volume: 128
  start-page: 295
  issue: 3
  year: 2011
  publication-title: Theor. Chem. Acc.
– volume: 14
  start-page: 252
  issue: 3
  year: 2015
  publication-title: Nat. Mater.
– volume: 1
  start-page: 231
  issue: 5
  year: 2021
– volume: 99
  start-page: 16883
  issue: 46
  year: 2002
  publication-title: J. Phys. Chem.
– volume: 37
  issue: 3
  year: 2023
  publication-title: Appl. Organomet. Chem.
– volume: 43
  start-page: 3378
  issue: 22
  year: 2021
  publication-title: Environ. Technol.
– volume: 100
  start-page: 7535
  issue: 10
  year: 1994
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 63
  year: 2024
  publication-title: J. Environ. Sci.
– volume: 17
  start-page: 2337
  issue: 9
  year: 2011
  publication-title: J. Mol. Model.
– volume: 34
  issue: 4
  year: 2020
  publication-title: Appl. Organomet. Chem.
– volume: 95
  start-page: 666
  issue: 4
  year: 2018
  publication-title: J. Chem. Educ.
– volume: 580
  start-page: 1287
  year: 2017
  publication-title: Sci. Total Environ.
– volume: 328
  start-page: 205
  issue: 1
  year: 2021
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 117
  start-page: 3100
  issue: 14
  year: 2013
  publication-title: J. Phys. Chem. A
– volume: 62
  issue: 30
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: 10762
  issue: 27
  year: 2023
  publication-title: Inorg. Chem.
– volume: 35
  issue: 9
  year: 2021
  publication-title: Appl. Organomet. Chem.
– volume: 115
  start-page: 12746
  issue: 45
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 3
  start-page: 239
  issue: 1
  year: 2023
  publication-title: JACS au
– volume: 24
  start-page: 14213
  issue: 18
  year: 2023
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 14159
  issue: 21
  year: 2023
  publication-title: RSC Adv.
– volume: 122
  start-page: 4499
  issue: 18
  year: 2018
  publication-title: J. Phys. Chem. A
– volume: 62
  start-page: 2705
  issue: 6
  year: 2023
  publication-title: Inorg. Chem.
– volume: 20
  start-page: 722
  issue: 4
  year: 1952
  publication-title: J. Chem. Phys.
– volume: 122
  start-page: 13235
  issue: 16
  year: 2022
  publication-title: Chem. Rev.
– volume: 61
  start-page: 11715
  issue: 30
  year: 2022
  publication-title: Inorg. Chem.
– volume: 114
  start-page: 552
  issue: 1
  year: 2010
  publication-title: J. Phys. Chem. A
– volume: 846
  year: 2022
  publication-title: Sci. Total Environ.
– volume: 105
  start-page: 5061
  issue: 15
  year: 1983
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 369
  issue: 3
  year: 2010
  publication-title: Environ. Chem. Lett.
– volume: 39
  start-page: 2360
  issue: 11
  year: 2000
  publication-title: Inorg. Chem.
– volume: 15
  start-page: 3576
  issue: 20
  year: 2011
  publication-title: Curr. Org. Chem.
– volume: 69
  start-page: 2393
  issue: 20
  year: 2011
  publication-title: Acta Chim. Sin.
– volume: 58
  start-page: 10047
  issue: 15
  year: 2019
  publication-title: Inorg. Chem.
– volume: 390
  year: 2023
  publication-title: J. Mol. Liq.
– year: 2016
– volume: 673
  start-page: 203
  issue: 1–3
  year: 2004
  publication-title: J. Mol. Struct. THEOCHEM
– volume: 58
  start-page: 1833
  issue: 10
  year: 2023
  publication-title: Sep. Sci. Technol.
– volume: 43
  start-page: 539
  issue: 8
  year: 2022
  publication-title: J. Comput. Chem.
– volume: 119
  start-page: 6528
  issue: 24
  year: 2015
  publication-title: J. Phys. Chem. A
– volume: 36
  issue: 6
  year: 2022
  publication-title: Appl. Organomet. Chem.
– volume: 218
  start-page: 747
  issue: 4574
  year: 1982
  publication-title: Science
– volume: 53
  start-page: 2766
  issue: 10
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 61
  start-page: 6110
  issue: 16
  year: 2022
  publication-title: Inorg. Chem.
– volume: 60
  start-page: 1317
  issue: 3
  year: 2020
  publication-title: J. Chem. Inf. Model.
– volume: 2
  start-page: 252
  issue: 4
  year: 2023
  publication-title: Eco‐Environ. Health
– volume: 23
  start-page: 26967
  issue: 47
  year: 2021
  publication-title: Phys. Chem. Chem. Phys.
– volume: 41
  start-page: 5836
  issue: 17
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 318
  year: 2023
  publication-title: Chemosphere
– volume: 878
  start-page: 1277
  issue: 17–18
  year: 2010
  publication-title: J. Chromatogr. B
– volume: 208
  year: 2020
  publication-title: Eur. J. Med. Chem.
– volume: 60
  start-page: 11768
  issue: 31
  year: 2021
  publication-title: Ind. Eng. Chem. Res.
– volume: 117
  start-page: 5529
  issue: 12
  year: 2002
  publication-title: J. Chem. Phys.
– ident: e_1_2_9_17_1
  doi: 10.1002/aoc.6331
– ident: e_1_2_9_2_1
  doi: 10.3749/canmin.1500078
– ident: e_1_2_9_43_1
  doi: 10.1007/s00214-010-0846-z
– ident: e_1_2_9_58_1
  doi: 10.1039/D1CP03900H
– ident: e_1_2_9_53_1
  doi: 10.1016/0009-2614(83)80005-0
– ident: e_1_2_9_67_1
  doi: 10.1063/1.1700523
– ident: e_1_2_9_41_1
  doi: 10.1021/j100046a014
– ident: e_1_2_9_27_1
  doi: 10.1016/j.chemosphere.2023.137898
– ident: e_1_2_9_49_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_9_38_1
  doi: 10.1103/PhysRev.136.B864
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.inorgchem.2c03823
– ident: e_1_2_9_21_1
  doi: 10.1016/j.eehl.2023.09.001
– ident: e_1_2_9_28_1
  doi: 10.1002/chir.23229
– ident: e_1_2_9_30_1
  doi: 10.1080/15287394.2017.1357305
– ident: e_1_2_9_3_1
  doi: 10.1038/nmat4226
– ident: e_1_2_9_24_1
  doi: 10.1016/S1002-0160(18)60017-7
– ident: e_1_2_9_76_1
  doi: 10.1016/j.molliq.2023.123108
– ident: e_1_2_9_20_1
  doi: 10.1002/anie.202303129
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.jpca.8b00177
– ident: e_1_2_9_12_1
  doi: 10.1002/aoc.6686
– ident: e_1_2_9_18_1
  doi: 10.1021/jacsau.2c00614
– ident: e_1_2_9_13_1
  doi: 10.1002/aoc.6999
– ident: e_1_2_9_64_1
  doi: 10.2174/138527211797636228
– ident: e_1_2_9_11_1
  doi: 10.1007/s10967-020-07137-1
– volume: 69
  start-page: 2393
  issue: 20
  year: 2011
  ident: e_1_2_9_69_1
  publication-title: Acta Chim. Sin.
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.iecr.1c01236
– ident: e_1_2_9_61_1
  doi: 10.1021/jp907550k
– ident: e_1_2_9_36_1
  doi: 10.1021/acs.inorgchem.2c00232
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_2_9_54_1
  doi: 10.1016/j.ejmech.2020.112792
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.inorgchem.9b01200
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.inorgchem.2c01379
– ident: e_1_2_9_73_1
  doi: 10.1002/jcc.26812
– ident: e_1_2_9_72_1
  doi: 10.1177/1747519820907243
– ident: e_1_2_9_31_1
  doi: 10.1016/j.scitotenv.2016.12.092
– ident: e_1_2_9_60_1
  doi: 10.1063/1.1501133
– ident: e_1_2_9_70_1
  doi: 10.1007/s00894-011-1023-6
– ident: e_1_2_9_75_1
  doi: 10.1021/jp205508z
– ident: e_1_2_9_66_1
  doi: 10.1063/1.1740412
– ident: e_1_2_9_50_1
  doi: 10.1002/wcms.1601
– ident: e_1_2_9_26_1
  doi: 10.1039/D3RA02253F
– ident: e_1_2_9_47_1
  doi: 10.1007/s00214-007-0310-x
– ident: e_1_2_9_55_1
  doi: 10.1002/cmtd.202100007
– ident: e_1_2_9_46_1
  doi: 10.1021/jp810292n
– ident: e_1_2_9_71_1
  doi: 10.1016/j.molstruc.2023.136348
– ident: e_1_2_9_74_1
  doi: 10.1021/jp107136j
– ident: e_1_2_9_44_1
  doi: 10.1063/1.466847
– ident: e_1_2_9_52_1
  doi: 10.1021/jp4010345
– ident: e_1_2_9_19_1
  doi: 10.1016/j.chempr.2022.07.009
– ident: e_1_2_9_33_1
  doi: 10.1016/j.eehl.2023.07.001
– ident: e_1_2_9_22_1
  doi: 10.1021/acs.chemrev.1c00846
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.inorgchem.3c01297
– ident: e_1_2_9_51_1
  doi: 10.1039/b102094n
– ident: e_1_2_9_40_1
– ident: e_1_2_9_42_1
  doi: 10.1039/b508541a
– ident: e_1_2_9_48_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_9_65_1
  doi: 10.1126/science.218.4574.747
– ident: e_1_2_9_15_1
  doi: 10.1080/09593330.2021.1921055
– ident: e_1_2_9_56_1
  doi: 10.1021/jp203797y
– ident: e_1_2_9_63_1
  doi: 10.1021/ja00353a035
– ident: e_1_2_9_57_1
  doi: 10.1021/ic991316e
– ident: e_1_2_9_4_1
  doi: 10.1039/c2cs15354h
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.jcim.9b00946
– ident: e_1_2_9_37_1
  doi: 10.1021/acs.jchemed.7b00511
– ident: e_1_2_9_62_1
  doi: 10.1002/anie.201308609
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jchromb.2009.11.022
– ident: e_1_2_9_29_1
  doi: 10.1007/s10311-010-0288-9
– ident: e_1_2_9_45_1
  doi: 10.1016/j.theochem.2003.12.015
– ident: e_1_2_9_16_1
  doi: 10.1080/01496395.2023.2212858
– ident: e_1_2_9_8_1
  doi: 10.1007/s10967-021-07653-8
– ident: e_1_2_9_14_1
  doi: 10.1002/aoc.5486
– ident: e_1_2_9_32_1
  doi: 10.1016/j.scitotenv.2022.157294
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jes.2023.06.037
– ident: e_1_2_9_59_1
  doi: 10.1021/acs.jpca.5b03043
– ident: e_1_2_9_23_1
  doi: 10.3390/ijms241814213
SSID ssj0009614
Score 2.3980381
Snippet Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bonding strength
Butanol
Carbonyls
chiral pesticides
chiral‐at‐uranium complex
Cyclohexane
Density functional theory
density functional theory (DFT)
Dichloromethane
Enantiomers
enantioseparation
Octanol
Pesticides
Propionic acid
Pyrazole
R/S‐malaoxons
Receptors
Separation
Thermodynamic properties
Toluene
Toxicity
Uranium
Title Unraveling complexation and enantioseparation of a new chiral‐at‐uranium complex to chiral pesticides R/S‐malaoxons
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.7428
https://www.proquest.com/docview/3043406020
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1ED3rxW6xWWUH0lNZus-n2WKtFBBXUguAhzG42WGwTsSlUT_4Ef6O_xJl8WBUF8ZIcMgnJzmzmbfLmDWO7hInrxFQLtfEcF3Oyo7WyDoaORoCtQ1dSNfLZuXfSdU9v5E3OqqRamEwf4uODG82M9H1NExz0sDoRDYXYVHBdR3W-RNUiPHQ5UY5qepmst_AwEBCyF7qzB6JanPg1E03g5WeQmmaZzgK7Le4vI5fcV0aJrpjnb9KN_3uARTafg0_eyqJliU3ZaJnNtouebyvsqRtROyIqUecp2dyOU89xiAJuiTPToz8GkIUNj0MOHHE5N3e9R-i_vbxCgpsR5r_eaFBcgSdxbsAfSNPD9AI75JfVKzQdQB_iMUb-Kut2jq_bJ07enMExiBCUI-shLi6EkkYYzIRaNnRDChIQIwgI0oBV4HrKCgVSNUP3QIVBDTyhjAWFS_g1Nh3FkV1n3NgmHg0kCOu5DaMUaFfW6rJpamEgQJbYfuEo3-TK5dRAo-9nmsvCx6H0aShLbOfD8iFT6_jBplz42s_n69DHcK0jtEHsXGJ7qdN-Pd9vXbRpv_FXw002JxAJZSzJMptOHkd2C5FMorfZTOvw6LCzncbuO3PD9Uk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xOMClvFoRHu0iIXpyAhuvsxEnFBWFt0SJxKGSNbtei6jBRokjQU_9CfxGfgkzfpC2KhLiYh88a9k7s55v1jPfAGwzJm5yplpsbOD55JM9Y7TzyHQMAWwT-4qrkc_Og27PP75W11OwX9XCFPwQLxtuvDLy7zUvcN6QbkxYQzG1dQrs9DTMckPvPJ66nHBHtYOC2FsGZAoE2ivm2V3ZqEb-7YsmAPNPmJr7mcMF-FE9YZFe8rM-zkzd_vqHvPGdr7AIH0r8KQ4Kg1mCKZcsw1ynavu2Ag-9hDsScZW6yPPN3X2uPIFJJBynzfT5pwEWliPSWKAgaC7sTX-Ig6ffj5jRYUwusD--re4gsrQUEHdM62H7kRuJy8Z3Er3FAab3ZPwfoXf47arT9cr-DJ4lkKA91YwpvpBaWWnJGRrVMi0lmUOMUSAqi06jH2gnNSrdjv1dHUd7GEhtHWqK4j_BTJImbhWEdW26GimULvBbVms0PqlUte1eHElUNfhaaSq0JXk599AYhAXtsgxpKkOeyhpsvUjeFYQd_5HZqJQdlkt2FJLFNgndEHyuwU6utVfHhwcXHT6vvVXwC8x1r85Ow9Oj85N1mJcEjIqkyQ2YyYZjt0nAJjOfcwN-BvV89_I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCiXFmgRW16uhOgp-_DGWe8RLax4tBRBV0LqIRo7jlh1SVaQlSgnfgK_sb-EmTxYWrVSxSU5ZBwlns-Zz874G4Bt5sRtzlSLjQ08n2KyZ4x2HkHHEME2sa94N_KXk-Bg4B9dqIsyq5L3whT6EE8Lbjwy8u81D_BxFDemoqGY2jrN6_QrmPODpmZE751NpaO6QaHrLQNCAnH2Sni2KRtVy99D0ZRfPmepeZjpv4Xv1QMW2SU_6pPM1O3dH9qNL3uDRXhTsk-xW8BlCWZcsgyve1XRt3fwc5BwPSLeoy7ybHN3m7tOYBIJx0kzQ_5lgAVuRBoLFETMhb0cXuPo1_0DZnSYUAAcTq6qO4gsLQ3EmEU97DByN-KscU6mVzjC9Jag_x4G_f1vvQOvrM7gWaII2lPtmGYXUisrLYVCozqmoyQriDEHRGXRafQD7aRGpbux39Rx1MJAautQ0xx-BWaTNHGrIKzr0tVIoXSB37Fao_FVq626thVHElUNPlWOCm0pXc4VNEZhIbosQ-rKkLuyBh-fLMeFXMdfbNYrX4flgL0JCa9t4jZEnmuwkzvtn-3D3a89Pn_4X8MtmD_d64efD0-O12BBEisqMibXYTa7nrgNYjWZ2czh-whAYPaq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+complexation+and+enantioseparation+of+a+new+chiral%E2%80%90at%E2%80%90uranium+complex+to+chiral+pesticides+R%2FS%E2%80%90malaoxons&rft.jtitle=Applied+organometallic+chemistry&rft.au=Guo%2C+Meng%E2%80%90zhen&rft.au=Ouyang%2C+Wen%E2%80%90jun&rft.au=Wang%2C+Yun&rft.au=Kong%2C+Xiang%E2%80%90he&rft.date=2024-05-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=38&rft.issue=5&rft_id=info:doi/10.1002%2Faoc.7428&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aoc_7428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon