Unraveling complexation and enantioseparation of a new chiral‐at‐uranium complex to chiral pesticides R/S‐malaoxons
Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX),...
Saved in:
Published in | Applied organometallic chemistry Vol. 38; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1H‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1H‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O5) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors (SFR/S) ranged 21–853, and the enantioselectivity coefficients (ESCR/S) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors.
A novel chiral‐at‐uranium complex (Uranyl‐HPIDO) was designed for enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory, we unraveled complexation between Uranyl‐HPIDO and R/S‐MLXs. The results indicated that Uranyl‐HPIDO preferred to bind to phosphoryl oxygen of R/S‐MLXs to form stable complexes and realized the enantioseparation of chiral MLXs. |
---|---|
AbstractList | Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1H‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1H‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O5) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors (SFR/S) ranged 21–853, and the enantioselectivity coefficients (ESCR/S) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors.
A novel chiral‐at‐uranium complex (Uranyl‐HPIDO) was designed for enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory, we unraveled complexation between Uranyl‐HPIDO and R/S‐MLXs. The results indicated that Uranyl‐HPIDO preferred to bind to phosphoryl oxygen of R/S‐MLXs to form stable complexes and realized the enantioseparation of chiral MLXs. Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1 H ‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1 H ‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O 5 ) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors ( SF R/S ) ranged 21–853, and the enantioselectivity coefficients ( ESC R/S ) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors. Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising investigation is the enantiomer separation of chiral organophosphorus pesticides (OPs) via uranyl‐containing receptors. Among them, malaoxon (MLX), as a chiral OP with high toxicity and good selectivity, is controversial because of the different toxicity differences caused by the R and S configurations to target and non‐target organisms. Therefore, it is crucial to explore effective methods for separating its enantiomers. In this work, a novel 2‐(9‐[1H‐pyrazole‐1‐carbonyl]‐1,10‐phenanthrolin‐2‐yl)‐1H‐inden‐1‐one (HPIDO) ligand, which combines with uranyl to form the chiral‐at‐uranium complex (Uranyl‐HPIDO receptor), was designed for the enantioseparation of R/S‐malaoxons (R/S‐MLXs). Based on density functional theory (DFT), we explored the potential coordination modes between the Uranyl‐HPIDO receptor and R/S‐MLXs at various sites. The analyses of bonding properties, orbital interactions, and weak interactions of intramolecular groups of the complexes, along with the study of thermodynamic properties, revealed that the Uranyl‐HPIDO receptor preferred to bind to the phosphoryl oxygen (O5) of R/S‐MLXs to form stable complexes. Good enantioseparations of the two enantiomers were achieved in various solvents (water, n‐Butanol, n‐Octanol, dichloromethane, propanoic acid, toluene, and cyclohexane); the separation factors (SFR/S) ranged 21–853, and the enantioselectivity coefficients (ESCR/S) were more than 95%. The findings could theoretically offer useful information and guidance for the separation of R/S‐MLXs, in addition to providing fresh concepts for the creation of novel uranyl receptors. |
Author | Nie, Chang‐ming Kong, Xiang‐he Xiao, Xi‐lin Wang, Yun Peng, Guo‐wen Ouyang, Wen‐jun Guo, Meng‐zhen |
Author_xml | – sequence: 1 givenname: Meng‐zhen orcidid: 0009-0004-1509-6057 surname: Guo fullname: Guo, Meng‐zhen organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes – sequence: 2 givenname: Wen‐jun orcidid: 0009-0004-5883-3889 surname: Ouyang fullname: Ouyang, Wen‐jun organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes – sequence: 3 givenname: Yun orcidid: 0009-0004-0765-5058 surname: Wang fullname: Wang, Yun organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes – sequence: 4 givenname: Xiang‐he orcidid: 0000-0002-0650-7596 surname: Kong fullname: Kong, Xiang‐he organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes – sequence: 5 givenname: Xi‐lin orcidid: 0000-0001-8754-7743 surname: Xiao fullname: Xiao, Xi‐lin organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes – sequence: 6 givenname: Chang‐ming orcidid: 0000-0003-2744-8924 surname: Nie fullname: Nie, Chang‐ming email: changmingnie@usc.edu.cn organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes – sequence: 7 givenname: Guo‐wen orcidid: 0000-0003-3402-1830 surname: Peng fullname: Peng, Guo‐wen email: pgwnh78@163.com organization: Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes |
BookMark | eNp1kE1OwzAQhS1UJFpA4giW2LBJO3HsxFlWFX9SJSR-1tHUdcBVYgc7oXTHETgjJyHQskGwmdGMvvdm9EZkYJ3VhJzEMI4B2ASdGmecyT0yjCHPI8iSfECGwFIZsRTEARmFsAKAPI35kGwerMcXXRn7SJWrm0q_YmucpWiXVFu0_RB0g367dSVFavWaqifjsfp4e8e2L51Ha7r6x4G2bgfQRofWKLPUgd5O7nq0xgrdq7PhiOyXWAV9vOuH5OHi_H52Fc1vLq9n03mkWJ7ISCQl8JxJoZhKeLwQ2SITjCcgOIgMhUItkadSM4lC5iUHWS5jTJlUGqVeJIfkdOvbePfc9e8UK9d5258sEuAJhxQY9NTZllLeheB1WTTe1Og3RQzFV7BFH2zxFWyPjn-hyrTf8bQeTfWXINoK1qbSm3-Ni-nN7Jv_BAu6j2U |
CitedBy_id | crossref_primary_10_1007_s10967_024_09782_2 |
Cites_doi | 10.1002/aoc.6331 10.3749/canmin.1500078 10.1007/s00214-010-0846-z 10.1039/D1CP03900H 10.1016/0009-2614(83)80005-0 10.1063/1.1700523 10.1021/j100046a014 10.1016/j.chemosphere.2023.137898 10.1016/0263-7855(96)00018-5 10.1103/PhysRev.136.B864 10.1021/acs.inorgchem.2c03823 10.1016/j.eehl.2023.09.001 10.1002/chir.23229 10.1080/15287394.2017.1357305 10.1038/nmat4226 10.1016/S1002-0160(18)60017-7 10.1016/j.molliq.2023.123108 10.1002/anie.202303129 10.1021/acs.jpca.8b00177 10.1002/aoc.6686 10.1021/jacsau.2c00614 10.1002/aoc.6999 10.2174/138527211797636228 10.1007/s10967-020-07137-1 10.1021/acs.iecr.1c01236 10.1021/jp907550k 10.1021/acs.inorgchem.2c00232 10.1103/PhysRev.140.A1133 10.1016/j.ejmech.2020.112792 10.1021/acs.inorgchem.9b01200 10.1021/acs.inorgchem.2c01379 10.1002/jcc.26812 10.1177/1747519820907243 10.1016/j.scitotenv.2016.12.092 10.1063/1.1501133 10.1007/s00894-011-1023-6 10.1021/jp205508z 10.1063/1.1740412 10.1002/wcms.1601 10.1039/D3RA02253F 10.1007/s00214-007-0310-x 10.1002/cmtd.202100007 10.1021/jp810292n 10.1016/j.molstruc.2023.136348 10.1021/jp107136j 10.1063/1.466847 10.1021/jp4010345 10.1016/j.chempr.2022.07.009 10.1016/j.eehl.2023.07.001 10.1021/acs.chemrev.1c00846 10.1021/acs.inorgchem.3c01297 10.1039/b102094n 10.1039/b508541a 10.1002/jcc.22885 10.1126/science.218.4574.747 10.1080/09593330.2021.1921055 10.1021/jp203797y 10.1021/ja00353a035 10.1021/ic991316e 10.1039/c2cs15354h 10.1021/acs.jcim.9b00946 10.1021/acs.jchemed.7b00511 10.1002/anie.201308609 10.1016/j.jchromb.2009.11.022 10.1007/s10311-010-0288-9 10.1016/j.theochem.2003.12.015 10.1080/01496395.2023.2212858 10.1007/s10967-021-07653-8 10.1002/aoc.5486 10.1016/j.scitotenv.2022.157294 10.1016/j.jes.2023.06.037 10.1021/acs.jpca.5b03043 10.3390/ijms241814213 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/aoc.7428 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0739 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aoc_7428 AOC7428 |
Genre | article |
GrantInformation_xml | – fundername: Hunan Provincial Natural Science Foundation of China funderid: 2020JJ6049 – fundername: National Natural Science Foundation of China funderid: 42377076 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M21 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWK RX1 RYL SAMSI SUPJJ TUS UB1 V8K W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YCJ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2938-53f049285c2c341b57b75243054057a5cae8a468e28a589f408fd1a628cea8eb3 |
IEDL.DBID | DR2 |
ISSN | 0268-2605 |
IngestDate | Fri Jul 25 04:57:52 EDT 2025 Tue Jul 01 03:21:29 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Wed Jan 22 17:19:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2938-53f049285c2c341b57b75243054057a5cae8a468e28a589f408fd1a628cea8eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3402-1830 0009-0004-5883-3889 0000-0001-8754-7743 0009-0004-0765-5058 0000-0002-0650-7596 0009-0004-1509-6057 0000-0003-2744-8924 |
PQID | 3043406020 |
PQPubID | 2045198 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3043406020 crossref_primary_10_1002_aoc_7428 crossref_citationtrail_10_1002_aoc_7428 wiley_primary_10_1002_aoc_7428_AOC7428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Applied organometallic chemistry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2018; 122 2017; 80 2021; 23 2023; 37 2020; 60 1965; 140 2023; 1294 2021; 328 2019; 58 2002; 99 1983; 97 2002; 117 2020; 324 2024; 141 2009; 113 2023; 2 2011; 15 2023; 3 2011; 17 2020; 208 1964; 136 2022; 122 2021; 35 1983; 105 1952; 20 2023; 62 1994; 100 2023; 24 2011; 128 1982; 218 2010; 878 2010; 114 2013; 117 2022; 36 2020; 44 2011; 69 2022; 846 2001; 14 2010; 9 2014; 53 2015; 14 2018; 28 2021; 43 2023; 13 2023; 58 1954; 22 2020; 34 2022; 43 2020; 32 1996; 14 2021; 1 2008; 120 2012; 33 2004; 673 2023; 390 2000; 39 2022; 61 2017; 54 2022; 8 2022; 12 2005; 7 2017; 580 2016 2015; 119 2023; 318 2018; 95 2021; 60 2012; 41 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 Lu T. (e_1_2_9_69_1) 2011; 69 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 8 start-page: 2749 issue: 10 year: 2022 publication-title: Chem – volume: 2 start-page: 117 issue: 3 year: 2023 publication-title: Eco‐Environ. Health – volume: 44 start-page: 482 issue: 7–8 year: 2020 publication-title: J. Chem. Res. – volume: 54 start-page: 177 issue: 1 year: 2017 publication-title: Can. Mineral. – volume: 120 start-page: 215 issue: 1–3 year: 2008 publication-title: Theor. Chem. Acc. – volume: 136 start-page: B864 issue: 3B year: 1964 publication-title: Phys. Rev. – volume: 80 start-page: 1106 issue: 19–21 year: 2017 publication-title: J. Toxicol. Env. Health Part a – volume: 115 start-page: 14556 issue: 49 year: 2011 publication-title: J. Phys. Chem. B – volume: 324 start-page: 993 issue: 3 year: 2020 publication-title: J. Radioanal. Nucl. Chem. – volume: 12 issue: 5 year: 2022 publication-title: Wiley Interdiscip. Rev.‐Comput. Mol. Sci. – volume: 97 start-page: 270 issue: 3 year: 1983 publication-title: Chem. Phys. Lett. – volume: 113 start-page: 6378 issue: 18 year: 2009 publication-title: J. Phys. Chem. B – volume: 1294 year: 2023 publication-title: J. Mol. Struct. – volume: 114 start-page: 13442 issue: 51 year: 2010 publication-title: J. Phys. Chem. A – volume: 140 start-page: A1133 issue: 4A year: 1965 publication-title: Phys. Rev. – volume: 7 start-page: 3297 issue: 18 year: 2005 publication-title: Phys. Chem. Chem. Phys. – volume: 14 start-page: 2095 year: 2001 publication-title: J. Chem. Soc. Dalton Trans. – volume: 22 start-page: 1433 issue: 8 year: 1954 publication-title: J. Chem. Phys. – volume: 32 start-page: 1053 issue: 8 year: 2020 publication-title: Chirality – volume: 33 start-page: 580 issue: 5 year: 2012 publication-title: J. Comput. Chem. – volume: 28 start-page: 190 issue: 2 year: 2018 publication-title: Pedosphere – volume: 14 start-page: 33 issue: 1 year: 1996 publication-title: J. Mol. Graph. – volume: 128 start-page: 295 issue: 3 year: 2011 publication-title: Theor. Chem. Acc. – volume: 14 start-page: 252 issue: 3 year: 2015 publication-title: Nat. Mater. – volume: 1 start-page: 231 issue: 5 year: 2021 – volume: 99 start-page: 16883 issue: 46 year: 2002 publication-title: J. Phys. Chem. – volume: 37 issue: 3 year: 2023 publication-title: Appl. Organomet. Chem. – volume: 43 start-page: 3378 issue: 22 year: 2021 publication-title: Environ. Technol. – volume: 100 start-page: 7535 issue: 10 year: 1994 publication-title: J. Chem. Phys. – volume: 141 start-page: 63 year: 2024 publication-title: J. Environ. Sci. – volume: 17 start-page: 2337 issue: 9 year: 2011 publication-title: J. Mol. Model. – volume: 34 issue: 4 year: 2020 publication-title: Appl. Organomet. Chem. – volume: 95 start-page: 666 issue: 4 year: 2018 publication-title: J. Chem. Educ. – volume: 580 start-page: 1287 year: 2017 publication-title: Sci. Total Environ. – volume: 328 start-page: 205 issue: 1 year: 2021 publication-title: J. Radioanal. Nucl. Chem. – volume: 117 start-page: 3100 issue: 14 year: 2013 publication-title: J. Phys. Chem. A – volume: 62 issue: 30 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: 10762 issue: 27 year: 2023 publication-title: Inorg. Chem. – volume: 35 issue: 9 year: 2021 publication-title: Appl. Organomet. Chem. – volume: 115 start-page: 12746 issue: 45 year: 2011 publication-title: J. Phys. Chem. A – volume: 3 start-page: 239 issue: 1 year: 2023 publication-title: JACS au – volume: 24 start-page: 14213 issue: 18 year: 2023 publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 14159 issue: 21 year: 2023 publication-title: RSC Adv. – volume: 122 start-page: 4499 issue: 18 year: 2018 publication-title: J. Phys. Chem. A – volume: 62 start-page: 2705 issue: 6 year: 2023 publication-title: Inorg. Chem. – volume: 20 start-page: 722 issue: 4 year: 1952 publication-title: J. Chem. Phys. – volume: 122 start-page: 13235 issue: 16 year: 2022 publication-title: Chem. Rev. – volume: 61 start-page: 11715 issue: 30 year: 2022 publication-title: Inorg. Chem. – volume: 114 start-page: 552 issue: 1 year: 2010 publication-title: J. Phys. Chem. A – volume: 846 year: 2022 publication-title: Sci. Total Environ. – volume: 105 start-page: 5061 issue: 15 year: 1983 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 369 issue: 3 year: 2010 publication-title: Environ. Chem. Lett. – volume: 39 start-page: 2360 issue: 11 year: 2000 publication-title: Inorg. Chem. – volume: 15 start-page: 3576 issue: 20 year: 2011 publication-title: Curr. Org. Chem. – volume: 69 start-page: 2393 issue: 20 year: 2011 publication-title: Acta Chim. Sin. – volume: 58 start-page: 10047 issue: 15 year: 2019 publication-title: Inorg. Chem. – volume: 390 year: 2023 publication-title: J. Mol. Liq. – year: 2016 – volume: 673 start-page: 203 issue: 1–3 year: 2004 publication-title: J. Mol. Struct. THEOCHEM – volume: 58 start-page: 1833 issue: 10 year: 2023 publication-title: Sep. Sci. Technol. – volume: 43 start-page: 539 issue: 8 year: 2022 publication-title: J. Comput. Chem. – volume: 119 start-page: 6528 issue: 24 year: 2015 publication-title: J. Phys. Chem. A – volume: 36 issue: 6 year: 2022 publication-title: Appl. Organomet. Chem. – volume: 218 start-page: 747 issue: 4574 year: 1982 publication-title: Science – volume: 53 start-page: 2766 issue: 10 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 61 start-page: 6110 issue: 16 year: 2022 publication-title: Inorg. Chem. – volume: 60 start-page: 1317 issue: 3 year: 2020 publication-title: J. Chem. Inf. Model. – volume: 2 start-page: 252 issue: 4 year: 2023 publication-title: Eco‐Environ. Health – volume: 23 start-page: 26967 issue: 47 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 41 start-page: 5836 issue: 17 year: 2012 publication-title: Chem. Soc. Rev. – volume: 318 year: 2023 publication-title: Chemosphere – volume: 878 start-page: 1277 issue: 17–18 year: 2010 publication-title: J. Chromatogr. B – volume: 208 year: 2020 publication-title: Eur. J. Med. Chem. – volume: 60 start-page: 11768 issue: 31 year: 2021 publication-title: Ind. Eng. Chem. Res. – volume: 117 start-page: 5529 issue: 12 year: 2002 publication-title: J. Chem. Phys. – ident: e_1_2_9_17_1 doi: 10.1002/aoc.6331 – ident: e_1_2_9_2_1 doi: 10.3749/canmin.1500078 – ident: e_1_2_9_43_1 doi: 10.1007/s00214-010-0846-z – ident: e_1_2_9_58_1 doi: 10.1039/D1CP03900H – ident: e_1_2_9_53_1 doi: 10.1016/0009-2614(83)80005-0 – ident: e_1_2_9_67_1 doi: 10.1063/1.1700523 – ident: e_1_2_9_41_1 doi: 10.1021/j100046a014 – ident: e_1_2_9_27_1 doi: 10.1016/j.chemosphere.2023.137898 – ident: e_1_2_9_49_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_9_38_1 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_9_6_1 doi: 10.1021/acs.inorgchem.2c03823 – ident: e_1_2_9_21_1 doi: 10.1016/j.eehl.2023.09.001 – ident: e_1_2_9_28_1 doi: 10.1002/chir.23229 – ident: e_1_2_9_30_1 doi: 10.1080/15287394.2017.1357305 – ident: e_1_2_9_3_1 doi: 10.1038/nmat4226 – ident: e_1_2_9_24_1 doi: 10.1016/S1002-0160(18)60017-7 – ident: e_1_2_9_76_1 doi: 10.1016/j.molliq.2023.123108 – ident: e_1_2_9_20_1 doi: 10.1002/anie.202303129 – ident: e_1_2_9_5_1 doi: 10.1021/acs.jpca.8b00177 – ident: e_1_2_9_12_1 doi: 10.1002/aoc.6686 – ident: e_1_2_9_18_1 doi: 10.1021/jacsau.2c00614 – ident: e_1_2_9_13_1 doi: 10.1002/aoc.6999 – ident: e_1_2_9_64_1 doi: 10.2174/138527211797636228 – ident: e_1_2_9_11_1 doi: 10.1007/s10967-020-07137-1 – volume: 69 start-page: 2393 issue: 20 year: 2011 ident: e_1_2_9_69_1 publication-title: Acta Chim. Sin. – ident: e_1_2_9_35_1 doi: 10.1021/acs.iecr.1c01236 – ident: e_1_2_9_61_1 doi: 10.1021/jp907550k – ident: e_1_2_9_36_1 doi: 10.1021/acs.inorgchem.2c00232 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_9_54_1 doi: 10.1016/j.ejmech.2020.112792 – ident: e_1_2_9_7_1 doi: 10.1021/acs.inorgchem.9b01200 – ident: e_1_2_9_9_1 doi: 10.1021/acs.inorgchem.2c01379 – ident: e_1_2_9_73_1 doi: 10.1002/jcc.26812 – ident: e_1_2_9_72_1 doi: 10.1177/1747519820907243 – ident: e_1_2_9_31_1 doi: 10.1016/j.scitotenv.2016.12.092 – ident: e_1_2_9_60_1 doi: 10.1063/1.1501133 – ident: e_1_2_9_70_1 doi: 10.1007/s00894-011-1023-6 – ident: e_1_2_9_75_1 doi: 10.1021/jp205508z – ident: e_1_2_9_66_1 doi: 10.1063/1.1740412 – ident: e_1_2_9_50_1 doi: 10.1002/wcms.1601 – ident: e_1_2_9_26_1 doi: 10.1039/D3RA02253F – ident: e_1_2_9_47_1 doi: 10.1007/s00214-007-0310-x – ident: e_1_2_9_55_1 doi: 10.1002/cmtd.202100007 – ident: e_1_2_9_46_1 doi: 10.1021/jp810292n – ident: e_1_2_9_71_1 doi: 10.1016/j.molstruc.2023.136348 – ident: e_1_2_9_74_1 doi: 10.1021/jp107136j – ident: e_1_2_9_44_1 doi: 10.1063/1.466847 – ident: e_1_2_9_52_1 doi: 10.1021/jp4010345 – ident: e_1_2_9_19_1 doi: 10.1016/j.chempr.2022.07.009 – ident: e_1_2_9_33_1 doi: 10.1016/j.eehl.2023.07.001 – ident: e_1_2_9_22_1 doi: 10.1021/acs.chemrev.1c00846 – ident: e_1_2_9_10_1 doi: 10.1021/acs.inorgchem.3c01297 – ident: e_1_2_9_51_1 doi: 10.1039/b102094n – ident: e_1_2_9_40_1 – ident: e_1_2_9_42_1 doi: 10.1039/b508541a – ident: e_1_2_9_48_1 doi: 10.1002/jcc.22885 – ident: e_1_2_9_65_1 doi: 10.1126/science.218.4574.747 – ident: e_1_2_9_15_1 doi: 10.1080/09593330.2021.1921055 – ident: e_1_2_9_56_1 doi: 10.1021/jp203797y – ident: e_1_2_9_63_1 doi: 10.1021/ja00353a035 – ident: e_1_2_9_57_1 doi: 10.1021/ic991316e – ident: e_1_2_9_4_1 doi: 10.1039/c2cs15354h – ident: e_1_2_9_68_1 doi: 10.1021/acs.jcim.9b00946 – ident: e_1_2_9_37_1 doi: 10.1021/acs.jchemed.7b00511 – ident: e_1_2_9_62_1 doi: 10.1002/anie.201308609 – ident: e_1_2_9_25_1 doi: 10.1016/j.jchromb.2009.11.022 – ident: e_1_2_9_29_1 doi: 10.1007/s10311-010-0288-9 – ident: e_1_2_9_45_1 doi: 10.1016/j.theochem.2003.12.015 – ident: e_1_2_9_16_1 doi: 10.1080/01496395.2023.2212858 – ident: e_1_2_9_8_1 doi: 10.1007/s10967-021-07653-8 – ident: e_1_2_9_14_1 doi: 10.1002/aoc.5486 – ident: e_1_2_9_32_1 doi: 10.1016/j.scitotenv.2022.157294 – ident: e_1_2_9_34_1 doi: 10.1016/j.jes.2023.06.037 – ident: e_1_2_9_59_1 doi: 10.1021/acs.jpca.5b03043 – ident: e_1_2_9_23_1 doi: 10.3390/ijms241814213 |
SSID | ssj0009614 |
Score | 2.3980381 |
Snippet | Unraveling uranium complexes has become a popular study topic in recent years to address the problem of spent fuel treatment. An important and promising... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bonding strength Butanol Carbonyls chiral pesticides chiral‐at‐uranium complex Cyclohexane Density functional theory density functional theory (DFT) Dichloromethane Enantiomers enantioseparation Octanol Pesticides Propionic acid Pyrazole R/S‐malaoxons Receptors Separation Thermodynamic properties Toluene Toxicity Uranium |
Title | Unraveling complexation and enantioseparation of a new chiral‐at‐uranium complex to chiral pesticides R/S‐malaoxons |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faoc.7428 https://www.proquest.com/docview/3043406020 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1ED3rxW6xWWUH0lNZus-n2WKtFBBXUguAhzG42WGwTsSlUT_4Ef6O_xJl8WBUF8ZIcMgnJzmzmbfLmDWO7hInrxFQLtfEcF3Oyo7WyDoaORoCtQ1dSNfLZuXfSdU9v5E3OqqRamEwf4uODG82M9H1NExz0sDoRDYXYVHBdR3W-RNUiPHQ5UY5qepmst_AwEBCyF7qzB6JanPg1E03g5WeQmmaZzgK7Le4vI5fcV0aJrpjnb9KN_3uARTafg0_eyqJliU3ZaJnNtouebyvsqRtROyIqUecp2dyOU89xiAJuiTPToz8GkIUNj0MOHHE5N3e9R-i_vbxCgpsR5r_eaFBcgSdxbsAfSNPD9AI75JfVKzQdQB_iMUb-Kut2jq_bJ07enMExiBCUI-shLi6EkkYYzIRaNnRDChIQIwgI0oBV4HrKCgVSNUP3QIVBDTyhjAWFS_g1Nh3FkV1n3NgmHg0kCOu5DaMUaFfW6rJpamEgQJbYfuEo3-TK5dRAo-9nmsvCx6H0aShLbOfD8iFT6_jBplz42s_n69DHcK0jtEHsXGJ7qdN-Pd9vXbRpv_FXw002JxAJZSzJMptOHkd2C5FMorfZTOvw6LCzncbuO3PD9Uk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xOMClvFoRHu0iIXpyAhuvsxEnFBWFt0SJxKGSNbtei6jBRokjQU_9CfxGfgkzfpC2KhLiYh88a9k7s55v1jPfAGwzJm5yplpsbOD55JM9Y7TzyHQMAWwT-4qrkc_Og27PP75W11OwX9XCFPwQLxtuvDLy7zUvcN6QbkxYQzG1dQrs9DTMckPvPJ66nHBHtYOC2FsGZAoE2ivm2V3ZqEb-7YsmAPNPmJr7mcMF-FE9YZFe8rM-zkzd_vqHvPGdr7AIH0r8KQ4Kg1mCKZcsw1ynavu2Ag-9hDsScZW6yPPN3X2uPIFJJBynzfT5pwEWliPSWKAgaC7sTX-Ig6ffj5jRYUwusD--re4gsrQUEHdM62H7kRuJy8Z3Er3FAab3ZPwfoXf47arT9cr-DJ4lkKA91YwpvpBaWWnJGRrVMi0lmUOMUSAqi06jH2gnNSrdjv1dHUd7GEhtHWqK4j_BTJImbhWEdW26GimULvBbVms0PqlUte1eHElUNfhaaSq0JXk599AYhAXtsgxpKkOeyhpsvUjeFYQd_5HZqJQdlkt2FJLFNgndEHyuwU6utVfHhwcXHT6vvVXwC8x1r85Ow9Oj85N1mJcEjIqkyQ2YyYZjt0nAJjOfcwN-BvV89_I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCiXFmgRW16uhOgp-_DGWe8RLax4tBRBV0LqIRo7jlh1SVaQlSgnfgK_sb-EmTxYWrVSxSU5ZBwlns-Zz874G4Bt5sRtzlSLjQ08n2KyZ4x2HkHHEME2sa94N_KXk-Bg4B9dqIsyq5L3whT6EE8Lbjwy8u81D_BxFDemoqGY2jrN6_QrmPODpmZE751NpaO6QaHrLQNCAnH2Sni2KRtVy99D0ZRfPmepeZjpv4Xv1QMW2SU_6pPM1O3dH9qNL3uDRXhTsk-xW8BlCWZcsgyve1XRt3fwc5BwPSLeoy7ybHN3m7tOYBIJx0kzQ_5lgAVuRBoLFETMhb0cXuPo1_0DZnSYUAAcTq6qO4gsLQ3EmEU97DByN-KscU6mVzjC9Jag_x4G_f1vvQOvrM7gWaII2lPtmGYXUisrLYVCozqmoyQriDEHRGXRafQD7aRGpbux39Rx1MJAautQ0xx-BWaTNHGrIKzr0tVIoXSB37Fao_FVq626thVHElUNPlWOCm0pXc4VNEZhIbosQ-rKkLuyBh-fLMeFXMdfbNYrX4flgL0JCa9t4jZEnmuwkzvtn-3D3a89Pn_4X8MtmD_d64efD0-O12BBEisqMibXYTa7nrgNYjWZ2czh-whAYPaq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+complexation+and+enantioseparation+of+a+new+chiral%E2%80%90at%E2%80%90uranium+complex+to+chiral+pesticides+R%2FS%E2%80%90malaoxons&rft.jtitle=Applied+organometallic+chemistry&rft.au=Guo%2C+Meng%E2%80%90zhen&rft.au=Ouyang%2C+Wen%E2%80%90jun&rft.au=Wang%2C+Yun&rft.au=Kong%2C+Xiang%E2%80%90he&rft.date=2024-05-01&rft.issn=0268-2605&rft.eissn=1099-0739&rft.volume=38&rft.issue=5&rft_id=info:doi/10.1002%2Faoc.7428&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aoc_7428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2605&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2605&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2605&client=summon |