Adaptive information fusion network for multi‐modal personality recognition

Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made significant strides in recent years, the challenge of heterogeneity between modalities during feature fusion still needs to be solved. This paper intro...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 3
Main Authors Bao, Yongtang, Liu, Xiang, Qi, Yue, Liu, Ruijun, Li, Haojie
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made significant strides in recent years, the challenge of heterogeneity between modalities during feature fusion still needs to be solved. This paper introduces an adaptive multi‐modal information fusion network (AMIF‐Net) capable of concurrently processing video, audio, and text data. First, utilizing the AMIF‐Net encoder, we process the extracted audio and video features separately, effectively capturing long‐term data relationships. Then, adding adaptive elements in the fusion network can alleviate the problem of heterogeneity between modes. Lastly, we concatenate audio‐video and text features into a regression network to obtain Big Five personality trait scores. Furthermore, we introduce a novel loss function to address the problem of training inaccuracies, taking advantage of its unique property of exhibiting a peak at the critical mean. Our tests on the ChaLearn First Impressions V2 multi‐modal dataset show partial performance surpassing state‐of‐the‐art networks. This paper proposes an adaptive multimodal information fusion network for personality recognition. The design features of each encoder are optimized and merged for downstream tasks. We greatly enhance the functionality of the Transformer component by integrating adaptive attention and automatic learning of cross‐modal associations. This not only solves the problem of outliers and gradient vanishing during model training, but also has practical significance for practical applications.
AbstractList Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made significant strides in recent years, the challenge of heterogeneity between modalities during feature fusion still needs to be solved. This paper introduces an adaptive multi‐modal information fusion network (AMIF‐Net) capable of concurrently processing video, audio, and text data. First, utilizing the AMIF‐Net encoder, we process the extracted audio and video features separately, effectively capturing long‐term data relationships. Then, adding adaptive elements in the fusion network can alleviate the problem of heterogeneity between modes. Lastly, we concatenate audio‐video and text features into a regression network to obtain Big Five personality trait scores. Furthermore, we introduce a novel loss function to address the problem of training inaccuracies, taking advantage of its unique property of exhibiting a peak at the critical mean. Our tests on the ChaLearn First Impressions V2 multi‐modal dataset show partial performance surpassing state‐of‐the‐art networks.
Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made significant strides in recent years, the challenge of heterogeneity between modalities during feature fusion still needs to be solved. This paper introduces an adaptive multi‐modal information fusion network (AMIF‐Net) capable of concurrently processing video, audio, and text data. First, utilizing the AMIF‐Net encoder, we process the extracted audio and video features separately, effectively capturing long‐term data relationships. Then, adding adaptive elements in the fusion network can alleviate the problem of heterogeneity between modes. Lastly, we concatenate audio‐video and text features into a regression network to obtain Big Five personality trait scores. Furthermore, we introduce a novel loss function to address the problem of training inaccuracies, taking advantage of its unique property of exhibiting a peak at the critical mean. Our tests on the ChaLearn First Impressions V2 multi‐modal dataset show partial performance surpassing state‐of‐the‐art networks. This paper proposes an adaptive multimodal information fusion network for personality recognition. The design features of each encoder are optimized and merged for downstream tasks. We greatly enhance the functionality of the Transformer component by integrating adaptive attention and automatic learning of cross‐modal associations. This not only solves the problem of outliers and gradient vanishing during model training, but also has practical significance for practical applications.
Author Bao, Yongtang
Liu, Xiang
Li, Haojie
Qi, Yue
Liu, Ruijun
Author_xml – sequence: 1
  givenname: Yongtang
  orcidid: 0000-0002-1010-7229
  surname: Bao
  fullname: Bao, Yongtang
  organization: Shandong University of Science and Technology
– sequence: 2
  givenname: Xiang
  orcidid: 0009-0004-8850-3864
  surname: Liu
  fullname: Liu, Xiang
  organization: Shandong University of Science and Technology
– sequence: 3
  givenname: Yue
  surname: Qi
  fullname: Qi, Yue
  organization: Beihang University Qingdao Research Institute
– sequence: 4
  givenname: Ruijun
  surname: Liu
  fullname: Liu, Ruijun
  email: liuruijun@buaa.edu.cn
  organization: Beihang University
– sequence: 5
  givenname: Haojie
  surname: Li
  fullname: Li, Haojie
  email: hjli@sdust.edu.cn
  organization: Shandong University of Science and Technology
BookMark eNp1kM1Kw0AUhQepYFsFHyHgxk3q_CSTybIU_6Dipoi7YTKdyNRkJs5MWrrzEXxGn8SkEReiq3Phfudyz5mAkbFGAXCO4AxBiK-k2M4wpuwIjFGa0DjB2fPoZ6boBEy833QkxQiOwcN8LZqgtyrSprSuFkFbE5Wt78WosLPuNeoWUd1WQX--f9R2LaqoUc5bIyod9pFT0r4Y3RtPwXEpKq_OvnUKVjfXq8VdvHy8vV_Ml7HEOWFxAjNMUEoIlayEeZIQRAtM1piRrExTgmROaQ5VWkBWQIpFonIKcSaZRCllZAouhrONs2-t8oFvbOu6dzwnMEMUZjkjHTUbKOms906VXOpwyBec0BVHkPeN8a4x3jfWGS5_GRqna-H2f6HxgO50pfb_cnwxfzrwXxs8fBs
CitedBy_id crossref_primary_10_1007_s00371_025_03841_9
crossref_primary_10_1007_s00371_025_03840_w
Cites_doi 10.1109/ACII.2019.8925456
10.1109/TAFFC.2024.3363710
10.1007/s11633-017-1085-8
10.1109/TAFFC.2017.2762299
10.1109/TAFFC.2021.3064601
10.1109/CVPR42600.2020.00877
10.1002/cav.2163
10.1007/978-3-319-49409-8_32
10.1007/978-3-030-58548-8_13
10.1109/ICC.2018.8422105
10.1109/TAFFC.2020.2970712
10.1002/cav.2201
10.1007/978-3-319-49409-8_28
10.1109/TAFFC.2020.2973984
10.1109/ICASSP49357.2023.10096637
10.1109/TAFFC.2019.2930058
10.1109/TPAMI.2023.3275156
10.1109/TIP.2022.3152049
10.1007/s11263-020-01309-y
10.1037/h0040291
10.1016/j.ipm.2023.103422
10.1145/3591106.3592243
10.1016/j.eij.2024.100439
10.1002/cav.2090
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2268
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2268
CAV2268
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62072020
– fundername: Beijing Natural Science Foundation
  funderid: L222052
– fundername: Shandong University of Science and Technology
  funderid: BJ20231201
– fundername: National Science and Technology Major Project
  funderid: 2022ZD0119502
– fundername: Taishan Scholar Program of Shandong Province
  funderid: tstp20221128
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-4072315336c8f0944316b23d2837f5531c96690e5b08b062a4e96027c8c15683
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 03:40:57 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Aug 20 07:26:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-4072315336c8f0944316b23d2837f5531c96690e5b08b062a4e96027c8c15683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-8850-3864
0000-0002-1010-7229
PQID 3071607983
PQPubID 2034909
PageCount 14
ParticipantIDs proquest_journals_3071607983
crossref_citationtrail_10_1002_cav_2268
crossref_primary_10_1002_cav_2268
wiley_primary_10_1002_cav_2268_CAV2268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May/June 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 14
1963; 66
2023; 11
2023; 34
2023; 45
2023
2022
2017; 14
2019; 319
2020
2019; 13
2019
2018
2020; 128
2016
2020; 13
2022; 31
2024
2022; 33
2024; 35
2024; 25
2023; 60
2017; 9
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Tiwari J (e_1_2_9_16_1) 2023; 11
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Hayat H (e_1_2_9_9_1) 2019; 319
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 34
  issue: 3‐4
  year: 2023
  article-title: RAIF: a deep learning‐based architecture for multi‐modal aesthetic biometric system
  publication-title: Comput Anim Virtual Worlds
– volume: 33
  issue: 3‐4
  year: 2022
  article-title: SCANET: improving multimodal representation and fusion with sparse‐and cross‐attention for multimodal sentiment analysis
  publication-title: Comput Anim Virtual Worlds
– volume: 45
  start-page: 12113
  issue: 10
  year: 2023
  end-page: 12132
  article-title: Multimodal learning with transformers: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 14
  start-page: 386
  issue: 4
  year: 2017
  end-page: 395
  article-title: Physiognomy: personality traits prediction by learning
  publication-title: Int J Autom Comput
– start-page: 1
  year: 2023
  end-page: 5
– year: 2024
– volume: 13
  start-page: 829
  issue: 2
  year: 2020
  end-page: 844
  article-title: Spectral representation of behaviour primitives for depression analysis
  publication-title: IEEE Trans Affect Comput
– volume: 13
  start-page: 894
  issue: 2
  year: 2020
  end-page: 911
  article-title: Modeling, recognizing, and explaining apparent personality from videos
  publication-title: IEEE Trans Affect Comput
– volume: 128
  start-page: 2763
  year: 2020
  end-page: 2780
  article-title: Cr‐net: a deep classification‐regression network for multimodal apparent personality analysis
  publication-title: Int J Comput Vis
– year: 2018
– start-page: 1
  year: 2018
  end-page: 6
– start-page: 349
  year: 2016
  end-page: 358
– volume: 14
  start-page: 178
  issue: 1
  year: 2023
  end-page: 195
  article-title: Self‐supervised learning of person‐specific facial dynamics for automatic personality recognition
  publication-title: IEEE Trans Affect Comput
– start-page: 8746
  year: 2020
  end-page: 8755
– volume: 66
  start-page: 574
  issue: 6
  year: 1963
  article-title: Toward an adequate taxonomy of personality attributes: replicated factor structure in peer nomination personality ratings
  publication-title: J Abnorm Soc Psychol
– volume: 11
  start-page: 578
  issue: 4
  year: 2023
  article-title: Personality prediction from five‐factor facial traits using deep learning
  publication-title: J Integr Sci Technol
– volume: 25
  year: 2024
  article-title: Combining machine learning algorithms for personality trait prediction
  publication-title: Egypt Inform J
– volume: 31
  start-page: 2162
  year: 2022
  end-page: 2174
  article-title: Personality assessment based on multimodal attention network learning with category‐based mean square error
  publication-title: IEEE Trans Image Process
– year: 2022
– start-page: 1
  year: 2019
  end-page: 7
– year: 2020
– start-page: 400
  year: 2016
  end-page: 418
– start-page: 214
  year: 2020
  end-page: 229
– volume: 9
  start-page: 303
  issue: 3
  year: 2017
  end-page: 315
  article-title: Deep bimodal regression of apparent personality traits from short video sequences
  publication-title: IEEE Trans Affect Comput
– volume: 35
  issue: 1
  year: 2024
  article-title: TMSDNet: transformer with multi‐scale dense network for single and multi‐view 3D reconstruction
  publication-title: Comput Anim Virtual Worlds
– volume: 60
  issue: 5
  year: 2023
  article-title: DesPrompt: personality‐descriptive prompt tuning for few‐shot personality recognition
  publication-title: Inf Process Manag
– start-page: 1
  year: 2024
  end-page: 18
  article-title: An open‐source benchmark of deep learning models for audio‐visual apparent and self‐reported personality recognition
  publication-title: IEEE Trans Affect Comput
– start-page: 243
  year: 2023
  end-page: 252
– volume: 13
  start-page: 75
  issue: 1
  year: 2019
  end-page: 95
  article-title: First impressions: a survey on vision‐based apparent personality trait analysis
  publication-title: IEEE Trans Affect Comput
– volume: 319
  start-page: 135
  year: 2019
  end-page: 144
  article-title: On the use of interpretable CNN for personality trait recognition from audio
  publication-title: Ccia
– ident: e_1_2_9_28_1
  doi: 10.1109/ACII.2019.8925456
– ident: e_1_2_9_6_1
  doi: 10.1109/TAFFC.2024.3363710
– ident: e_1_2_9_7_1
  doi: 10.1007/s11633-017-1085-8
– ident: e_1_2_9_12_1
  doi: 10.1109/TAFFC.2017.2762299
– ident: e_1_2_9_30_1
  doi: 10.1109/TAFFC.2021.3064601
– ident: e_1_2_9_3_1
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR42600.2020.00877
– ident: e_1_2_9_20_1
– ident: e_1_2_9_18_1
  doi: 10.1002/cav.2163
– volume: 319
  start-page: 135
  year: 2019
  ident: e_1_2_9_9_1
  article-title: On the use of interpretable CNN for personality trait recognition from audio
  publication-title: Ccia
– ident: e_1_2_9_27_1
  doi: 10.1007/978-3-319-49409-8_32
– ident: e_1_2_9_13_1
– ident: e_1_2_9_24_1
  doi: 10.1007/978-3-030-58548-8_13
– ident: e_1_2_9_10_1
  doi: 10.1109/ICC.2018.8422105
– ident: e_1_2_9_21_1
– ident: e_1_2_9_29_1
  doi: 10.1109/TAFFC.2020.2970712
– ident: e_1_2_9_22_1
  doi: 10.1002/cav.2201
– ident: e_1_2_9_26_1
  doi: 10.1007/978-3-319-49409-8_28
– ident: e_1_2_9_31_1
  doi: 10.1109/TAFFC.2020.2973984
– ident: e_1_2_9_14_1
  doi: 10.1109/ICASSP49357.2023.10096637
– ident: e_1_2_9_8_1
  doi: 10.1109/TAFFC.2019.2930058
– ident: e_1_2_9_25_1
  doi: 10.1109/TPAMI.2023.3275156
– ident: e_1_2_9_15_1
  doi: 10.1109/TIP.2022.3152049
– ident: e_1_2_9_11_1
  doi: 10.1007/s11263-020-01309-y
– ident: e_1_2_9_4_1
  doi: 10.1037/h0040291
– ident: e_1_2_9_2_1
  doi: 10.1016/j.ipm.2023.103422
– volume: 11
  start-page: 578
  issue: 4
  year: 2023
  ident: e_1_2_9_16_1
  article-title: Personality prediction from five‐factor facial traits using deep learning
  publication-title: J Integr Sci Technol
– ident: e_1_2_9_5_1
  doi: 10.1145/3591106.3592243
– ident: e_1_2_9_19_1
  doi: 10.1016/j.eij.2024.100439
– ident: e_1_2_9_17_1
  doi: 10.1002/cav.2090
SSID ssj0026210
Score 2.380704
Snippet Personality recognition is of great significance in deepening the understanding of social relations. While personality recognition methods have made...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms adaptation
Audio data
Data integration
encoder
Heterogeneity
multi‐modal data
Personality
personality recognition
Recognition
Title Adaptive information fusion network for multi‐modal personality recognition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2268
https://www.proquest.com/docview/3071607983
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1EN7rwLVZriSC6SptMXpNlqJYi1oXWUnARMi8QNS2mceHKT_Ab_RLnZpJURUFcBSYzkNw7d-bc4dwzCB0F1KYB8W3Tl5yaLubcJB5LTCmw5IQ7oWND7fDg0u_fuOdjb1yyKqEWRutD1AduEBnFeg0BntCsMxcNZclzW2EHqPMFqhbgoataOQr7WAsReK5vQpZQ6c5auFMN_LoTzeHlZ5Ba7DK9NXRbfZ8ml9y38xlts5dv0o3_-4F1tFqCTyPSs2UDLYh0E62M7rJct2ZbaBDxZApLoFFKqoLjDJnDoZqRas64oV4YBRPx_fXtccLV4Okc0xs1J2mSbqNh72zY7ZvllQsmU_s-MUEuzQEI6DMiVeYHhfIUOxw0cqSn4pWp9Ci0hEctQi0fJ65QKRAOGGEqESTODlpMJ6nYRYZyNgkDO2FUqhSUO9QKhQIPMuGh4FSKBjqprB-zUo4cbsV4iLWQMo6VfWKwTwMd1j2nWoLjhz7NyoFxGYRZrJYvkM8LidNAx4Unfh0fd6MRPPf-2nEfLWMFbzT1sYkWZ0-5OFDwZEZbaCk6HVxct4oJ-QEaCuR8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPagHv8Vq1Qiip7Tppkk3eCpFqdr2ILX0IITsF4iaFtt68ORP8Df6S9zJJq2KgngKbHYh2dmZeW-ZfQtwVGMVVqN-xfaVYHaVCGFTj0e2kkQJKtzAreDZ4XbHb95UL_tePwen2VkYow8x3XBDz0jiNTo4bkiXZ6qhPHouafBA52AeL_RO-NT1VDuK-MRIEXhV30aekCnPOqScjfyai2YA8zNMTfLM-QrcZl9oykvuS5MxK_GXb-KN__yFVVhO8adVNwtmDXIyXoel3t1oYlpHG9Cui2iIUdBKVVXRdpaa4L6aFZuycUu_sJJixPfXt8eB0IOHM1hvTcuSBvEmdM_Puo2mnd66YHOd-qmNimkuokCfU6XJH56VZ8QVKJOjPO2yXDOkwJEecyhzfBJVpWZBpMYp11yQuluQjwex3AZL25sGtUrEmdIsVLjMCaTGDyoSgRRMyQKcZNMf8lSRHC_GeAiNljIJ9fyEOD8FOJz2HBoVjh_6FDMLhqkfjkIdwVBBL6BuAY4TU_w6PmzUe_jc-WvHA1hodtutsHXRudqFRaLRjqmELEJ-_DSRexqtjNl-sio_ACaq5wM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPOkH0wbs4rxVEn7q16WXp43AObxOROQQfSnMDUbvhNh988iP4Gf0k5jTtpqIgPhXSBNqcnOR_wskvAHs15rIaDV07VILZPhHCpgFPbCWJElR4kefi2eHWRXh87Z_eBDd5ViWehTF8iNGGG3pGNl-jg_eEqo6hoTx5rmjtQCdhyg8diiO6cTVCR5GQGBJB4Ic2hgkFeNYh1aLl16VorC8_q9RsmWnOw23xgSa75L4yHLAKf_nGbvzfHyzAXK4-rboZLoswIdMlmO3c9YemtL8MrbpIejgHWjlTFS1nqSHuqlmpSRq39AsrS0V8f3177ArduDcW9dYoKambrkC7edQ-PLbzOxdsrhd-aiMvzUMNGHKqdOiHJ-UZ8QRCclSgHZbr-ChyZMAcypyQJL7UMRCpccp1JEi9VSil3VSugaWtTaOam3CmdAwqPOZEUqsHlYhICqZkGQ6K3o95ziPHazEeYkNSJrHunxj7pwy7o5o9w-D4oc5mYcA498J-rOcv5OdF1CvDfmaJX9vHh_UOPtf_WnEHpi8bzfj85OJsA2aIljomDXITSoOnodzSUmXAtrMx-QGoIeW7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+information+fusion+network+for+multi%E2%80%90modal+personality+recognition&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Bao%2C+Yongtang&rft.au=Liu%2C+Xiang&rft.au=Qi%2C+Yue&rft.au=Liu%2C+Ruijun&rft.date=2024-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2268&rft.externalDBID=10.1002%252Fcav.2268&rft.externalDocID=CAV2268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon