Sliding mode control for N‐coupled reaction‐diffusion PDEs with boundary input disturbances

Summary This paper develops the sliding mode control (SMC) design for N‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject the disturbances, the backstepping‐based boundary SMC law is constructed to steer the system trajectory to a suitable sliding surface...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 29; no. 5; pp. 1437 - 1461
Main Authors Gu, Jian‐Jun, Wang, Jun‐Min
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 25.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary This paper develops the sliding mode control (SMC) design for N‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject the disturbances, the backstepping‐based boundary SMC law is constructed to steer the system trajectory to a suitable sliding surface and then maintain sliding motion on the surface thereafter, resulting in the exponential convergence to the zero equilibrium state. The well‐posedness of the closed‐loop system is established based on a detailed spectral analysis and Riesz basis generation. Finally, a simulation example is provided to illustrate the effectiveness of the SMC design.
AbstractList This paper develops the sliding mode control (SMC) design for N‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject the disturbances, the backstepping‐based boundary SMC law is constructed to steer the system trajectory to a suitable sliding surface and then maintain sliding motion on the surface thereafter, resulting in the exponential convergence to the zero equilibrium state. The well‐posedness of the closed‐loop system is established based on a detailed spectral analysis and Riesz basis generation. Finally, a simulation example is provided to illustrate the effectiveness of the SMC design.
This paper develops the sliding mode control (SMC) design for N ‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject the disturbances, the backstepping‐based boundary SMC law is constructed to steer the system trajectory to a suitable sliding surface and then maintain sliding motion on the surface thereafter, resulting in the exponential convergence to the zero equilibrium state. The well‐posedness of the closed‐loop system is established based on a detailed spectral analysis and Riesz basis generation. Finally, a simulation example is provided to illustrate the effectiveness of the SMC design.
Summary This paper develops the sliding mode control (SMC) design for N‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject the disturbances, the backstepping‐based boundary SMC law is constructed to steer the system trajectory to a suitable sliding surface and then maintain sliding motion on the surface thereafter, resulting in the exponential convergence to the zero equilibrium state. The well‐posedness of the closed‐loop system is established based on a detailed spectral analysis and Riesz basis generation. Finally, a simulation example is provided to illustrate the effectiveness of the SMC design.
Author Gu, Jian‐Jun
Wang, Jun‐Min
Author_xml – sequence: 1
  givenname: Jian‐Jun
  surname: Gu
  fullname: Gu, Jian‐Jun
  organization: Changshu Institute of Technology
– sequence: 2
  givenname: Jun‐Min
  orcidid: 0000-0002-7482-9386
  surname: Wang
  fullname: Wang, Jun‐Min
  email: jmwang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNp1kMtOwzAQRS0EEm1B4hMssWGT4lfrZIlKeUhVQTzWlu044Cq1g52o6o5P4Bv5EhzKCsFqrmbOnRndIdh33hkATjAaY4TIeXB6zBjL98AAo6LIMKHFfq9ZkeUFoYdgGOMKoTQjbADEY21L617g2pcGau_a4GtY-QCXn-8f2ndNbUoYjNSt9S61SltVXUwa3l_OI9zY9hUq37lShi20rulaWNrYdkFJp008AgeVrKM5_qkj8Hw1f5rdZIu769vZxSLTpKB5RolmSHFZlGxCMdb5FFPMNJ9WVFVMl1iyCSe8yI0yMp9SgphUudJcIco4k3QETnd7m-DfOhNbsfJdcOmkIJhPUc4ppok621E6-BiDqUQT7Dp9LjASfXwixSf6-BI6_oVq28o-hDZIW_9lyHaGja3N9t_F4mE5--a_AIqQhNU
CitedBy_id crossref_primary_10_1007_s11071_022_07897_3
crossref_primary_10_1002_asjc_3241
crossref_primary_10_1177_01423312211030241
crossref_primary_10_1007_s10883_022_09618_w
crossref_primary_10_1093_imamci_dnad017
crossref_primary_10_1002_rnc_6854
crossref_primary_10_1002_acs_3902
crossref_primary_10_1109_TAC_2022_3149865
crossref_primary_10_3934_mcrf_2020051
crossref_primary_10_1080_00207179_2022_2094837
crossref_primary_10_3390_en16248042
crossref_primary_10_1007_s11071_019_05323_9
crossref_primary_10_1080_00207179_2020_1841300
crossref_primary_10_1093_imamci_dnab040
crossref_primary_10_1109_LCSYS_2019_2927185
crossref_primary_10_1049_iet_cta_2019_1333
crossref_primary_10_1016_j_cnsns_2025_108633
crossref_primary_10_1016_j_ejcon_2024_100984
crossref_primary_10_1016_j_jfranklin_2025_107623
crossref_primary_10_1109_TAC_2024_3438370
crossref_primary_10_1177_01423312231184513
crossref_primary_10_1002_rnc_7573
crossref_primary_10_1109_TAC_2019_2938329
crossref_primary_10_1177_01423312221077746
Cites_doi 10.1016/j.automatica.2015.01.032
10.1137/15M1046952
10.23919/ACC.2017.7963433
10.1016/j.automatica.2013.06.018
10.1051/cocv:2005030
10.1016/j.automatica.2016.01.041
10.1016/j.automatica.2014.10.117
10.1109/TAC.2016.2590506
10.1007/978-1-4612-5561-1
10.1007/s00205-005-0367-4
10.1016/j.jprocont.2016.08.010
10.1137/1.9780898718607
10.1016/j.ejcon.2016.02.002
10.1007/978-3-642-84379-2
10.1109/TAC.2012.2218669
10.1016/j.automatica.2015.04.008
10.1137/0144080
10.1007/978-3-7643-8994-9
10.1109/TAC.2017.2694425
10.1006/jdeq.2000.3829
10.1002/rnc.3572
10.1109/TAC.2014.2335511
10.1137/090781140
10.1137/15M1034325
10.1007/978-0-8176-4893-0
10.1016/0022-247X(81)90246-8
10.1002/rnc.2977
10.1016/j.sysconle.2016.10.009
10.1016/j.sysconle.2016.09.004
10.1049/iet-cta.2017.0677
10.1016/j.sysconle.2010.08.012
10.1109/TAC.2002.800737
10.1109/CDC.2014.7040205
10.1109/TIE.2012.2219835
10.1016/j.automatica.2010.10.045
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.4448
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 1461
ExternalDocumentID 10_1002_rnc_4448
RNC4448
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61673061
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2938-32c40b7a9d45311c861314c76f3bf4cd1a4572798ebea863204ab8bc7b03474a3
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:10:16 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 02:06:54 EDT 2025
Wed Jan 22 16:36:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2938-32c40b7a9d45311c861314c76f3bf4cd1a4572798ebea863204ab8bc7b03474a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7482-9386
PQID 2176087313
PQPubID 1026344
PageCount 1
ParticipantIDs proquest_journals_2176087313
crossref_primary_10_1002_rnc_4448
crossref_citationtrail_10_1002_rnc_4448
wiley_primary_10_1002_rnc_4448_RNC4448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 March 2019
PublicationDateYYYYMMDD 2019-03-25
PublicationDate_xml – month: 03
  year: 2019
  text: 25 March 2019
  day: 25
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2015; 57
2010; 59
2013; 49
2006; 12
2005; 178
2017; 27
1984; 44
2015; 52
2015; 54
2016; 98
2009
2008
2016; 97
2014; 24
1992
2003
1981; 83
2002; 47
2013; 58
2015; 60
2001; 170
2017; 55
2013; 60
2017
1983
2014
2011; 47
2016; 29
2018; 12
2018; 56
2011; 49
2016; 48
2016; 68
1983; 44
1998; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Shtessel Y (e_1_2_7_28_1) 2014
e_1_2_7_27_1
e_1_2_7_29_1
Orlov Y (e_1_2_7_25_1) 1983; 44
e_1_2_7_30_1
Orlov Y (e_1_2_7_33_1) 2009
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
Orlov Y (e_1_2_7_26_1) 1998; 8
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
e_1_2_7_39_1
Adams RA (e_1_2_7_37_1) 2003
References_xml – volume: 48
  start-page: 25
  year: 2016
  end-page: 40
  article-title: Finite dimensional disturbance observer based control for nonlinear parabolic PDE systems via output feedback
  publication-title: J Process Control
– volume: 58
  start-page: 1269
  issue: 5
  year: 2013
  end-page: 1274
  article-title: Sliding mode and active disturbance rejection control to stabilization of one‐dimensional anti‐stable wave equations subject to disturbance in boundary input
  publication-title: IEEE Trans Autom Control
– year: 2009
– year: 1983
– volume: 49
  start-page: 363
  issue: 2
  year: 2011
  end-page: 382
  article-title: Tracking control of the uncertain heat and wave equation via power‐fractional and sliding‐mode techniques
  publication-title: SIAM J Control Optim
– volume: 98
  start-page: 65
  year: 2016
  end-page: 73
  article-title: Sliding mode control of Schrödinger equation‐ODE in the presence of unmatched disturbances
  publication-title: Syst Control Lett
– volume: 59
  start-page: 754
  issue: 12
  year: 2010
  end-page: 759
  article-title: Continuous state‐feedback tracking of an uncertain heat diffusion process
  publication-title: Syst Control Lett
– year: 2003
– volume: 55
  start-page: 4112
  issue: 6
  year: 2017
  end-page: 4155
  article-title: Output feedback stabilization of coupled reaction‐diffusion processes with constant parameters
  publication-title: SIAM J Control Optim
– volume: 62
  start-page: 2026
  issue: 4
  year: 2017
  end-page: 2033
  article-title: Boundary control of coupled reaction‐advection‐diffusion systems with spatially‐varying coefficients
  publication-title: IEEE Trans Autom Control
– volume: 68
  start-page: 194
  year: 2016
  end-page: 202
  article-title: Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance
  publication-title: Automatica
– volume: 52
  start-page: 23
  year: 2015
  end-page: 34
  article-title: Sliding mode control to stabilization of cascaded heat PDE‐ODE systems subject to boundary control matched disturbance
  publication-title: Automatica
– volume: 62
  start-page: 5970
  year: 2017
  end-page: 5973
  article-title: On general properties of eigenvalues and eigenfunctions of a Sturm‐Liouville operator: comments on “ISS with respect to boundary disturbances for 1‐D parabolic PDEs”
  publication-title: IEEE Trans Autom Control
– volume: 54
  start-page: 80
  year: 2015
  end-page: 90
  article-title: Boundary control of coupled reaction‐diffusion processes with constant parameters
  publication-title: Automatica
– volume: 49
  start-page: 2911
  issue: 9
  year: 2013
  end-page: 2918
  article-title: The active disturbance rejection and sliding mode control approach to the stabilization of the Euler‐Bernoulli beam equation with boundary input disturbance
  publication-title: Automatica
– volume: 12
  start-page: 431
  issue: 4
  year: 2018
  end-page: 445
  article-title: Output regulation of anti‐stable coupled wave equations via the backstepping technique
  publication-title: IET Control Theory Appl
– volume: 60
  start-page: 143
  issue: 1
  year: 2015
  end-page: 157
  article-title: The active disturbance rejection control to stabilization for multi‐dimensional wave equation with boundary control matched disturbance
  publication-title: IEEE Trans Autom Control
– volume: 27
  start-page: 252
  issue: 2
  year: 2017
  end-page: 280
  article-title: Boundary stabilization of a cascade of ODE‐wave systems subject to boundary control matched disturbance
  publication-title: Int J Robust Nonlinear Control
– year: 1992
– year: 2014
– volume: 47
  start-page: 1293
  issue: 8
  year: 2002
  end-page: 1304
  article-title: Discontinuous feedback stabilization of minimum‐phase semilinear infinite‐dimensional systems with application to chemical tubular reactor
  publication-title: IEEE Trans Autom Control
– volume: 178
  start-page: 57
  issue: 1
  year: 2005
  end-page: 80
  article-title: Quenching and propagation in KPP reaction‐diffusion equations with a heat loss
  publication-title: Arch Ration Mech Anal
– volume: 56
  start-page: 837
  issue: 2
  year: 2018
  end-page: 867
  article-title: Sliding mode control of the Orr‐Sommerfeld equation cascaded by both the squire equation and ODE in the presence of boundary disturbances
  publication-title: SIAM J Control Optim
– volume: 44
  start-page: 426
  issue: 4
  year: 1983
  end-page: 431
  article-title: Application of Lyapunov method in distributed systems
  publication-title: Autom Remote Control
– volume: 60
  start-page: 5186
  issue: 11
  year: 2013
  end-page: 5194
  article-title: Boundary output‐feedback stabilization of a Timoshenko beam using disturbance observer
  publication-title: IEEE Trans Ind Electron
– volume: 8
  start-page: 7
  issue: 1
  year: 1998
  end-page: 20
  article-title: Unit sliding mode control in infinite dimensional systems
  publication-title: Appl Math Comput Sci
– volume: 47
  start-page: 381
  issue: 2
  year: 2011
  end-page: 387
  article-title: Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties
  publication-title: Automatica
– year: 2008
– volume: 12
  start-page: 12
  issue: 1
  year: 2006
  end-page: 34
  article-title: Boundary feedback stabilization of a three‐layer sandwich beam: Riesz basis approach
  publication-title: ESAIM Control Optimisation Calc Var
– volume: 29
  start-page: 51
  year: 2016
  end-page: 61
  article-title: The state feedback servo‐regulator for countercurrent heat‐exchanger system modelled by system of hyperbolic PDEs
  publication-title: Eur J Control
– volume: 24
  start-page: 2194
  issue: 16
  year: 2014
  end-page: 2212
  article-title: Sliding mode control and active disturbance rejection control to the stabilization of one‐dimensional Schrödinger equation subject to boundary control matched disturbance
  publication-title: Int J Robust Nonlinear Control
– volume: 57
  start-page: 56
  year: 2015
  end-page: 64
  article-title: A backstepping approach to the output regulation of boundary controlled parabolic PDEs
  publication-title: Automatica
– volume: 170
  start-page: 408
  issue: 2
  year: 2001
  end-page: 471
  article-title: Boundary eigenvalue problems for differential equations = P with ‐polynomial boundary conditions
  publication-title: J Differ Equ
– year: 2017
– volume: 44
  start-page: 1112
  issue: 6
  year: 1984
  end-page: 1132
  article-title: Stable coexistence states in the Volterra‐Lotka competition model with diffusion
  publication-title: SIAM J Appl Math
– volume: 83
  start-page: 54
  issue: 1
  year: 1981
  end-page: 76
  article-title: Coexistence and stability of a competition‐diffusion system in population dynamics
  publication-title: J Math Anal Appl
– volume: 97
  start-page: 61
  year: 2016
  end-page: 69
  article-title: Backstepping observer‐based output feedback control for a class of coupled parabolic PDEs with different diffusions
  publication-title: Syst Control Lett
– ident: e_1_2_7_6_1
  doi: 10.1016/j.automatica.2015.01.032
– ident: e_1_2_7_32_1
  doi: 10.1137/15M1046952
– ident: e_1_2_7_11_1
  doi: 10.23919/ACC.2017.7963433
– ident: e_1_2_7_16_1
  doi: 10.1016/j.automatica.2013.06.018
– ident: e_1_2_7_35_1
  doi: 10.1051/cocv:2005030
– ident: e_1_2_7_13_1
  doi: 10.1016/j.automatica.2016.01.041
– ident: e_1_2_7_29_1
  doi: 10.1016/j.automatica.2014.10.117
– ident: e_1_2_7_10_1
  doi: 10.1109/TAC.2016.2590506
– ident: e_1_2_7_38_1
  doi: 10.1007/978-1-4612-5561-1
– ident: e_1_2_7_5_1
  doi: 10.1007/s00205-005-0367-4
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jprocont.2016.08.010
– ident: e_1_2_7_7_1
  doi: 10.1137/1.9780898718607
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ejcon.2016.02.002
– volume: 8
  start-page: 7
  issue: 1
  year: 1998
  ident: e_1_2_7_26_1
  article-title: Unit sliding mode control in infinite dimensional systems
  publication-title: Appl Math Comput Sci
– ident: e_1_2_7_27_1
  doi: 10.1007/978-3-642-84379-2
– ident: e_1_2_7_23_1
  doi: 10.1109/TAC.2012.2218669
– ident: e_1_2_7_12_1
  doi: 10.1016/j.automatica.2015.04.008
– ident: e_1_2_7_3_1
  doi: 10.1137/0144080
– ident: e_1_2_7_40_1
  doi: 10.1007/978-3-7643-8994-9
– ident: e_1_2_7_39_1
  doi: 10.1109/TAC.2017.2694425
– ident: e_1_2_7_34_1
  doi: 10.1006/jdeq.2000.3829
– ident: e_1_2_7_31_1
  doi: 10.1002/rnc.3572
– ident: e_1_2_7_17_1
  doi: 10.1109/TAC.2014.2335511
– ident: e_1_2_7_21_1
  doi: 10.1137/090781140
– ident: e_1_2_7_9_1
  doi: 10.1137/15M1034325
– volume-title: Sliding Mode Control and Observation
  year: 2014
  ident: e_1_2_7_28_1
  doi: 10.1007/978-0-8176-4893-0
– volume-title: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions
  year: 2009
  ident: e_1_2_7_33_1
– ident: e_1_2_7_2_1
  doi: 10.1016/0022-247X(81)90246-8
– ident: e_1_2_7_24_1
  doi: 10.1002/rnc.2977
– ident: e_1_2_7_30_1
  doi: 10.1016/j.sysconle.2016.10.009
– ident: e_1_2_7_8_1
  doi: 10.1016/j.sysconle.2016.09.004
– ident: e_1_2_7_15_1
  doi: 10.1049/iet-cta.2017.0677
– ident: e_1_2_7_20_1
  doi: 10.1016/j.sysconle.2010.08.012
– ident: e_1_2_7_4_1
  doi: 10.1109/TAC.2002.800737
– ident: e_1_2_7_36_1
  doi: 10.1109/CDC.2014.7040205
– ident: e_1_2_7_18_1
  doi: 10.1109/TIE.2012.2219835
– ident: e_1_2_7_22_1
  doi: 10.1016/j.automatica.2010.10.045
– volume-title: Sobolev Spaces
  year: 2003
  ident: e_1_2_7_37_1
– volume: 44
  start-page: 426
  issue: 4
  year: 1983
  ident: e_1_2_7_25_1
  article-title: Application of Lyapunov method in distributed systems
  publication-title: Autom Remote Control
SSID ssj0009924
Score 2.3790362
Snippet Summary This paper develops the sliding mode control (SMC) design for N‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to...
This paper develops the sliding mode control (SMC) design for N ‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject...
This paper develops the sliding mode control (SMC) design for N‐coupled reaction‐diffusion parabolic PDEs with boundary input disturbances. In order to reject...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1437
SubjectTerms backstepping
Coupled modes
disturbance rejection
Disturbances
N‐coupled reaction‐diffusion PDEs
Parabolic differential equations
Riesz basis
Sliding mode control
Title Sliding mode control for N‐coupled reaction‐diffusion PDEs with boundary input disturbances
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.4448
https://www.proquest.com/docview/2176087313
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcX8aQH32K1ygqip7R5bJrdo9SWIlikWih4CPtIoVjS0iYHPfkR_Ix-EmfyaKsoiKdA2IUkO7Pz283sfwi5YMJFWXbXciLBLaYdZilulGWLyASRjAD58Y_uXbfR6bPbgT8osirxLEyuD7HYcEPPyOZrdHCp5vWlaOgM_IfB4gKmX0zVQh7qLZWjhMjr2QIAWxwgptSdtd162fFrJFri5SqkZlGmvU2eyufLk0uea2miavr1m3Tj_15gh2wV8Emvc2vZJWtRvEc2VyQJ90n4MB5hOKNYIocWiewUyJZ2P97e9SSdjiNDgTSz8xBwCyuspLjlRu9vWnOK-7pUZbWaZi90FE_ThBowpXSm0L7mB6Tfbj02O1ZRhMHSQALc8lzNbBVIYRi4q6M5xH-H6aAx9NSQaeNI5gMDCQ7WIHnDc20mFVc6ULbHAia9Q7IeT-LoiFAIhHzIgemU8JlxfG57SkmABhkYYaSokKtyQEJdKJRjoYxxmGsruyF8shA_WYWcL1pOc1WOH9pUyzENC7-ch7AAa9g88ByvQi6zwfm1f9jrNvF6_NeGJ2QDaEpggprrV8l6MkujUyCWRJ1ltvkJPzTp_g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFMcfLgf14C7WNYLoaewsmU6CJ3Ghai3iAh6EkGUKxdKWtnPQkx_Bz-gn8WWWVkVBPA0MCcwk78375U3yfwC7lPtWlt13vJgzh2qPOooZ5bg8NlEsY0R--0f3ql6p3tOLh_BhDA6LszCZPsQw4WY9I_1eWwe3CenySDW0hw5EcXUxDpO2oHe6nroZaUdxnlW0RQR2GGJMoTzr-uWi59dYNALMz5iaxpmzOXgsnjDbXvJ0kAzUgX75Jt74z1eYh9mcP8lRZjALMBa3F2HmkyrhEojbVtNGNGKr5JB8LztBuCX199c33Um6rdgQhM30SATeskVWEpt1I9cnp31iU7tEpeWaes-k2e4mA2LQmpKesibWX4b7s9O746qT12FwNMIAcwJfU1dFkhuKHutphgjgUR1VGoFqUG08SUPEIM7QICSrBL5LpWJKR8oNaERlsAIT7U47XgWCsZA1GGKd4iE1XsjcQCmJ3CAjw43kJdgvZkToXKTc1spoiUxe2Rc4ZMIOWQl2hi27mTDHD202ikkVuWv2Ba7BKi6LAi8owV46O7_2Fzf1Y3td-2vDbZiq3l3VRO28frkO0whX3O5X88MNmBj0kngTAWagtlJD_QDTsO4Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1ZSwMxEMcHDxB98BbrGUH0ae0e2W7yKLbFs4gHCD6EHFsolra03Qd98iP4Gf0kTvawVRTEp4Ulgd1kZueX7OQ_APuU-1aW3Xe8mDOHao86ihnluDw2USxjRH77R_eqUTm9p-cP4UOeVWnPwmT6EJ8bbtYz0u-1dfCeaZZHoqF99B-Ki4tJmKYVl1mLrt6MpKM4zwraIgE7DCmmEJ51_XLR82soGvHlOKWmYaa-AI_FA2bZJU9HyVAd6Zdv2o3_e4NFmM_pkxxn5rIEE3FnGebGNAlXQNy2WzaeEVsjh-SZ7ATRljTeX990N-m1Y0MQNdMDEXjLllhJ7J4bua7WBsRu7BKVFmvqP5NWp5cMiUFbSvrKGthgFe7rtbuTUyevwuBoRAHmBL6mrookNxT91dMMAcCjOqo0A9Wk2niShghBnKE5SFYJfJdKxZSOlBvQiMpgDaY63U68DgQjIWsyhDrFQ2q8kLmBUhKpQUaGG8lLcFhMiNC5RLmtlNEWmbiyL3DIhB2yEux9tuxlshw_tNkq5lTkjjkQuAJDY4kCLyjBQTo5v_YXN40Te934a8NdmLmu1sXlWeNiE2aRrLhNVvPDLZga9pN4G-llqHZSM_0APkbs0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+mode+control+for+N%E2%80%90coupled+reaction%E2%80%90diffusion+PDEs+with+boundary+input+disturbances&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Jian%E2%80%90Jun+Gu&rft.au=Jun%E2%80%90Min+Wang&rft.date=2019-03-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=29&rft.issue=5&rft.spage=1437&rft.epage=1461&rft_id=info:doi/10.1002%2Frnc.4448&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon