New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation
It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, t...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 10964 - 10988 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021637 |
Cover
Loading…
Abstract | It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, the inclusion relation (⊆) and fuzzy order relation $\left(\preccurlyeq \right)$ both are two different concepts, respectively. In this article, with the help of fuzzy order relation, we introduce fractional Hermite-Hadamard inequality ( HH -inequality) for h -convex fuzzy-interval-valued functions ( h -convex-IVFs). Moreover, we also establish a strong relationship between h -convex fuzzy-IVFs and Hermite-Hadamard Fejér inequality ( HH -Fejér inequality) via fuzzy Riemann Liouville fractional integral operator. It is also shown that our results include a wide class of new and known inequalities for h -convex fuzz-IVFs and their variant forms as special cases. Nontrivial examples are presented to illustrate the validity of the concept suggested in this review. This paper's techniques and approaches may serve as a springboard for further research in this field. |
---|---|
AbstractList | It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, the inclusion relation (⊆) and fuzzy order relation (≼) both are two different concepts, respectively. In this article, with the help of fuzzy order relation, we introduce fractional Hermite-Hadamard inequality (HH-inequality) for h-convex fuzzy-interval-valued functions (h-convex-IVFs). Moreover, we also establish a strong relationship between h-convex fuzzy-IVFs and Hermite-Hadamard Fejér inequality (HH-Fejér inequality) via fuzzy Riemann Liouville fractional integral operator. It is also shown that our results include a wide class of new and known inequalities for h-convex fuzz-IVFs and their variant forms as special cases. Nontrivial examples are presented to illustrate the validity of the concept suggested in this review. This paper's techniques and approaches may serve as a springboard for further research in this field. It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, the inclusion relation (⊆) and fuzzy order relation $\left(\preccurlyeq \right)$ both are two different concepts, respectively. In this article, with the help of fuzzy order relation, we introduce fractional Hermite-Hadamard inequality ( HH -inequality) for h -convex fuzzy-interval-valued functions ( h -convex-IVFs). Moreover, we also establish a strong relationship between h -convex fuzzy-IVFs and Hermite-Hadamard Fejér inequality ( HH -Fejér inequality) via fuzzy Riemann Liouville fractional integral operator. It is also shown that our results include a wide class of new and known inequalities for h -convex fuzz-IVFs and their variant forms as special cases. Nontrivial examples are presented to illustrate the validity of the concept suggested in this review. This paper's techniques and approaches may serve as a springboard for further research in this field. |
Author | Noor, Muhammad Aslam Noor, Khalida Inayat Khan, Muhammad Bilal Mohammed, Pshtiwan Othman Alsharif, Abdullah M. |
Author_xml | – sequence: 1 givenname: Muhammad Bilal surname: Khan fullname: Khan, Muhammad Bilal – sequence: 2 givenname: Pshtiwan Othman surname: Mohammed fullname: Mohammed, Pshtiwan Othman – sequence: 3 givenname: Muhammad Aslam surname: Noor fullname: Noor, Muhammad Aslam – sequence: 4 givenname: Abdullah M. surname: Alsharif fullname: Alsharif, Abdullah M. – sequence: 5 givenname: Khalida Inayat surname: Noor fullname: Noor, Khalida Inayat |
BookMark | eNptUMtOwzAQtFCRKKU3PiAfQEriR2wfUcWjUgUXOFsbew2u0gScFNR-PUlbJIS47HNmtDvnZFQ3NRJymWczphm_XkP3NqMZzQsmT8iYcsnSQis1-lWfkWnbrrKsR1FOJR8T_4hfid_sdts01B3GT6iSUOPHBqrQBWz75u_aR7BdaOq-tFDZTbVpk3KbrBHqNmn8AZ400WFMIlYwYC_IqYeqxekxT8jL3e3z_CFdPt0v5jfL1FLNZOoUCpVLT61CLUshOM1AlEo7Tfsg-rs1CFZQUVDmMq-0zlFzJ62X0mpkE7I46LoGVuY9hjXErWkgmP2gia8GYhdshUaCQ1egE7xX0LlSknvwRZnL0hUsG7ToQcvGpm0jemNDt_-mixAqk2dmMN4Mxpuj8T3p6g_p54h_4d8doIj6 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3455320 crossref_primary_10_3390_sym13122352 crossref_primary_10_3390_sym14020313 crossref_primary_10_1007_s44196_021_00032_x crossref_primary_10_3934_math_2022857 crossref_primary_10_3934_math_2022024 crossref_primary_10_3934_mbe_2022037 crossref_primary_10_3934_math_2022089 crossref_primary_10_1007_s44196_022_00081_w crossref_primary_10_3390_sym14112322 crossref_primary_10_3934_math_2022241 crossref_primary_10_3390_axioms11110622 crossref_primary_10_3390_sym14020341 crossref_primary_10_3934_mbe_2021325 crossref_primary_10_1007_s44196_021_00009_w crossref_primary_10_3390_math10040534 crossref_primary_10_3390_math10040611 crossref_primary_10_3390_math10020204 crossref_primary_10_2478_aupcsm_2022_0001 crossref_primary_10_3390_fractalfract6020083 crossref_primary_10_1007_s44196_022_00127_z crossref_primary_10_1016_j_aej_2021_12_052 crossref_primary_10_3390_sym14081639 crossref_primary_10_3934_math_2023345 crossref_primary_10_1002_mma_7855 crossref_primary_10_3390_sym13101816 |
Cites_doi | 10.1155/2014/346305 10.31801/cfsuasmas.754842 10.1155/2021/6657602 10.1186/1029-242X-2014-1 10.1016/0165-0114(87)90029-7 10.20852/ntmsci.2016320378 10.1186/s13662-019-2438-0 10.1007/s00500-014-1483-6 10.1155/2014/386806 10.1016/0165-0114(92)90256-4 10.1016/0165-0114(94)90011-6 10.1016/j.mcm.2011.12.048 10.1186/s13660-017-1594-6 10.1007/s40747-021-00379-w 10.3390/sym13040673 10.1016/j.fss.2017.02.001 10.3934/math.2021273 10.1007/s40314-016-0396-7 10.1016/j.fss.2019.10.006 10.2991/ijcis.d.210616.001 10.15672/HJMS.20164516901 10.1007/BF03323058 10.2991/ijcis.d.210409.001 10.34198/ejms.5121.1742 10.1090/proc/14741 10.7153/jmi-2021-15-38 10.2991/ijcis.d.210620.001 10.1109/IFSA-NAFIPS.2013.6608616 10.1186/s13662-020-03162-2 10.1007/s00500-011-0743-y 10.1016/j.fss.2020.06.003 10.11650/twjm/1500574995 10.1080/00036811.2013.851785 10.2478/amns.2020.1.00035 10.1007/s40995-017-0352-4 10.1016/j.mcm.2011.06.057 10.1155/2021/6652930 10.18576/amis/150408 10.1186/s13662-021-03290-3 10.1016/j.ins.2017.08.055 10.2478/amns.2020.2.00011 10.1515/math-2020-0038 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia |
CorporateAuthor_xml | – name: Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan – name: Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq – name: Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021637 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 10988 |
ExternalDocumentID | oai_doaj_org_article_7aded6ed54e94918874faf6b17bd630e 10_3934_math_2021637 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c2937-d8e5817f2c8e97b55420a5b89d9289d50219a53625623d0f8991e94d7cf77c9e3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:25:15 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2937-d8e5817f2c8e97b55420a5b89d9289d50219a53625623d0f8991e94d7cf77c9e3 |
OpenAccessLink | https://doaj.org/article/7aded6ed54e94918874faf6b17bd630e |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7aded6ed54e94918874faf6b17bd630e crossref_citationtrail_10_3934_math_2021637 crossref_primary_10_3934_math_2021637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021637-42 key-10.3934/math.2021637-41 key-10.3934/math.2021637-44 key-10.3934/math.2021637-43 key-10.3934/math.2021637-40 key-10.3934/math.2021637-49 key-10.3934/math.2021637-46 key-10.3934/math.2021637-45 key-10.3934/math.2021637-48 key-10.3934/math.2021637-47 key-10.3934/math.2021637-31 key-10.3934/math.2021637-30 key-10.3934/math.2021637-33 key-10.3934/math.2021637-32 key-10.3934/math.2021637-39 key-10.3934/math.2021637-38 key-10.3934/math.2021637-35 key-10.3934/math.2021637-34 key-10.3934/math.2021637-37 key-10.3934/math.2021637-36 key-10.3934/math.2021637-20 key-10.3934/math.2021637-22 key-10.3934/math.2021637-21 key-10.3934/math.2021637-28 key-10.3934/math.2021637-27 key-10.3934/math.2021637-29 key-10.3934/math.2021637-24 key-10.3934/math.2021637-23 key-10.3934/math.2021637-26 key-10.3934/math.2021637-25 key-10.3934/math.2021637-53 key-10.3934/math.2021637-9 key-10.3934/math.2021637-52 key-10.3934/math.2021637-8 key-10.3934/math.2021637-11 key-10.3934/math.2021637-7 key-10.3934/math.2021637-10 key-10.3934/math.2021637-51 key-10.3934/math.2021637-50 key-10.3934/math.2021637-2 key-10.3934/math.2021637-1 key-10.3934/math.2021637-6 key-10.3934/math.2021637-5 key-10.3934/math.2021637-4 key-10.3934/math.2021637-3 key-10.3934/math.2021637-17 key-10.3934/math.2021637-16 key-10.3934/math.2021637-19 key-10.3934/math.2021637-18 key-10.3934/math.2021637-13 key-10.3934/math.2021637-12 key-10.3934/math.2021637-15 key-10.3934/math.2021637-14 |
References_xml | – ident: key-10.3934/math.2021637-5 doi: 10.1155/2014/346305 – ident: key-10.3934/math.2021637-36 doi: 10.31801/cfsuasmas.754842 – ident: key-10.3934/math.2021637-42 doi: 10.1155/2021/6657602 – ident: key-10.3934/math.2021637-4 doi: 10.1186/1029-242X-2014-1 – ident: key-10.3934/math.2021637-31 doi: 10.1016/0165-0114(87)90029-7 – ident: key-10.3934/math.2021637-11 doi: 10.20852/ntmsci.2016320378 – ident: key-10.3934/math.2021637-48 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021637-22 doi: 10.1007/s00500-014-1483-6 – ident: key-10.3934/math.2021637-3 doi: 10.1155/2014/386806 – ident: key-10.3934/math.2021637-32 doi: 10.1016/0165-0114(92)90256-4 – ident: key-10.3934/math.2021637-7 – ident: key-10.3934/math.2021637-33 doi: 10.1016/0165-0114(94)90011-6 – ident: key-10.3934/math.2021637-15 – ident: key-10.3934/math.2021637-8 doi: 10.1016/j.mcm.2011.12.048 – ident: key-10.3934/math.2021637-30 doi: 10.1186/s13660-017-1594-6 – ident: key-10.3934/math.2021637-39 doi: 10.1007/s40747-021-00379-w – ident: key-10.3934/math.2021637-41 doi: 10.3390/sym13040673 – ident: key-10.3934/math.2021637-17 doi: 10.1016/j.fss.2017.02.001 – ident: key-10.3934/math.2021637-35 doi: 10.3934/math.2021273 – ident: key-10.3934/math.2021637-19 doi: 10.1007/s40314-016-0396-7 – ident: key-10.3934/math.2021637-34 doi: 10.1016/j.fss.2019.10.006 – ident: key-10.3934/math.2021637-2 – ident: key-10.3934/math.2021637-21 – ident: key-10.3934/math.2021637-47 doi: 10.2991/ijcis.d.210616.001 – ident: key-10.3934/math.2021637-6 doi: 10.15672/HJMS.20164516901 – ident: key-10.3934/math.2021637-24 doi: 10.1007/BF03323058 – ident: key-10.3934/math.2021637-40 doi: 10.2991/ijcis.d.210409.001 – ident: key-10.3934/math.2021637-50 doi: 10.34198/ejms.5121.1742 – ident: key-10.3934/math.2021637-44 doi: 10.2991/ijcis.d.210616.001 – ident: key-10.3934/math.2021637-26 doi: 10.1090/proc/14741 – ident: key-10.3934/math.2021637-10 doi: 10.7153/jmi-2021-15-38 – ident: key-10.3934/math.2021637-16 – ident: key-10.3934/math.2021637-29 – ident: key-10.3934/math.2021637-46 doi: 10.2991/ijcis.d.210620.001 – ident: key-10.3934/math.2021637-20 doi: 10.1109/IFSA-NAFIPS.2013.6608616 – ident: key-10.3934/math.2021637-49 doi: 10.1186/s13662-020-03162-2 – ident: key-10.3934/math.2021637-51 – ident: key-10.3934/math.2021637-28 doi: 10.1186/s13662-020-03162-2 – ident: key-10.3934/math.2021637-1 – ident: key-10.3934/math.2021637-27 doi: 10.1007/s00500-011-0743-y – ident: key-10.3934/math.2021637-25 doi: 10.1016/j.fss.2020.06.003 – ident: key-10.3934/math.2021637-37 doi: 10.11650/twjm/1500574995 – ident: key-10.3934/math.2021637-13 doi: 10.1080/00036811.2013.851785 – ident: key-10.3934/math.2021637-53 doi: 10.2478/amns.2020.1.00035 – ident: key-10.3934/math.2021637-9 doi: 10.1007/s40995-017-0352-4 – ident: key-10.3934/math.2021637-38 doi: 10.1016/j.mcm.2011.06.057 – ident: key-10.3934/math.2021637-43 doi: 10.1155/2021/6652930 – ident: key-10.3934/math.2021637-45 doi: 10.18576/amis/150408 – ident: key-10.3934/math.2021637-23 – ident: key-10.3934/math.2021637-52 doi: 10.1186/s13662-021-03290-3 – ident: key-10.3934/math.2021637-18 doi: 10.1016/j.ins.2017.08.055 – ident: key-10.3934/math.2021637-12 doi: 10.2478/amns.2020.2.00011 – ident: key-10.3934/math.2021637-14 doi: 10.1515/math-2020-0038 |
SSID | ssj0002124274 |
Score | 2.2059016 |
Snippet | It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 10964 |
SubjectTerms | fuzzy-interval riemann liouville fractional integral operator h-convex fuzzy-interval-valued function hermite-hadamard fejér inequality hermite-hadamard inequality |
Title | New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation |
URI | https://doaj.org/article/7aded6ed54e94918874faf6b17bd630e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCU262Wz2qGIpQj1Z6C3sYxYEbaWPQ_vrO5ONpQrixVseQ9jMJDPzzc5-y9iNlhYMzTDKnKpVGCITKwxiHpepwioP1tMC58FL0R_mzyM52trqi3rCIj1wVFxHGQ--AC9z0LnO8J_IgwmFzZT1hUiBvC_GvC0wRT4YHXKOeCt2ugst8g7mfzT30MX8Q32LQVtU_XVM6R2w_SYZ5PdxEIdsB8ZHbG-wYVKdHbOAXoiHxWq1TN7q9kSUx8QwroVElIsnP2-HaVysgIdoACrvzbhd8g_AqMQnIYrzmnOTT5teuBM27D29PvaTZm-ExGGAVokvQZaZCl1XglYWk4JuaqQttdcIobzEF9VGYnSi_ManAWFVhgr0xEKknAZxylrjyRjOGM-0DUoTUgSa1dMGXY5C05rUWOGEa7O7L21VriEOp_0r3isEEKTbinRbNbpts9uN9GckzPhF7oEUv5Ehmuv6Ahq_aoxf_WX88_94yAXbpTHFusola82nC7jCTGNur-uPag3aXdSE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+fuzzy-interval+inequalities+in+fuzzy-interval+fractional+calculus+by+means+of+fuzzy+order+relation&rft.jtitle=AIMS+mathematics&rft.au=Muhammad+Bilal+Khan&rft.au=Pshtiwan+Othman+Mohammed&rft.au=Muhammad+Aslam+Noor&rft.au=Abdullah+M.+Alsharif&rft.date=2021&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=10964&rft.epage=10988&rft_id=info:doi/10.3934%2Fmath.2021637&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7aded6ed54e94918874faf6b17bd630e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |