New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation

It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, t...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 10; pp. 10964 - 10988
Main Authors Khan, Muhammad Bilal, Mohammed, Pshtiwan Othman, Noor, Muhammad Aslam, Alsharif, Abdullah M., Noor, Khalida Inayat
Format Journal Article
LanguageEnglish
Published AIMS Press 2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021637

Cover

Loading…
Abstract It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, the inclusion relation (⊆) and fuzzy order relation $\left(\preccurlyeq \right)$ both are two different concepts, respectively. In this article, with the help of fuzzy order relation, we introduce fractional Hermite-Hadamard inequality ( HH -inequality) for h -convex fuzzy-interval-valued functions ( h -convex-IVFs). Moreover, we also establish a strong relationship between h -convex fuzzy-IVFs and Hermite-Hadamard Fejér inequality ( HH -Fejér inequality) via fuzzy Riemann Liouville fractional integral operator. It is also shown that our results include a wide class of new and known inequalities for h -convex fuzz-IVFs and their variant forms as special cases. Nontrivial examples are presented to illustrate the validity of the concept suggested in this review. This paper's techniques and approaches may serve as a springboard for further research in this field.
AbstractList It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, the inclusion relation (⊆) and fuzzy order relation (≼) both are two different concepts, respectively. In this article, with the help of fuzzy order relation, we introduce fractional Hermite-Hadamard inequality (HH-inequality) for h-convex fuzzy-interval-valued functions (h-convex-IVFs). Moreover, we also establish a strong relationship between h-convex fuzzy-IVFs and Hermite-Hadamard Fejér inequality (HH-Fejér inequality) via fuzzy Riemann Liouville fractional integral operator. It is also shown that our results include a wide class of new and known inequalities for h-convex fuzz-IVFs and their variant forms as special cases. Nontrivial examples are presented to illustrate the validity of the concept suggested in this review. This paper's techniques and approaches may serve as a springboard for further research in this field.
It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis and fuzzy-interval analysis, the inclusion relation (⊆) and fuzzy order relation $\left(\preccurlyeq \right)$ both are two different concepts, respectively. In this article, with the help of fuzzy order relation, we introduce fractional Hermite-Hadamard inequality ( HH -inequality) for h -convex fuzzy-interval-valued functions ( h -convex-IVFs). Moreover, we also establish a strong relationship between h -convex fuzzy-IVFs and Hermite-Hadamard Fejér inequality ( HH -Fejér inequality) via fuzzy Riemann Liouville fractional integral operator. It is also shown that our results include a wide class of new and known inequalities for h -convex fuzz-IVFs and their variant forms as special cases. Nontrivial examples are presented to illustrate the validity of the concept suggested in this review. This paper's techniques and approaches may serve as a springboard for further research in this field.
Author Noor, Muhammad Aslam
Noor, Khalida Inayat
Khan, Muhammad Bilal
Mohammed, Pshtiwan Othman
Alsharif, Abdullah M.
Author_xml – sequence: 1
  givenname: Muhammad Bilal
  surname: Khan
  fullname: Khan, Muhammad Bilal
– sequence: 2
  givenname: Pshtiwan Othman
  surname: Mohammed
  fullname: Mohammed, Pshtiwan Othman
– sequence: 3
  givenname: Muhammad Aslam
  surname: Noor
  fullname: Noor, Muhammad Aslam
– sequence: 4
  givenname: Abdullah M.
  surname: Alsharif
  fullname: Alsharif, Abdullah M.
– sequence: 5
  givenname: Khalida Inayat
  surname: Noor
  fullname: Noor, Khalida Inayat
BookMark eNptUMtOwzAQtFCRKKU3PiAfQEriR2wfUcWjUgUXOFsbew2u0gScFNR-PUlbJIS47HNmtDvnZFQ3NRJymWczphm_XkP3NqMZzQsmT8iYcsnSQis1-lWfkWnbrrKsR1FOJR8T_4hfid_sdts01B3GT6iSUOPHBqrQBWz75u_aR7BdaOq-tFDZTbVpk3KbrBHqNmn8AZ400WFMIlYwYC_IqYeqxekxT8jL3e3z_CFdPt0v5jfL1FLNZOoUCpVLT61CLUshOM1AlEo7Tfsg-rs1CFZQUVDmMq-0zlFzJ62X0mpkE7I46LoGVuY9hjXErWkgmP2gia8GYhdshUaCQ1egE7xX0LlSknvwRZnL0hUsG7ToQcvGpm0jemNDt_-mixAqk2dmMN4Mxpuj8T3p6g_p54h_4d8doIj6
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3455320
crossref_primary_10_3390_sym13122352
crossref_primary_10_3390_sym14020313
crossref_primary_10_1007_s44196_021_00032_x
crossref_primary_10_3934_math_2022857
crossref_primary_10_3934_math_2022024
crossref_primary_10_3934_mbe_2022037
crossref_primary_10_3934_math_2022089
crossref_primary_10_1007_s44196_022_00081_w
crossref_primary_10_3390_sym14112322
crossref_primary_10_3934_math_2022241
crossref_primary_10_3390_axioms11110622
crossref_primary_10_3390_sym14020341
crossref_primary_10_3934_mbe_2021325
crossref_primary_10_1007_s44196_021_00009_w
crossref_primary_10_3390_math10040534
crossref_primary_10_3390_math10040611
crossref_primary_10_3390_math10020204
crossref_primary_10_2478_aupcsm_2022_0001
crossref_primary_10_3390_fractalfract6020083
crossref_primary_10_1007_s44196_022_00127_z
crossref_primary_10_1016_j_aej_2021_12_052
crossref_primary_10_3390_sym14081639
crossref_primary_10_3934_math_2023345
crossref_primary_10_1002_mma_7855
crossref_primary_10_3390_sym13101816
Cites_doi 10.1155/2014/346305
10.31801/cfsuasmas.754842
10.1155/2021/6657602
10.1186/1029-242X-2014-1
10.1016/0165-0114(87)90029-7
10.20852/ntmsci.2016320378
10.1186/s13662-019-2438-0
10.1007/s00500-014-1483-6
10.1155/2014/386806
10.1016/0165-0114(92)90256-4
10.1016/0165-0114(94)90011-6
10.1016/j.mcm.2011.12.048
10.1186/s13660-017-1594-6
10.1007/s40747-021-00379-w
10.3390/sym13040673
10.1016/j.fss.2017.02.001
10.3934/math.2021273
10.1007/s40314-016-0396-7
10.1016/j.fss.2019.10.006
10.2991/ijcis.d.210616.001
10.15672/HJMS.20164516901
10.1007/BF03323058
10.2991/ijcis.d.210409.001
10.34198/ejms.5121.1742
10.1090/proc/14741
10.7153/jmi-2021-15-38
10.2991/ijcis.d.210620.001
10.1109/IFSA-NAFIPS.2013.6608616
10.1186/s13662-020-03162-2
10.1007/s00500-011-0743-y
10.1016/j.fss.2020.06.003
10.11650/twjm/1500574995
10.1080/00036811.2013.851785
10.2478/amns.2020.1.00035
10.1007/s40995-017-0352-4
10.1016/j.mcm.2011.06.057
10.1155/2021/6652930
10.18576/amis/150408
10.1186/s13662-021-03290-3
10.1016/j.ins.2017.08.055
10.2478/amns.2020.2.00011
10.1515/math-2020-0038
ContentType Journal Article
CorporateAuthor Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
CorporateAuthor_xml – name: Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan
– name: Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
– name: Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021637
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 10988
ExternalDocumentID oai_doaj_org_article_7aded6ed54e94918874faf6b17bd630e
10_3934_math_2021637
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c2937-d8e5817f2c8e97b55420a5b89d9289d50219a53625623d0f8991e94d7cf77c9e3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:25:15 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-d8e5817f2c8e97b55420a5b89d9289d50219a53625623d0f8991e94d7cf77c9e3
OpenAccessLink https://doaj.org/article/7aded6ed54e94918874faf6b17bd630e
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_7aded6ed54e94918874faf6b17bd630e
crossref_citationtrail_10_3934_math_2021637
crossref_primary_10_3934_math_2021637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021637-42
key-10.3934/math.2021637-41
key-10.3934/math.2021637-44
key-10.3934/math.2021637-43
key-10.3934/math.2021637-40
key-10.3934/math.2021637-49
key-10.3934/math.2021637-46
key-10.3934/math.2021637-45
key-10.3934/math.2021637-48
key-10.3934/math.2021637-47
key-10.3934/math.2021637-31
key-10.3934/math.2021637-30
key-10.3934/math.2021637-33
key-10.3934/math.2021637-32
key-10.3934/math.2021637-39
key-10.3934/math.2021637-38
key-10.3934/math.2021637-35
key-10.3934/math.2021637-34
key-10.3934/math.2021637-37
key-10.3934/math.2021637-36
key-10.3934/math.2021637-20
key-10.3934/math.2021637-22
key-10.3934/math.2021637-21
key-10.3934/math.2021637-28
key-10.3934/math.2021637-27
key-10.3934/math.2021637-29
key-10.3934/math.2021637-24
key-10.3934/math.2021637-23
key-10.3934/math.2021637-26
key-10.3934/math.2021637-25
key-10.3934/math.2021637-53
key-10.3934/math.2021637-9
key-10.3934/math.2021637-52
key-10.3934/math.2021637-8
key-10.3934/math.2021637-11
key-10.3934/math.2021637-7
key-10.3934/math.2021637-10
key-10.3934/math.2021637-51
key-10.3934/math.2021637-50
key-10.3934/math.2021637-2
key-10.3934/math.2021637-1
key-10.3934/math.2021637-6
key-10.3934/math.2021637-5
key-10.3934/math.2021637-4
key-10.3934/math.2021637-3
key-10.3934/math.2021637-17
key-10.3934/math.2021637-16
key-10.3934/math.2021637-19
key-10.3934/math.2021637-18
key-10.3934/math.2021637-13
key-10.3934/math.2021637-12
key-10.3934/math.2021637-15
key-10.3934/math.2021637-14
References_xml – ident: key-10.3934/math.2021637-5
  doi: 10.1155/2014/346305
– ident: key-10.3934/math.2021637-36
  doi: 10.31801/cfsuasmas.754842
– ident: key-10.3934/math.2021637-42
  doi: 10.1155/2021/6657602
– ident: key-10.3934/math.2021637-4
  doi: 10.1186/1029-242X-2014-1
– ident: key-10.3934/math.2021637-31
  doi: 10.1016/0165-0114(87)90029-7
– ident: key-10.3934/math.2021637-11
  doi: 10.20852/ntmsci.2016320378
– ident: key-10.3934/math.2021637-48
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021637-22
  doi: 10.1007/s00500-014-1483-6
– ident: key-10.3934/math.2021637-3
  doi: 10.1155/2014/386806
– ident: key-10.3934/math.2021637-32
  doi: 10.1016/0165-0114(92)90256-4
– ident: key-10.3934/math.2021637-7
– ident: key-10.3934/math.2021637-33
  doi: 10.1016/0165-0114(94)90011-6
– ident: key-10.3934/math.2021637-15
– ident: key-10.3934/math.2021637-8
  doi: 10.1016/j.mcm.2011.12.048
– ident: key-10.3934/math.2021637-30
  doi: 10.1186/s13660-017-1594-6
– ident: key-10.3934/math.2021637-39
  doi: 10.1007/s40747-021-00379-w
– ident: key-10.3934/math.2021637-41
  doi: 10.3390/sym13040673
– ident: key-10.3934/math.2021637-17
  doi: 10.1016/j.fss.2017.02.001
– ident: key-10.3934/math.2021637-35
  doi: 10.3934/math.2021273
– ident: key-10.3934/math.2021637-19
  doi: 10.1007/s40314-016-0396-7
– ident: key-10.3934/math.2021637-34
  doi: 10.1016/j.fss.2019.10.006
– ident: key-10.3934/math.2021637-2
– ident: key-10.3934/math.2021637-21
– ident: key-10.3934/math.2021637-47
  doi: 10.2991/ijcis.d.210616.001
– ident: key-10.3934/math.2021637-6
  doi: 10.15672/HJMS.20164516901
– ident: key-10.3934/math.2021637-24
  doi: 10.1007/BF03323058
– ident: key-10.3934/math.2021637-40
  doi: 10.2991/ijcis.d.210409.001
– ident: key-10.3934/math.2021637-50
  doi: 10.34198/ejms.5121.1742
– ident: key-10.3934/math.2021637-44
  doi: 10.2991/ijcis.d.210616.001
– ident: key-10.3934/math.2021637-26
  doi: 10.1090/proc/14741
– ident: key-10.3934/math.2021637-10
  doi: 10.7153/jmi-2021-15-38
– ident: key-10.3934/math.2021637-16
– ident: key-10.3934/math.2021637-29
– ident: key-10.3934/math.2021637-46
  doi: 10.2991/ijcis.d.210620.001
– ident: key-10.3934/math.2021637-20
  doi: 10.1109/IFSA-NAFIPS.2013.6608616
– ident: key-10.3934/math.2021637-49
  doi: 10.1186/s13662-020-03162-2
– ident: key-10.3934/math.2021637-51
– ident: key-10.3934/math.2021637-28
  doi: 10.1186/s13662-020-03162-2
– ident: key-10.3934/math.2021637-1
– ident: key-10.3934/math.2021637-27
  doi: 10.1007/s00500-011-0743-y
– ident: key-10.3934/math.2021637-25
  doi: 10.1016/j.fss.2020.06.003
– ident: key-10.3934/math.2021637-37
  doi: 10.11650/twjm/1500574995
– ident: key-10.3934/math.2021637-13
  doi: 10.1080/00036811.2013.851785
– ident: key-10.3934/math.2021637-53
  doi: 10.2478/amns.2020.1.00035
– ident: key-10.3934/math.2021637-9
  doi: 10.1007/s40995-017-0352-4
– ident: key-10.3934/math.2021637-38
  doi: 10.1016/j.mcm.2011.06.057
– ident: key-10.3934/math.2021637-43
  doi: 10.1155/2021/6652930
– ident: key-10.3934/math.2021637-45
  doi: 10.18576/amis/150408
– ident: key-10.3934/math.2021637-23
– ident: key-10.3934/math.2021637-52
  doi: 10.1186/s13662-021-03290-3
– ident: key-10.3934/math.2021637-18
  doi: 10.1016/j.ins.2017.08.055
– ident: key-10.3934/math.2021637-12
  doi: 10.2478/amns.2020.2.00011
– ident: key-10.3934/math.2021637-14
  doi: 10.1515/math-2020-0038
SSID ssj0002124274
Score 2.2059016
Snippet It is well-known that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 10964
SubjectTerms fuzzy-interval riemann liouville fractional integral operator
h-convex fuzzy-interval-valued function
hermite-hadamard fejér inequality
hermite-hadamard inequality
Title New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation
URI https://doaj.org/article/7aded6ed54e94918874faf6b17bd630e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCU262Wz2qGIpQj1Z6C3sYxYEbaWPQ_vrO5ONpQrixVseQ9jMJDPzzc5-y9iNlhYMzTDKnKpVGCITKwxiHpepwioP1tMC58FL0R_mzyM52trqi3rCIj1wVFxHGQ--AC9z0LnO8J_IgwmFzZT1hUiBvC_GvC0wRT4YHXKOeCt2ugst8g7mfzT30MX8Q32LQVtU_XVM6R2w_SYZ5PdxEIdsB8ZHbG-wYVKdHbOAXoiHxWq1TN7q9kSUx8QwroVElIsnP2-HaVysgIdoACrvzbhd8g_AqMQnIYrzmnOTT5teuBM27D29PvaTZm-ExGGAVokvQZaZCl1XglYWk4JuaqQttdcIobzEF9VGYnSi_ManAWFVhgr0xEKknAZxylrjyRjOGM-0DUoTUgSa1dMGXY5C05rUWOGEa7O7L21VriEOp_0r3isEEKTbinRbNbpts9uN9GckzPhF7oEUv5Ehmuv6Ahq_aoxf_WX88_94yAXbpTHFusola82nC7jCTGNur-uPag3aXdSE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+fuzzy-interval+inequalities+in+fuzzy-interval+fractional+calculus+by+means+of+fuzzy+order+relation&rft.jtitle=AIMS+mathematics&rft.au=Muhammad+Bilal+Khan&rft.au=Pshtiwan+Othman+Mohammed&rft.au=Muhammad+Aslam+Noor&rft.au=Abdullah+M.+Alsharif&rft.date=2021&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=10964&rft.epage=10988&rft_id=info:doi/10.3934%2Fmath.2021637&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7aded6ed54e94918874faf6b17bd630e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon