Neural foveated super‐resolution for real‐time VR rendering

As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 4
Main Authors Ye, Jiannan, Meng, Xiaoxu, Guo, Daiyun, Shang, Cheng, Mao, Haotian, Yang, Xubo
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods. We propose a method to improve neural super‐resolution for realtime rendering and alleviate the computation burden in VR by exploiting the foveated nature of the human visual system. By leveraging a partition‐assemble scheme, our method adaptively upsamples the low‐resolution image tiles to different qualities according to their perceptual importance.
AbstractList As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods.
As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods. We propose a method to improve neural super‐resolution for realtime rendering and alleviate the computation burden in VR by exploiting the foveated nature of the human visual system. By leveraging a partition‐assemble scheme, our method adaptively upsamples the low‐resolution image tiles to different qualities according to their perceptual importance.
Author Mao, Haotian
Meng, Xiaoxu
Shang, Cheng
Yang, Xubo
Guo, Daiyun
Ye, Jiannan
Author_xml – sequence: 1
  givenname: Jiannan
  orcidid: 0000-0003-1587-8556
  surname: Ye
  fullname: Ye, Jiannan
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Xiaoxu
  surname: Meng
  fullname: Meng, Xiaoxu
  organization: Tencent Games Digital Content Technology Center
– sequence: 3
  givenname: Daiyun
  surname: Guo
  fullname: Guo, Daiyun
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Cheng
  surname: Shang
  fullname: Shang, Cheng
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Haotian
  surname: Mao
  fullname: Mao, Haotian
  organization: Shanghai Jiao Tong University
– sequence: 6
  givenname: Xubo
  surname: Yang
  fullname: Yang, Xubo
  email: yangxubo@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BookMark eNp1kMtKw0AUhgepYFsFHyHgxk3i3DLJrKQUb1AURIu7YTI5kSlpUmeSSnc-gs_okzi14kJ0dW7fuf0jNGjaBhA6JjghGNMzo9cJpXm2h4Yk5SLmNHsa_PiCHKCR94tACkrwEJ3fQu90HVXtGnQHZeT7FbiPt3cHvq37zrZNqLnIga5DtrNLiOb3IWxKcLZ5PkT7la49HH3bMXq8vHiYXsezu6ub6WQWGypZFhspUlYAz3ghSCopz1PCNRZllaeMhVuAlJrgoqTABS8ly7UMAISLjSxMzsboZDd35dqXHnynFm3vmrBSMSzTXGJCaaCSHWVc672DShnb6e0TndO2VgSrrUgqiKS2IoWG018NK2eX2m3-QuMd-mpr2PzLqelk_sV_ApxWeE0
CitedBy_id crossref_primary_10_1007_s00371_025_03842_8
crossref_primary_10_1007_s00371_025_03810_2
Cites_doi 10.1145/3414685.3417786
10.1145/3478513.3480553
10.1145/3355089.3356557
10.1145/3610548.3618209
10.1145/3543870
10.1007/s10462-022-10147-y
10.1109/TVCG.2022.3203102
10.1111/cgf.14018
10.1109/TIP.2003.819861
10.1109/CVPR.2016.182
10.1109/ACCESS.2021.3119597
10.1007/978-3-319-46475-6_43
10.1145/3450626.3459831
10.1109/TPAMI.2015.2439281
10.1145/3190834.3190850
10.1109/CVPR.2016.90
10.1109/CVPRW.2017.151
10.1145/1618452.1618481
10.1109/CVPR.2017.19
10.1145/3474085.3475673
10.1109/CVPR52688.2022.00588
10.1145/3478513.3480531
10.1145/3203199
10.1109/TPAMI.2018.2865304
10.1109/CVPRW.2019.00247
10.1109/CVPR.2018.00262
10.1109/VR51125.2022.00097
10.1007/s11263-018-01144-2
10.1145/3306346.3322985
10.1145/2366145.2366183
10.1016/j.imavis.2010.07.001
10.1109/CVPRW56347.2022.00118
10.1145/1572769.1572787
10.1109/CVPR42600.2020.00342
10.1145/3592406
10.1145/166117.166131
10.1111/j.1467-8659.2012.03014.x
10.1109/TMM.2019.2919431
10.1145/3386569.3392376
10.1145/2980179.2980246
10.1109/TCSVT.2012.2214933
10.1145/1730804.1730819
10.1109/TMI.2019.2959609
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2287
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2287
CAV2287
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2018YFB1004902
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2937-c9653be474b6159248514a06df8533262e1da10bd2e464d938a914ae426c9bc83
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 02:28:57 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-c9653be474b6159248514a06df8533262e1da10bd2e464d938a914ae426c9bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1587-8556
PQID 3095890122
PQPubID 2034909
PageCount 19
ParticipantIDs proquest_journals_3095890122
crossref_citationtrail_10_1002_cav_2287
crossref_primary_10_1002_cav_2287
wiley_primary_10_1002_cav_2287_CAV2287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July/August 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July/August 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2015; 38
2010
2020; 39
2009
2019; 39
2019; 38
2019; 127
2018; 41
1993
2012; 31
2016; 35
2022; 28
2009; 28
2023; 42
2009; 2009
New Orleans, LA: IEEE; 2022
2023
2022
Goslar: Eurographics Association; 2014
2021
2022; 5
2018; 1
2020
2019; 21
2007; 41. Goslar: Eurographics Association
2008; 27
2004; 13
2019
2018
2017
2016
2014
2012; 23
2021; 40
2011; 29
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Yang L (e_1_2_10_36_1) 2008
Haris M (e_1_2_10_27_1) 2019
Weier M (e_1_2_10_51_1) 2016
Meng X (e_1_2_10_2_1) 2020
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
Kong F (e_1_2_10_63_1) 2022
e_1_2_10_11_1
e_1_2_10_32_1
Guo J (e_1_2_10_5_1) 2021; 40
e_1_2_10_61_1
e_1_2_10_48_1
Caballero J (e_1_2_10_29_1) 2017
Karis B (e_1_2_10_45_1) 2014
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
Vaidyanathan K (e_1_2_10_50_1) 2014
Zhang Y (e_1_2_10_35_1) 2023
Jo Y (e_1_2_10_26_1) 2018
e_1_2_10_52_1
Fan H (e_1_2_10_3_1) 2021
e_1_2_10_19_1
Tao X (e_1_2_10_30_1) 2017
Nehab D (e_1_2_10_43_1) 2007
e_1_2_10_54_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
Liu J (e_1_2_10_24_1) 2020
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Li Y (e_1_2_10_25_1) 2023
Yang S (e_1_2_10_65_1) 2023
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_47_1
References_xml – start-page: 756
  year: 2022
  end-page: 764
– year: 2009
– volume: 31
  start-page: 355
  year: 2012
  end-page: 364
– start-page: 136
  year: 2017
  end-page: 144
– start-page: 770
  year: 2016
  end-page: 778
– year: 2021
– volume: 2009
  start-page: 109
  year: 2009
  end-page: 116
– start-page: 3224
  year: 2018
  end-page: 3232
– volume: 21
  start-page: 3106
  issue: 12
  year: 2019
  end-page: 3121
  article-title: Deep learning for single image super‐resolution: A brief review
  publication-title: IEEE Trans Multimed
– start-page: 766
  year: 2022
  end-page: 776
– start-page: 4681
  year: 2017
  end-page: 4690
– volume: 35
  start-page: 289
  year: 2016
  end-page: 298
– volume: 29
  start-page: 1
  issue: 1
  year: 2011
  end-page: 14
  article-title: Visual attention guided bit allocation in video compression
  publication-title: Image Vis Comput
– year: 2014
– start-page: 109
  year: 1993
  end-page: 116
– volume: 27
  start-page: 1183
  year: 2008
  end-page: 1188
– start-page: 5454
  year: 2021
  end-page: 5462
– start-page: 2472
  year: 2018
  end-page: 2481
– start-page: 13
  year: 2020
  end-page: 24
– year: 2022
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  end-page: 307
  article-title: Image super‐resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 40
  start-page: 15
  year: 2021
  end-page: 27
– volume: 127
  start-page: 1106
  issue: 8
  year: 2019
  end-page: 1125
  article-title: Video enhancement with task‐oriented flow
  publication-title: Int J Comput Vis
– start-page: 1921
  year: 2023
  end-page: 1959
– volume: 39
  start-page: 607
  year: 2020
  end-page: 621
– year: 2019
– start-page: 1646
  year: 2016
  end-page: 1654
– start-page: 41
  year: 2020
  end-page: 55
– start-page: 3360
  year: 2020
  end-page: 3369
– volume: 40
  start-page: 1
  issue: 6
  year: 2021
  end-page: 16
  article-title: ExtraNet: real‐time extrapolated rendering for low‐latency temporal supersampling
  publication-title: ACM Trans Graph
– start-page: 4472
  year: 2017
  end-page: 4480
– start-page: 91
  year: 2010
  end-page: 98
– volume: 41. Goslar: Eurographics Association
  start-page: 61
  year: 2007
  end-page: 62
– volume: 40
  start-page: 1
  issue: 6
  year: 2021
  end-page: 13
  article-title: Neural frame interpolation for rendered content
  publication-title: ACM Trans Graph
– volume: 42
  start-page: 1
  issue: 4
  year: 2023
  end-page: 10
  article-title: Towards Attention–aware Foveated Rendering
  publication-title: ACM Trans Graph
– volume: 28
  start-page: 3854
  issue: 11
  year: 2022
  end-page: 3864
  article-title: FoV‐NeRF: Foveated neural radiance fields for virtual reality
  publication-title: IEEE Trans Vis Comput Graph
– volume: 39
  start-page: 141
  issue: 4
  year: 2020
  end-page: 142
  article-title: Neural supersampling for real‐time rendering
  publication-title: ACM Trans Graph
– start-page: 4778
  year: 2017
  end-page: 4787
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
– volume: 41
  start-page: 2599
  issue: 11
  year: 2018
  end-page: 2613
  article-title: Fast and accurate image super‐resolution with deep laplacian pyramid networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 31
  start-page: 1
  issue: 6
  year: 2012
  end-page: 10
  article-title: Foveated 3D graphics
  publication-title: ACM Trans Graph
– start-page: 1864
  year: 2023
  end-page: 1883
– volume: 5
  start-page: 1
  issue: 3
  year: 2022
  end-page: 22
  article-title: Temporally stable real‐time joint neural denoising and supersampling
  publication-title: Proce ACM Comput Graph Interact Tech
– volume: 39
  start-page: 1
  issue: 6
  year: 2020
  end-page: 12
  article-title: A reduced‐precision network for image reconstruction
  publication-title: ACM Trans Graph
– start-page: 5972
  year: 2022
  end-page: 5981
– volume: 23
  start-page: 684
  issue: 4
  year: 2012
  end-page: 694
  article-title: Video quality assessment by reduced reference spatio‐temporal entropic differencing
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 35
  start-page: 1
  issue: 6
  year: 2016
  end-page: 12
  article-title: Towards foveated rendering for gaze‐tracked virtual reality
  publication-title: ACM Trans Graph
– start-page: 9
  year: Goslar: Eurographics Association; 2014
  end-page: 18
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  end-page: 14
  article-title: Luminance‐contrast‐aware foveated rendering
  publication-title: ACM Trans Graph
– start-page: 5981
  year: 2022
  end-page: 6035
  article-title: Video super‐resolution based on deep learning: a comprehensive survey
  publication-title: Artif Intell Rev
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  end-page: 1867
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans Med Imaging
– start-page: 694
  year: 2016
  end-page: 711
– year: 2020
– year: 2023
– volume: 38
  start-page: 1
  issue: 6
  year: 2019
  end-page: 13
  article-title: DeepFovea: Neural reconstruction for foveated rendering and video compression using learned statistics of natural videos
  publication-title: ACM Trans Graph
– start-page: 3897
  year: 2019
  end-page: 3906
– year: 2023:
  article-title: MNSS: Neural supersampling framework for real‐time rendering on mobile devices
  publication-title: IEEE Trans Vis Comput Graph
– volume: 9
  start-page: 140042
  year: 2021
  end-page: 140049
  article-title: Complexity‐reduced super resolution for foveation‐based driving head mounted displays
  publication-title: IEEE Access
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  end-page: 20
  article-title: Kernel foveated rendering
  publication-title: Proc ACM Comput Graph Interact Tech
– volume: 28
  start-page: 1
  issue: 5
  year: 2009
  end-page: 12
  article-title: Amortized supersampling
  publication-title: ACM Trans Graph
– start-page: 1
  year: 2018
  end-page: 7
– volume: 40
  issue: 4
  year: 2021
  article-title: FovVideoVDP: A visible difference predictor for wide field‐of‐view video
  publication-title: ACM Trans Graph
– start-page: 1061
  year: New Orleans, LA: IEEE; 2022
  end-page: 1101
– ident: e_1_2_10_8_1
  doi: 10.1145/3414685.3417786
– ident: e_1_2_10_4_1
  doi: 10.1145/3478513.3480553
– ident: e_1_2_10_13_1
– ident: e_1_2_10_52_1
  doi: 10.1145/3355089.3356557
– start-page: 4778
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2017
  ident: e_1_2_10_29_1
– start-page: 9
  volume-title: Proceedings of High Performance Graphics
  year: 2014
  ident: e_1_2_10_50_1
– ident: e_1_2_10_66_1
  doi: 10.1145/3610548.3618209
– start-page: 3224
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2018
  ident: e_1_2_10_26_1
– ident: e_1_2_10_28_1
– ident: e_1_2_10_47_1
  doi: 10.1145/3543870
– ident: e_1_2_10_9_1
  doi: 10.1007/s10462-022-10147-y
– start-page: 1183
  volume-title: Computer Graphics Forum
  year: 2008
  ident: e_1_2_10_36_1
– start-page: 3897
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2019
  ident: e_1_2_10_27_1
– ident: e_1_2_10_53_1
  doi: 10.1109/TVCG.2022.3203102
– start-page: 13
  volume-title: Eurographics Symposium on Rendering ‐ DL
  year: 2020
  ident: e_1_2_10_2_1
– ident: e_1_2_10_42_1
  doi: 10.1111/cgf.14018
– ident: e_1_2_10_58_1
  doi: 10.1109/TIP.2003.819861
– year: 2023
  ident: e_1_2_10_65_1
  article-title: MNSS: Neural supersampling framework for real‐time rendering on mobile devices
  publication-title: IEEE Trans Vis Comput Graph
– ident: e_1_2_10_19_1
  doi: 10.1109/CVPR.2016.182
– ident: e_1_2_10_55_1
  doi: 10.1109/ACCESS.2021.3119597
– start-page: 61
  volume-title: Graphics hardware
  year: 2007
  ident: e_1_2_10_43_1
– start-page: 289
  volume-title: Computer Graphics Forum
  year: 2016
  ident: e_1_2_10_51_1
– ident: e_1_2_10_57_1
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_10_62_1
  doi: 10.1145/3450626.3459831
– ident: e_1_2_10_12_1
– ident: e_1_2_10_18_1
  doi: 10.1109/TPAMI.2015.2439281
– ident: e_1_2_10_46_1
  doi: 10.1145/3190834.3190850
– ident: e_1_2_10_23_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_7_1
– ident: e_1_2_10_22_1
  doi: 10.1109/CVPRW.2017.151
– start-page: 15
  volume-title: Computer Graphics Forum
  year: 2021
  ident: e_1_2_10_3_1
– ident: e_1_2_10_44_1
  doi: 10.1145/1618452.1618481
– start-page: 1921
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_25_1
– ident: e_1_2_10_20_1
  doi: 10.1109/CVPR.2017.19
– start-page: 41
  volume-title: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16
  year: 2020
  ident: e_1_2_10_24_1
– ident: e_1_2_10_54_1
  doi: 10.1145/3474085.3475673
– ident: e_1_2_10_34_1
  doi: 10.1109/CVPR52688.2022.00588
– volume: 40
  start-page: 1
  issue: 6
  year: 2021
  ident: e_1_2_10_5_1
  article-title: ExtraNet: real‐time extrapolated rendering for low‐latency temporal supersampling
  publication-title: ACM Trans Graph
  doi: 10.1145/3478513.3480531
– ident: e_1_2_10_39_1
– ident: e_1_2_10_49_1
  doi: 10.1145/3203199
– start-page: 766
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_10_63_1
– ident: e_1_2_10_59_1
  doi: 10.1109/TPAMI.2018.2865304
– ident: e_1_2_10_31_1
  doi: 10.1109/CVPRW.2019.00247
– ident: e_1_2_10_21_1
  doi: 10.1109/CVPR.2018.00262
– ident: e_1_2_10_48_1
  doi: 10.1109/VR51125.2022.00097
– start-page: 4472
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: e_1_2_10_30_1
– ident: e_1_2_10_33_1
  doi: 10.1007/s11263-018-01144-2
– start-page: 1864
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_10_35_1
– volume-title: ACM Trans. Graph
  year: 2014
  ident: e_1_2_10_45_1
– ident: e_1_2_10_16_1
  doi: 10.1145/3306346.3322985
– ident: e_1_2_10_14_1
  doi: 10.1145/2366145.2366183
– ident: e_1_2_10_61_1
  doi: 10.1016/j.imavis.2010.07.001
– ident: e_1_2_10_64_1
  doi: 10.1109/CVPRW56347.2022.00118
– ident: e_1_2_10_40_1
  doi: 10.1145/1572769.1572787
– ident: e_1_2_10_32_1
  doi: 10.1109/CVPR42600.2020.00342
– ident: e_1_2_10_17_1
  doi: 10.1145/3592406
– ident: e_1_2_10_38_1
  doi: 10.1145/166117.166131
– ident: e_1_2_10_41_1
  doi: 10.1111/j.1467-8659.2012.03014.x
– ident: e_1_2_10_10_1
  doi: 10.1109/TMM.2019.2919431
– ident: e_1_2_10_6_1
  doi: 10.1145/3386569.3392376
– ident: e_1_2_10_15_1
  doi: 10.1145/2980179.2980246
– ident: e_1_2_10_60_1
  doi: 10.1109/TCSVT.2012.2214933
– ident: e_1_2_10_11_1
– ident: e_1_2_10_37_1
  doi: 10.1145/1730804.1730819
– ident: e_1_2_10_56_1
  doi: 10.1109/TMI.2019.2959609
SSID ssj0026210
Score 2.3808532
Snippet As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
foveated rendering
Image quality
Image reconstruction
Neural networks
Rendering
super‐resolution
Virtual reality
Visual acuity
Title Neural foveated super‐resolution for real‐time VR rendering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2287
https://www.proquest.com/docview/3095890122
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVIoie0sdms9k9SSmWIuih2FLwEPZVEKUtSdODJ3-Cv9Ff4mw2aVUUxFPIZjYkk5mdb5LJNwidRwEJQ8C1vmGhhgSFEp9xMfa5CliIuYxk3nnu9o72BuRmFI6Kqkr7L4zjh1i-cLOeka_X1sGFTBsr0lAlFnUMeB-WX1uqZfFQf8kchSl2RAQhob7NEkre2SZulBO_RqIVvPwMUvMo091CD-X1ueKSp3o2l3X18o268X83sI02C_DptZ217KA1M9lFG8PHNHOj6R66smwdsDeeLmCVNtpLs5lJ3l_fIC0vrBSOJR5gzWcYta3pvWHfS_KOdBAG99Gge33f6flFkwVfQaSPfMVpGEhDIiIB3HDLcNYiokn1GAI5YDtsWlq0mlJjQyjRPGCCg4ABpSouFQsOUGUynZhD5MnIKBAzWjJJxkwLLSIj4PxUCZjJq-iyVHisCgZy2wjjOXbcyTgGlcRWJVV0tpScOdaNH2Rq5TOLC79L4wAQI-P2c2EVXeTK_3V-3GkP7fbor4LHaB0DonG1ujVUmSeZOQFEMpenue19AJKl3hY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO6JQIEgsp3RxnMUHhCoWlfWAoOIWvFVCQEFJC4ITn8B_8Ct8BV_COEtZBBIXDpyiJGMr8Xj8nh3nDcCS71DXRV5r68BVOEHxqB0w3rSZdAKXMOGLJPPcwaFXP6G7p-5pDzzn_8Kk-hDdBTcTGcl4bQLcLEiX31VDJb8tEST82Y7KPX1_h_O1eG1nE527TMj21vFG3c5SCtgScc23JfNcR2jqU4FQzoyeV5XyiqeaCFvIZIiuKl6tCEU09ahiTsAZGmjEMcmEDBystxf6TQJxI9S_edTVqsKyqfSBSz3bzEtypdsKKedP-hn73gntR1qc4Nr2CLzkLZJuZ7koddqiJB--iEX-kyYbheGMX1u1NCDGoEe3xmGocR530qvxBKwbQRI8a17fIhBpZcWdGx29Pj5FOg9EvBdZSKcv8Wr7_EpbjSMrSpLuIdJPwsmfvMEU9LWuW3oaLOFriWZaiUDQZqC44r7mWL8nOZZkBVjNPRzKTGTd5Pq4DFN5aBKiC0LjggIsdi1vUmGRb2yKeScJs6ElDh0kxQEzX0QLsJJ4-8fy4UatYY4zvzVcgIH68cF-uL9zuDcLgwQJXLo1uQh97aij55CAtcV80vEtOPvrbvMGGIc5NA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuNAEC2xSCM4sAwgAgGMxHJySNrtpQ8IRYQIhkUIDRE305slBITITkBw4hP4Dn6Fv-BLqPYSZhAjzYUDJ8vt6pbd1dXvtd1-BbDiO9R1kdfaOnAVLlA8ageMRzaTTuASJnyRZp47PPJ2T-mvM_dsAJ6Lf2EyfYj-CzcTGel8bQK8o6KNd9FQyW8rBPl-vqFyX9_f4XIt2dxroG9XCWnu_N7etfOMArZEWPNtyTzXEZr6VCCSMyPnVaO86qkIUQuJDNE1xWtVoYimHlXMCThDA40wJpmQgYPtDsIw9arMpIlonPSlqrBupnzgUs82y5JC6LZKNoo7_Rv63vnsn6w4hbXmOLwUHZLtZrms9LqiIh8-aEV-jx6bgLGcXVv1LBwmYUC3f8Jo6yLpZaXJFGwZORI8i25uEYa0spJeR8evj0-xLsIQr8UWkukrLO1eXGurdWLFaco9xPlpOP2SJ5iBofZNW8-CJXwt0UwrEQgaBYor7muO7XuSY01WgvXCwaHMJdZNpo-rMBOHJiG6IDQuKMFy37KTyYp8YlMuxkiYTyxJ6CAlDpj5HlqCtdTZ_6wfbtdb5jj3v4ZL8OO40QwP9o7252GEIHvL9iWXYagb9_QCsq-uWEyHvQXnXz1q3gAVqDfj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+foveated+super%E2%80%90resolution+for+real%E2%80%90time+VR+rendering&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Ye%2C+Jiannan&rft.au=Meng%2C+Xiaoxu&rft.au=Guo%2C+Daiyun&rft.au=Shang%2C+Cheng&rft.date=2024-07-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2287&rft.externalDBID=10.1002%252Fcav.2287&rft.externalDocID=CAV2287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon