Neural foveated super‐resolution for real‐time VR rendering
As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods.
We propose a method to improve neural super‐resolution for realtime rendering and alleviate the computation burden in VR by exploiting the foveated nature of the human visual system. By leveraging a partition‐assemble scheme, our method adaptively upsamples the low‐resolution image tiles to different qualities according to their perceptual importance. |
---|---|
AbstractList | As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods. As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for real‐time rendering algorithms. Neural super‐resolution is promising in reducing the computation cost and boosting the visual experience by scaling up low‐resolution renderings. However, the added workload of running neural networks cannot be neglected. In this article, we try to alleviate the burden by exploiting the foveated nature of the human visual system, in a way that we upscale the coarse input in a heterogeneous manner instead of uniform super‐resolution according to the visual acuity decreasing rapidly from the focal point to the periphery. With the help of dynamic and geometric information (i.e., pixel‐wise motion vectors, depth, and camera transformation) available inherently in the real‐time rendering content, we propose a neural accumulator to effectively aggregate the amortizedly rendered low‐resolution visual information from frame to frame recurrently. By leveraging a partition‐assemble scheme, we use a neural super‐resolution module to upsample the low‐resolution image tiles to different qualities according to their perceptual importance and reconstruct the final output adaptively. Perceptually high‐fidelity foveated high‐resolution frames are generated in real‐time, surpassing the quality of other foveated super‐resolution methods. We propose a method to improve neural super‐resolution for realtime rendering and alleviate the computation burden in VR by exploiting the foveated nature of the human visual system. By leveraging a partition‐assemble scheme, our method adaptively upsamples the low‐resolution image tiles to different qualities according to their perceptual importance. |
Author | Mao, Haotian Meng, Xiaoxu Shang, Cheng Yang, Xubo Guo, Daiyun Ye, Jiannan |
Author_xml | – sequence: 1 givenname: Jiannan orcidid: 0000-0003-1587-8556 surname: Ye fullname: Ye, Jiannan organization: Shanghai Jiao Tong University – sequence: 2 givenname: Xiaoxu surname: Meng fullname: Meng, Xiaoxu organization: Tencent Games Digital Content Technology Center – sequence: 3 givenname: Daiyun surname: Guo fullname: Guo, Daiyun organization: Shanghai Jiao Tong University – sequence: 4 givenname: Cheng surname: Shang fullname: Shang, Cheng organization: Shanghai Jiao Tong University – sequence: 5 givenname: Haotian surname: Mao fullname: Mao, Haotian organization: Shanghai Jiao Tong University – sequence: 6 givenname: Xubo surname: Yang fullname: Yang, Xubo email: yangxubo@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BookMark | eNp1kMtKw0AUhgepYFsFHyHgxk3i3DLJrKQUb1AURIu7YTI5kSlpUmeSSnc-gs_okzi14kJ0dW7fuf0jNGjaBhA6JjghGNMzo9cJpXm2h4Yk5SLmNHsa_PiCHKCR94tACkrwEJ3fQu90HVXtGnQHZeT7FbiPt3cHvq37zrZNqLnIga5DtrNLiOb3IWxKcLZ5PkT7la49HH3bMXq8vHiYXsezu6ub6WQWGypZFhspUlYAz3ghSCopz1PCNRZllaeMhVuAlJrgoqTABS8ly7UMAISLjSxMzsboZDd35dqXHnynFm3vmrBSMSzTXGJCaaCSHWVc672DShnb6e0TndO2VgSrrUgqiKS2IoWG018NK2eX2m3-QuMd-mpr2PzLqelk_sV_ApxWeE0 |
CitedBy_id | crossref_primary_10_1007_s00371_025_03842_8 crossref_primary_10_1007_s00371_025_03810_2 |
Cites_doi | 10.1145/3414685.3417786 10.1145/3478513.3480553 10.1145/3355089.3356557 10.1145/3610548.3618209 10.1145/3543870 10.1007/s10462-022-10147-y 10.1109/TVCG.2022.3203102 10.1111/cgf.14018 10.1109/TIP.2003.819861 10.1109/CVPR.2016.182 10.1109/ACCESS.2021.3119597 10.1007/978-3-319-46475-6_43 10.1145/3450626.3459831 10.1109/TPAMI.2015.2439281 10.1145/3190834.3190850 10.1109/CVPR.2016.90 10.1109/CVPRW.2017.151 10.1145/1618452.1618481 10.1109/CVPR.2017.19 10.1145/3474085.3475673 10.1109/CVPR52688.2022.00588 10.1145/3478513.3480531 10.1145/3203199 10.1109/TPAMI.2018.2865304 10.1109/CVPRW.2019.00247 10.1109/CVPR.2018.00262 10.1109/VR51125.2022.00097 10.1007/s11263-018-01144-2 10.1145/3306346.3322985 10.1145/2366145.2366183 10.1016/j.imavis.2010.07.001 10.1109/CVPRW56347.2022.00118 10.1145/1572769.1572787 10.1109/CVPR42600.2020.00342 10.1145/3592406 10.1145/166117.166131 10.1111/j.1467-8659.2012.03014.x 10.1109/TMM.2019.2919431 10.1145/3386569.3392376 10.1145/2980179.2980246 10.1109/TCSVT.2012.2214933 10.1145/1730804.1730819 10.1109/TMI.2019.2959609 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2287 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2287 CAV2287 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2018YFB1004902 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2937-c9653be474b6159248514a06df8533262e1da10bd2e464d938a914ae426c9bc83 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 02:28:57 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Jan 22 17:14:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2937-c9653be474b6159248514a06df8533262e1da10bd2e464d938a914ae426c9bc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1587-8556 |
PQID | 3095890122 |
PQPubID | 2034909 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3095890122 crossref_citationtrail_10_1002_cav_2287 crossref_primary_10_1002_cav_2287 wiley_primary_10_1002_cav_2287_CAV2287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July/August 2024 2024-07-00 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July/August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2015; 38 2010 2020; 39 2009 2019; 39 2019; 38 2019; 127 2018; 41 1993 2012; 31 2016; 35 2022; 28 2009; 28 2023; 42 2009; 2009 New Orleans, LA: IEEE; 2022 2023 2022 Goslar: Eurographics Association; 2014 2021 2022; 5 2018; 1 2020 2019; 21 2007; 41. Goslar: Eurographics Association 2008; 27 2004; 13 2019 2018 2017 2016 2014 2012; 23 2021; 40 2011; 29 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Yang L (e_1_2_10_36_1) 2008 Haris M (e_1_2_10_27_1) 2019 Weier M (e_1_2_10_51_1) 2016 Meng X (e_1_2_10_2_1) 2020 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 Kong F (e_1_2_10_63_1) 2022 e_1_2_10_11_1 e_1_2_10_32_1 Guo J (e_1_2_10_5_1) 2021; 40 e_1_2_10_61_1 e_1_2_10_48_1 Caballero J (e_1_2_10_29_1) 2017 Karis B (e_1_2_10_45_1) 2014 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 Vaidyanathan K (e_1_2_10_50_1) 2014 Zhang Y (e_1_2_10_35_1) 2023 Jo Y (e_1_2_10_26_1) 2018 e_1_2_10_52_1 Fan H (e_1_2_10_3_1) 2021 e_1_2_10_19_1 Tao X (e_1_2_10_30_1) 2017 Nehab D (e_1_2_10_43_1) 2007 e_1_2_10_54_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 Liu J (e_1_2_10_24_1) 2020 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Li Y (e_1_2_10_25_1) 2023 Yang S (e_1_2_10_65_1) 2023 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_47_1 |
References_xml | – start-page: 756 year: 2022 end-page: 764 – year: 2009 – volume: 31 start-page: 355 year: 2012 end-page: 364 – start-page: 136 year: 2017 end-page: 144 – start-page: 770 year: 2016 end-page: 778 – year: 2021 – volume: 2009 start-page: 109 year: 2009 end-page: 116 – start-page: 3224 year: 2018 end-page: 3232 – volume: 21 start-page: 3106 issue: 12 year: 2019 end-page: 3121 article-title: Deep learning for single image super‐resolution: A brief review publication-title: IEEE Trans Multimed – start-page: 766 year: 2022 end-page: 776 – start-page: 4681 year: 2017 end-page: 4690 – volume: 35 start-page: 289 year: 2016 end-page: 298 – volume: 29 start-page: 1 issue: 1 year: 2011 end-page: 14 article-title: Visual attention guided bit allocation in video compression publication-title: Image Vis Comput – year: 2014 – start-page: 109 year: 1993 end-page: 116 – volume: 27 start-page: 1183 year: 2008 end-page: 1188 – start-page: 5454 year: 2021 end-page: 5462 – start-page: 2472 year: 2018 end-page: 2481 – start-page: 13 year: 2020 end-page: 24 – year: 2022 – volume: 38 start-page: 295 issue: 2 year: 2015 end-page: 307 article-title: Image super‐resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 40 start-page: 15 year: 2021 end-page: 27 – volume: 127 start-page: 1106 issue: 8 year: 2019 end-page: 1125 article-title: Video enhancement with task‐oriented flow publication-title: Int J Comput Vis – start-page: 1921 year: 2023 end-page: 1959 – volume: 39 start-page: 607 year: 2020 end-page: 621 – year: 2019 – start-page: 1646 year: 2016 end-page: 1654 – start-page: 41 year: 2020 end-page: 55 – start-page: 3360 year: 2020 end-page: 3369 – volume: 40 start-page: 1 issue: 6 year: 2021 end-page: 16 article-title: ExtraNet: real‐time extrapolated rendering for low‐latency temporal supersampling publication-title: ACM Trans Graph – start-page: 4472 year: 2017 end-page: 4480 – start-page: 91 year: 2010 end-page: 98 – volume: 41. Goslar: Eurographics Association start-page: 61 year: 2007 end-page: 62 – volume: 40 start-page: 1 issue: 6 year: 2021 end-page: 13 article-title: Neural frame interpolation for rendered content publication-title: ACM Trans Graph – volume: 42 start-page: 1 issue: 4 year: 2023 end-page: 10 article-title: Towards Attention–aware Foveated Rendering publication-title: ACM Trans Graph – volume: 28 start-page: 3854 issue: 11 year: 2022 end-page: 3864 article-title: FoV‐NeRF: Foveated neural radiance fields for virtual reality publication-title: IEEE Trans Vis Comput Graph – volume: 39 start-page: 141 issue: 4 year: 2020 end-page: 142 article-title: Neural supersampling for real‐time rendering publication-title: ACM Trans Graph – start-page: 4778 year: 2017 end-page: 4787 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process – volume: 41 start-page: 2599 issue: 11 year: 2018 end-page: 2613 article-title: Fast and accurate image super‐resolution with deep laplacian pyramid networks publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 31 start-page: 1 issue: 6 year: 2012 end-page: 10 article-title: Foveated 3D graphics publication-title: ACM Trans Graph – start-page: 1864 year: 2023 end-page: 1883 – volume: 5 start-page: 1 issue: 3 year: 2022 end-page: 22 article-title: Temporally stable real‐time joint neural denoising and supersampling publication-title: Proce ACM Comput Graph Interact Tech – volume: 39 start-page: 1 issue: 6 year: 2020 end-page: 12 article-title: A reduced‐precision network for image reconstruction publication-title: ACM Trans Graph – start-page: 5972 year: 2022 end-page: 5981 – volume: 23 start-page: 684 issue: 4 year: 2012 end-page: 694 article-title: Video quality assessment by reduced reference spatio‐temporal entropic differencing publication-title: IEEE Trans Circuits Syst Video Technol – volume: 35 start-page: 1 issue: 6 year: 2016 end-page: 12 article-title: Towards foveated rendering for gaze‐tracked virtual reality publication-title: ACM Trans Graph – start-page: 9 year: Goslar: Eurographics Association; 2014 end-page: 18 – volume: 38 start-page: 1 issue: 4 year: 2019 end-page: 14 article-title: Luminance‐contrast‐aware foveated rendering publication-title: ACM Trans Graph – start-page: 5981 year: 2022 end-page: 6035 article-title: Video super‐resolution based on deep learning: a comprehensive survey publication-title: Artif Intell Rev – volume: 39 start-page: 1856 issue: 6 year: 2019 end-page: 1867 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans Med Imaging – start-page: 694 year: 2016 end-page: 711 – year: 2020 – year: 2023 – volume: 38 start-page: 1 issue: 6 year: 2019 end-page: 13 article-title: DeepFovea: Neural reconstruction for foveated rendering and video compression using learned statistics of natural videos publication-title: ACM Trans Graph – start-page: 3897 year: 2019 end-page: 3906 – year: 2023: article-title: MNSS: Neural supersampling framework for real‐time rendering on mobile devices publication-title: IEEE Trans Vis Comput Graph – volume: 9 start-page: 140042 year: 2021 end-page: 140049 article-title: Complexity‐reduced super resolution for foveation‐based driving head mounted displays publication-title: IEEE Access – volume: 1 start-page: 1 issue: 1 year: 2018 end-page: 20 article-title: Kernel foveated rendering publication-title: Proc ACM Comput Graph Interact Tech – volume: 28 start-page: 1 issue: 5 year: 2009 end-page: 12 article-title: Amortized supersampling publication-title: ACM Trans Graph – start-page: 1 year: 2018 end-page: 7 – volume: 40 issue: 4 year: 2021 article-title: FovVideoVDP: A visible difference predictor for wide field‐of‐view video publication-title: ACM Trans Graph – start-page: 1061 year: New Orleans, LA: IEEE; 2022 end-page: 1101 – ident: e_1_2_10_8_1 doi: 10.1145/3414685.3417786 – ident: e_1_2_10_4_1 doi: 10.1145/3478513.3480553 – ident: e_1_2_10_13_1 – ident: e_1_2_10_52_1 doi: 10.1145/3355089.3356557 – start-page: 4778 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2017 ident: e_1_2_10_29_1 – start-page: 9 volume-title: Proceedings of High Performance Graphics year: 2014 ident: e_1_2_10_50_1 – ident: e_1_2_10_66_1 doi: 10.1145/3610548.3618209 – start-page: 3224 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2018 ident: e_1_2_10_26_1 – ident: e_1_2_10_28_1 – ident: e_1_2_10_47_1 doi: 10.1145/3543870 – ident: e_1_2_10_9_1 doi: 10.1007/s10462-022-10147-y – start-page: 1183 volume-title: Computer Graphics Forum year: 2008 ident: e_1_2_10_36_1 – start-page: 3897 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2019 ident: e_1_2_10_27_1 – ident: e_1_2_10_53_1 doi: 10.1109/TVCG.2022.3203102 – start-page: 13 volume-title: Eurographics Symposium on Rendering ‐ DL year: 2020 ident: e_1_2_10_2_1 – ident: e_1_2_10_42_1 doi: 10.1111/cgf.14018 – ident: e_1_2_10_58_1 doi: 10.1109/TIP.2003.819861 – year: 2023 ident: e_1_2_10_65_1 article-title: MNSS: Neural supersampling framework for real‐time rendering on mobile devices publication-title: IEEE Trans Vis Comput Graph – ident: e_1_2_10_19_1 doi: 10.1109/CVPR.2016.182 – ident: e_1_2_10_55_1 doi: 10.1109/ACCESS.2021.3119597 – start-page: 61 volume-title: Graphics hardware year: 2007 ident: e_1_2_10_43_1 – start-page: 289 volume-title: Computer Graphics Forum year: 2016 ident: e_1_2_10_51_1 – ident: e_1_2_10_57_1 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_10_62_1 doi: 10.1145/3450626.3459831 – ident: e_1_2_10_12_1 – ident: e_1_2_10_18_1 doi: 10.1109/TPAMI.2015.2439281 – ident: e_1_2_10_46_1 doi: 10.1145/3190834.3190850 – ident: e_1_2_10_23_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_10_7_1 – ident: e_1_2_10_22_1 doi: 10.1109/CVPRW.2017.151 – start-page: 15 volume-title: Computer Graphics Forum year: 2021 ident: e_1_2_10_3_1 – ident: e_1_2_10_44_1 doi: 10.1145/1618452.1618481 – start-page: 1921 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_10_25_1 – ident: e_1_2_10_20_1 doi: 10.1109/CVPR.2017.19 – start-page: 41 volume-title: Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16 year: 2020 ident: e_1_2_10_24_1 – ident: e_1_2_10_54_1 doi: 10.1145/3474085.3475673 – ident: e_1_2_10_34_1 doi: 10.1109/CVPR52688.2022.00588 – volume: 40 start-page: 1 issue: 6 year: 2021 ident: e_1_2_10_5_1 article-title: ExtraNet: real‐time extrapolated rendering for low‐latency temporal supersampling publication-title: ACM Trans Graph doi: 10.1145/3478513.3480531 – ident: e_1_2_10_39_1 – ident: e_1_2_10_49_1 doi: 10.1145/3203199 – start-page: 766 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2022 ident: e_1_2_10_63_1 – ident: e_1_2_10_59_1 doi: 10.1109/TPAMI.2018.2865304 – ident: e_1_2_10_31_1 doi: 10.1109/CVPRW.2019.00247 – ident: e_1_2_10_21_1 doi: 10.1109/CVPR.2018.00262 – ident: e_1_2_10_48_1 doi: 10.1109/VR51125.2022.00097 – start-page: 4472 volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2017 ident: e_1_2_10_30_1 – ident: e_1_2_10_33_1 doi: 10.1007/s11263-018-01144-2 – start-page: 1864 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_10_35_1 – volume-title: ACM Trans. Graph year: 2014 ident: e_1_2_10_45_1 – ident: e_1_2_10_16_1 doi: 10.1145/3306346.3322985 – ident: e_1_2_10_14_1 doi: 10.1145/2366145.2366183 – ident: e_1_2_10_61_1 doi: 10.1016/j.imavis.2010.07.001 – ident: e_1_2_10_64_1 doi: 10.1109/CVPRW56347.2022.00118 – ident: e_1_2_10_40_1 doi: 10.1145/1572769.1572787 – ident: e_1_2_10_32_1 doi: 10.1109/CVPR42600.2020.00342 – ident: e_1_2_10_17_1 doi: 10.1145/3592406 – ident: e_1_2_10_38_1 doi: 10.1145/166117.166131 – ident: e_1_2_10_41_1 doi: 10.1111/j.1467-8659.2012.03014.x – ident: e_1_2_10_10_1 doi: 10.1109/TMM.2019.2919431 – ident: e_1_2_10_6_1 doi: 10.1145/3386569.3392376 – ident: e_1_2_10_15_1 doi: 10.1145/2980179.2980246 – ident: e_1_2_10_60_1 doi: 10.1109/TCSVT.2012.2214933 – ident: e_1_2_10_11_1 – ident: e_1_2_10_37_1 doi: 10.1145/1730804.1730819 – ident: e_1_2_10_56_1 doi: 10.1109/TMI.2019.2959609 |
SSID | ssj0026210 |
Score | 2.3808532 |
Snippet | As virtual reality display technologies advance, resolutions and refresh rates continue to approach human perceptual limits, presenting a challenge for... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms foveated rendering Image quality Image reconstruction Neural networks Rendering super‐resolution Virtual reality Visual acuity |
Title | Neural foveated super‐resolution for real‐time VR rendering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2287 https://www.proquest.com/docview/3095890122 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVIoie0sdms9k9SSmWIuih2FLwEPZVEKUtSdODJ3-Cv9Ff4mw2aVUUxFPIZjYkk5mdb5LJNwidRwEJQ8C1vmGhhgSFEp9xMfa5CliIuYxk3nnu9o72BuRmFI6Kqkr7L4zjh1i-cLOeka_X1sGFTBsr0lAlFnUMeB-WX1uqZfFQf8kchSl2RAQhob7NEkre2SZulBO_RqIVvPwMUvMo091CD-X1ueKSp3o2l3X18o268X83sI02C_DptZ217KA1M9lFG8PHNHOj6R66smwdsDeeLmCVNtpLs5lJ3l_fIC0vrBSOJR5gzWcYta3pvWHfS_KOdBAG99Gge33f6flFkwVfQaSPfMVpGEhDIiIB3HDLcNYiokn1GAI5YDtsWlq0mlJjQyjRPGCCg4ABpSouFQsOUGUynZhD5MnIKBAzWjJJxkwLLSIj4PxUCZjJq-iyVHisCgZy2wjjOXbcyTgGlcRWJVV0tpScOdaNH2Rq5TOLC79L4wAQI-P2c2EVXeTK_3V-3GkP7fbor4LHaB0DonG1ujVUmSeZOQFEMpenue19AJKl3hY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO6JQIEgsp3RxnMUHhCoWlfWAoOIWvFVCQEFJC4ITn8B_8Ct8BV_COEtZBBIXDpyiJGMr8Xj8nh3nDcCS71DXRV5r68BVOEHxqB0w3rSZdAKXMOGLJPPcwaFXP6G7p-5pDzzn_8Kk-hDdBTcTGcl4bQLcLEiX31VDJb8tEST82Y7KPX1_h_O1eG1nE527TMj21vFG3c5SCtgScc23JfNcR2jqU4FQzoyeV5XyiqeaCFvIZIiuKl6tCEU09ahiTsAZGmjEMcmEDBystxf6TQJxI9S_edTVqsKyqfSBSz3bzEtypdsKKedP-hn73gntR1qc4Nr2CLzkLZJuZ7koddqiJB--iEX-kyYbheGMX1u1NCDGoEe3xmGocR530qvxBKwbQRI8a17fIhBpZcWdGx29Pj5FOg9EvBdZSKcv8Wr7_EpbjSMrSpLuIdJPwsmfvMEU9LWuW3oaLOFriWZaiUDQZqC44r7mWL8nOZZkBVjNPRzKTGTd5Pq4DFN5aBKiC0LjggIsdi1vUmGRb2yKeScJs6ElDh0kxQEzX0QLsJJ4-8fy4UatYY4zvzVcgIH68cF-uL9zuDcLgwQJXLo1uQh97aij55CAtcV80vEtOPvrbvMGGIc5NA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuNAEC2xSCM4sAwgAgGMxHJySNrtpQ8IRYQIhkUIDRE305slBITITkBw4hP4Dn6Fv-BLqPYSZhAjzYUDJ8vt6pbd1dXvtd1-BbDiO9R1kdfaOnAVLlA8ageMRzaTTuASJnyRZp47PPJ2T-mvM_dsAJ6Lf2EyfYj-CzcTGel8bQK8o6KNd9FQyW8rBPl-vqFyX9_f4XIt2dxroG9XCWnu_N7etfOMArZEWPNtyTzXEZr6VCCSMyPnVaO86qkIUQuJDNE1xWtVoYimHlXMCThDA40wJpmQgYPtDsIw9arMpIlonPSlqrBupnzgUs82y5JC6LZKNoo7_Rv63vnsn6w4hbXmOLwUHZLtZrms9LqiIh8-aEV-jx6bgLGcXVv1LBwmYUC3f8Jo6yLpZaXJFGwZORI8i25uEYa0spJeR8evj0-xLsIQr8UWkukrLO1eXGurdWLFaco9xPlpOP2SJ5iBofZNW8-CJXwt0UwrEQgaBYor7muO7XuSY01WgvXCwaHMJdZNpo-rMBOHJiG6IDQuKMFy37KTyYp8YlMuxkiYTyxJ6CAlDpj5HlqCtdTZ_6wfbtdb5jj3v4ZL8OO40QwP9o7252GEIHvL9iWXYagb9_QCsq-uWEyHvQXnXz1q3gAVqDfj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+foveated+super%E2%80%90resolution+for+real%E2%80%90time+VR+rendering&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Ye%2C+Jiannan&rft.au=Meng%2C+Xiaoxu&rft.au=Guo%2C+Daiyun&rft.au=Shang%2C+Cheng&rft.date=2024-07-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2287&rft.externalDBID=10.1002%252Fcav.2287&rft.externalDocID=CAV2287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |