IEEE 802.11n: Joint modulation‐coding and guard interval adaptation scheme for throughput enhancement

Summary IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of communication systems Vol. 33; no. 8
Main Authors Patil, Pravinkumar, Patil, Meenakshi, Itraj, Santosh, Bombale, Uttam
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 25.05.2020
Subjects
Online AccessGet full text
ISSN1074-5351
1099-1131
DOI10.1002/dac.4347

Cover

Abstract Summary IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation, coding, and the guard interval (JAMCGI) algorithm on the WLAN system, under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm.
AbstractList IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm.
Summary IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation, coding, and the guard interval (JAMCGI) algorithm on the WLAN system, under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm.
IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm.
Author Patil, Meenakshi
Bombale, Uttam
Patil, Pravinkumar
Itraj, Santosh
Author_xml – sequence: 1
  givenname: Pravinkumar
  orcidid: 0000-0002-5903-071X
  surname: Patil
  fullname: Patil, Pravinkumar
  email: pspatil108@gmail.com
  organization: VTU
– sequence: 2
  givenname: Meenakshi
  surname: Patil
  fullname: Patil, Meenakshi
  organization: VTU
– sequence: 3
  givenname: Santosh
  surname: Itraj
  fullname: Itraj, Santosh
  organization: DOT, Shivaji University
– sequence: 4
  givenname: Uttam
  surname: Bombale
  fullname: Bombale, Uttam
  organization: DOT, Shivaji University
BookMark eNp10LFOwzAQBmALgURbkHgESywsCT47TlK2qgQoqsQCc3RxnDRVahcnAXXjEXhGnoS0YUIw-SR_d6f7x-TYWKMJuQDmA2P8OkflByKIjsgI2HTqAQg43tdR4Ekh4ZSMm2bNGIt5KEekXCRJQmPGfQBzQx9tZVq6sXlXY1tZ8_XxqWxemZKiyWnZoctpL7R7w5pijtv2wGijVnqjaWEdbVfOduVq27VUmxUa1X-Y9oycFFg3-vznnZCXu-R5_uAtn-4X89nSU3wqIg8R4iKOUGY6AMWCnMeR5Kw_RIdCSSkyGU6hiJiWUodKKMFQYoY6BtAZz8SEXA5zt86-drpp07XtnOlXplzEIbAYBO-VPyjlbNM4XaSqGi5pHVZ1Cizdh5n2Yab7MPuGq18NW1dt0O3-ot5A36ta7_516e1sfvDf5ViFGQ
CitedBy_id crossref_primary_10_31854_2307_1303_2023_11_1_39_49
crossref_primary_10_3390_sym13040700
Cites_doi 10.1002/0471715220
10.30684/etj.28.14.5
10.1155/2007/24342
10.1109/TWC.2007.051075
10.1109/MCOM.2008.4557042
10.1109/TVT.2008.928641
10.1109/MCAS.2008.915504
10.1007/978-94-007-0107-6_8
10.1017/CBO9780511841224
10.1145/1161089.1161107
10.1109/VTCFall.2013.6692094
10.1117/12.523283
10.1109/FRUCT.2013.6737942
10.1109/TNET.2010.2041788
10.1109/ANTS.2015.7413630
10.1109/WCNC.2007.126
10.1007/978-1-4419-0673-1_2
10.1109/MC.2002.1106171
10.1504/IJSNET.2013.056318
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/dac.4347
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1131
EndPage n/a
ExternalDocumentID 10_1002_dac_4347
DAC4347
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
ML~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
ID FETCH-LOGICAL-c2937-aa18f87a5be41c04d287520099e63c553b5691f70e55e6c3c30a5abae811eb2b3
IEDL.DBID DR2
ISSN 1074-5351
IngestDate Fri Jul 25 12:19:50 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Tue Jul 01 02:36:12 EDT 2025
Wed Jan 22 16:36:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-aa18f87a5be41c04d287520099e63c553b5691f70e55e6c3c30a5abae811eb2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5903-071X
PQID 2386108132
PQPubID 996367
PageCount 14
ParticipantIDs proquest_journals_2386108132
crossref_citationtrail_10_1002_dac_4347
crossref_primary_10_1002_dac_4347
wiley_primary_10_1002_dac_4347_DAC4347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 May 2020
PublicationDateYYYYMMDD 2020-05-25
PublicationDate_xml – month: 05
  year: 2020
  text: 25 May 2020
  day: 25
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal of communication systems
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 14
2012
2011
2010; 18
2010; 28
2007; 2007
2002; 35
2009
2008; 58
2007
2007; 6
1996
2008; 46
2008; 8
2006
2005
2004
2015
2014
2013
2009; 802
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_29_1
Proakis JG (e_1_2_7_23_1) 2014
e_1_2_7_25_1
Erceg V (e_1_2_7_24_1) 2004
e_1_2_7_22_1
Rappaport TS (e_1_2_7_28_1) 1996
e_1_2_7_21_1
e_1_2_7_20_1
Group IW (e_1_2_7_26_1) 2009; 802
Ziboon DH (e_1_2_7_9_1) 2010; 28
Prasad R (e_1_2_7_27_1) 2004
Kojima S (e_1_2_7_13_1) 2018; 14
References_xml – volume: 28
  issue: 14
  year: 2010
  article-title: Design and implementation of adaptive modulation modem based on software defined radio
  publication-title: Eng Tech J
– start-page: 31
  year: 2013
  end-page: 36
– start-page: 1
  year: 2015
  end-page: 6
– year: 2005
– volume: 58
  start-page: 1375
  issue: 3
  year: 2008
  end-page: 1386
  article-title: Joint rate and power adaptation for wireless local area networks in generalized Nakagami fading channels
  publication-title: IEEE Trans Veh Technol
– start-page: 656
  year: 2007
  end-page: 661
– year: 1996
– year: 2014
– volume: 8
  start-page: 28
  issue: 1
  year: 2008
  end-page: 54
  article-title: Wireless LAN comes of age: Understanding the IEEE 802.11 n amendment
  publication-title: IEEE Circ Syst Mag
– volume: 18
  start-page: 1387
  issue: 5
  year: 2010
  end-page: 1400
  article-title: Engineering wireless mesh networks: joint scheduling, routing, power control, and rate adaptation
  publication-title: IEEE/ACM Trans Netw (TON)
– start-page: 29
  year: 2009
  end-page: 62
– year: 2012
– volume: 2007
  issue: 1
  year: 2007
  article-title: Channel impulse response length and noise variance estimation for OFDM systems with adaptive guard interval
  publication-title: EURASIP J Wireless Commun Netw
– volume: 46
  issue: 7
  year: 2008
  article-title: IEEE 802.11 n development: History, process, and technology
  publication-title: IEEE Communications Magazine
– start-page: 243
  year: 2004
  end-page: 253
– volume: 14
  start-page: 9
  issue: 1
  year: 2013
  end-page: 21
  article-title: A comparative simulation study of rate adaptation algorithms in wireless LANs
  publication-title: Int J Sensor Netw
– start-page: 103
  year: 2011
  end-page: 118
– volume: 6
  start-page: 3058
  issue: 8
  year: 2007
  end-page: 3068
  article-title: Quality‐of‐service driven power and rate adaptation over wireless links
  publication-title: IEEE Trans Wireless Commun
– year: 2004
– start-page: 1
  year: 2013
  end-page: 5
– start-page: 146
  year: 2006
  end-page: 157
– volume: 802
  year: 2009
  article-title: Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 5: enhancements for higher throughput
  publication-title: IEEE Std
– volume: 14
  issue: 4
  year: 2018
  article-title: Throughput maximization by adaptive switching with modulation coding scheme and frequency symbol spreading
  publication-title: J Commun Softw Syst
– volume: 35
  start-page: 19
  issue: 12
  year: 2002
  end-page: 21
  article-title: OFDM: Back to the wireless future
  publication-title: Computer
– start-page: 126
  year: 2004
  end-page: 134
– year: 2013
– ident: e_1_2_7_29_1
  doi: 10.1002/0471715220
– volume: 802
  year: 2009
  ident: e_1_2_7_26_1
  article-title: Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 5: enhancements for higher throughput
  publication-title: IEEE Std
– volume: 28
  issue: 14
  year: 2010
  ident: e_1_2_7_9_1
  article-title: Design and implementation of adaptive modulation modem based on software defined radio
  publication-title: Eng Tech J
  doi: 10.30684/etj.28.14.5
– ident: e_1_2_7_17_1
  doi: 10.1155/2007/24342
– ident: e_1_2_7_15_1
  doi: 10.1109/TWC.2007.051075
– ident: e_1_2_7_5_1
  doi: 10.1109/MCOM.2008.4557042
– ident: e_1_2_7_14_1
  doi: 10.1109/TVT.2008.928641
– volume-title: OFDM For Wireless Communications Systems
  year: 2004
  ident: e_1_2_7_27_1
– ident: e_1_2_7_7_1
– ident: e_1_2_7_6_1
  doi: 10.1109/MCAS.2008.915504
– volume-title: Digital Communications
  year: 2014
  ident: e_1_2_7_23_1
– ident: e_1_2_7_4_1
  doi: 10.1007/978-94-007-0107-6_8
– ident: e_1_2_7_25_1
  doi: 10.1017/CBO9780511841224
– ident: e_1_2_7_10_1
  doi: 10.1145/1161089.1161107
– ident: e_1_2_7_22_1
  doi: 10.1109/VTCFall.2013.6692094
– volume-title: Wireless Communications: Principles and Practice. 2
  year: 1996
  ident: e_1_2_7_28_1
– ident: e_1_2_7_19_1
  doi: 10.1117/12.523283
– ident: e_1_2_7_12_1
  doi: 10.1109/FRUCT.2013.6737942
– volume: 14
  issue: 4
  year: 2018
  ident: e_1_2_7_13_1
  article-title: Throughput maximization by adaptive switching with modulation coding scheme and frequency symbol spreading
  publication-title: J Commun Softw Syst
– ident: e_1_2_7_21_1
– ident: e_1_2_7_16_1
  doi: 10.1109/TNET.2010.2041788
– ident: e_1_2_7_20_1
  doi: 10.1109/ANTS.2015.7413630
– volume-title: IEEE 802.11 document 03/940r4 (TGn Channel Models)
  year: 2004
  ident: e_1_2_7_24_1
– ident: e_1_2_7_8_1
  doi: 10.1109/WCNC.2007.126
– ident: e_1_2_7_3_1
  doi: 10.1007/978-1-4419-0673-1_2
– ident: e_1_2_7_18_1
– ident: e_1_2_7_2_1
  doi: 10.1109/MC.2002.1106171
– ident: e_1_2_7_11_1
  doi: 10.1504/IJSNET.2013.056318
SSID ssj0008265
Score 2.2010405
Snippet Summary IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive...
IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adaptation
Algorithms
BER
Broadband
Coding
Computer simulation
IEEE 802.11n
Impulse response
Interference
Local area networks
Modulation
OFDM
Orthogonal Frequency Division Multiplexing
TGn channel
throughput
Transmission rate (communications)
Wireless networks
WLAN
Title IEEE 802.11n: Joint modulation‐coding and guard interval adaptation scheme for throughput enhancement
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.4347
https://www.proquest.com/docview/2386108132
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4IwoFGQnBlDaO7cRhq1qqqhIMiEqVGCK_UipoWtF0YeIn8Bv5Jdh5tAWBhJiynPPw3dnfXc7fAXAe4hihmDNHCY4dy47iMEKUIzxJpatFoGKbh7y59bt90hvQQVFVac_C5PwQi4Sb9YxsvbYOzsWssSQNVeZ5BBN7kBxh39Lmt--WzFEGNdOy3JBiikreWddrlAO_7kRLeLkKUrNdprMFHsr3y4tLnurzVNTl6zfqxv99wDbYLMAnbObWsgPWdLILNlYoCffA0EZ_kLmeWeWSK9ibjJIUjieq6PL18fYuJ3a7gzxRcGjtC46ysklzX674NP-zD03MrMcaGkQMi05A03kKdfJojcwmJPdBv3N93-o6RTMGRxpEEDicIxazgFOhCZIuUSbUyiibQu1jSSkW1A9RHLiaUu1LLLHLKRdcM4RM9C7wAagkk0QfAhgLGiCkNA45IhrFzEBUHjLJA6aYCoMquCwVE8mCqdw2zHiOco5lLzJTF9mpq4KzheQ0Z-f4QaZW6jYq_HMWGaBicCMzoXgVXGRK-nV81G627PXor4LHYN2zQblLHY_WQCV9mesTg1xScZrZ6CcWDOrq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xFEDBjVhYwEgIqrBxbG8cqFYcWs4CgUSBFPkKICC7gmxDxSfwjXwJdg4WEEiIKs04hz32vDd23gCsRSTBOBHc01IQz6mjeJxS7clAMeUbGerE5SFPTpvtC3p4yS4HYLv6F6bQh_hIuLmZka_XboK7hHSjrxqq7QMpoeEgDFOLMxzz2j3ra0dZ3MyqA4eMMFwpz_pBo2r5NRb1AeZnmJrHmf0JuKresDhecrfZy-Smev4m3vjPT5iE8RJ_olbhMFMwYNJpGPukSjgD144AIu4HdqFLt9Bh5zbN0ENHl4W-3l5eVcdFPCRSja6di6Hb_OSkva_Qolts7iNLm82DQRYUo7IYULeXIZPeOD9zOclZuNjfO99pe2U9Bk9ZUBB6QmCe8FAwaShWPtWWbeWqTZFpEsUYkawZ4ST0DWOmqYgivmBCCsMxtgRekjkYSjupmQeUSBZirA2JBKYGJ9yiVBFxJUKuuY7CGmxUIxOrUqzc1cy4jwuZ5SC2XRe7rqvB6odltxDo-MGmXg1uXE7Rp9hiFQsduWXjNVjPR-nX9vFua8ddF_5quAIj7fOT4_j44PRoEUYDx9F95gWsDkPZY88sWSCTyeXcYd8By-nvCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5cQPTgLj7XCKKn-pomaVNvoj7cEVEQPJRsVVH7Htp38eRP8Df6S0y6-FQUxFMvky6ZmeSbyfQbgNWYpBingntaCuI5dhSPU6o9GSimfCMjnbo85PFJuHdBDy7ZZVVV6f6FKfkhPhJuzjOK9do5eEenzR5pqLbPo4RG_TBIQwskHCA661FHWdjM6npDRhiuiWf9oFmP_LoV9fDlZ5RabDOtMbiqX7CsLrnb6OZyQz1_42783xeMw2iFPtFWaS4T0GeySRj5xEk4Bdcu_EPcD-wyl22ig_ZtlqOHtq7afL29vKq22--QyDS6dgaGbou6SXtfoUWnPNpHNmg2DwZZSIyqVkCdbo5MduOszGUkp-GitXu-vedV3Rg8ZSFB5AmBecojwaShWPlU21ir4GyKTUgUY0SyMMZp5BvGTKiIIr5gQgrDMbbhuyQzMJC1MzMLKJUswlgbEgtMDU65xagi5kpEXHMdRw1YrxWTqIqq3HXMuE9KkuUgsVOXuKlrwMqHZKek5_hBZqHWbVI56FNikYoFjtzG4g1YK5T06_hkZ2vbXef-KrgMQ6c7reRo_-RwHoYDF6D7zAvYAgzkj12zaFFMLpcKc30HFK7tuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IEEE+802.11n%3A+Joint+modulation%E2%80%90coding+and+guard+interval+adaptation+scheme+for+throughput+enhancement&rft.jtitle=International+journal+of+communication+systems&rft.au=Patil%2C+Pravinkumar&rft.au=Patil%2C+Meenakshi&rft.au=Itraj%2C+Santosh&rft.au=Bombale%2C+Uttam&rft.date=2020-05-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=33&rft.issue=8&rft_id=info:doi/10.1002%2Fdac.4347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon