IEEE 802.11n: Joint modulation‐coding and guard interval adaptation scheme for throughput enhancement
Summary IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard...
Saved in:
Published in | International journal of communication systems Vol. 33; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
25.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1074-5351 1099-1131 |
DOI | 10.1002/dac.4347 |
Cover
Abstract | Summary
IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm.
In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation, coding, and the guard interval (JAMCGI) algorithm on the WLAN system, under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. |
---|---|
AbstractList | IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. Summary IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation, coding, and the guard interval (JAMCGI) algorithm on the WLAN system, under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm. |
Author | Patil, Meenakshi Bombale, Uttam Patil, Pravinkumar Itraj, Santosh |
Author_xml | – sequence: 1 givenname: Pravinkumar orcidid: 0000-0002-5903-071X surname: Patil fullname: Patil, Pravinkumar email: pspatil108@gmail.com organization: VTU – sequence: 2 givenname: Meenakshi surname: Patil fullname: Patil, Meenakshi organization: VTU – sequence: 3 givenname: Santosh surname: Itraj fullname: Itraj, Santosh organization: DOT, Shivaji University – sequence: 4 givenname: Uttam surname: Bombale fullname: Bombale, Uttam organization: DOT, Shivaji University |
BookMark | eNp10LFOwzAQBmALgURbkHgESywsCT47TlK2qgQoqsQCc3RxnDRVahcnAXXjEXhGnoS0YUIw-SR_d6f7x-TYWKMJuQDmA2P8OkflByKIjsgI2HTqAQg43tdR4Ekh4ZSMm2bNGIt5KEekXCRJQmPGfQBzQx9tZVq6sXlXY1tZ8_XxqWxemZKiyWnZoctpL7R7w5pijtv2wGijVnqjaWEdbVfOduVq27VUmxUa1X-Y9oycFFg3-vznnZCXu-R5_uAtn-4X89nSU3wqIg8R4iKOUGY6AMWCnMeR5Kw_RIdCSSkyGU6hiJiWUodKKMFQYoY6BtAZz8SEXA5zt86-drpp07XtnOlXplzEIbAYBO-VPyjlbNM4XaSqGi5pHVZ1Cizdh5n2Yab7MPuGq18NW1dt0O3-ot5A36ta7_516e1sfvDf5ViFGQ |
CitedBy_id | crossref_primary_10_31854_2307_1303_2023_11_1_39_49 crossref_primary_10_3390_sym13040700 |
Cites_doi | 10.1002/0471715220 10.30684/etj.28.14.5 10.1155/2007/24342 10.1109/TWC.2007.051075 10.1109/MCOM.2008.4557042 10.1109/TVT.2008.928641 10.1109/MCAS.2008.915504 10.1007/978-94-007-0107-6_8 10.1017/CBO9780511841224 10.1145/1161089.1161107 10.1109/VTCFall.2013.6692094 10.1117/12.523283 10.1109/FRUCT.2013.6737942 10.1109/TNET.2010.2041788 10.1109/ANTS.2015.7413630 10.1109/WCNC.2007.126 10.1007/978-1-4419-0673-1_2 10.1109/MC.2002.1106171 10.1504/IJSNET.2013.056318 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 8FD JQ2 L7M |
DOI | 10.1002/dac.4347 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1131 |
EndPage | n/a |
ExternalDocumentID | 10_1002_dac_4347 DAC4347 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M |
ID | FETCH-LOGICAL-c2937-aa18f87a5be41c04d287520099e63c553b5691f70e55e6c3c30a5abae811eb2b3 |
IEDL.DBID | DR2 |
ISSN | 1074-5351 |
IngestDate | Fri Jul 25 12:19:50 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Tue Jul 01 02:36:12 EDT 2025 Wed Jan 22 16:36:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2937-aa18f87a5be41c04d287520099e63c553b5691f70e55e6c3c30a5abae811eb2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5903-071X |
PQID | 2386108132 |
PQPubID | 996367 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2386108132 crossref_citationtrail_10_1002_dac_4347 crossref_primary_10_1002_dac_4347 wiley_primary_10_1002_dac_4347_DAC4347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 25 May 2020 |
PublicationDateYYYYMMDD | 2020-05-25 |
PublicationDate_xml | – month: 05 year: 2020 text: 25 May 2020 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | International journal of communication systems |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 14 2012 2011 2010; 18 2010; 28 2007; 2007 2002; 35 2009 2008; 58 2007 2007; 6 1996 2008; 46 2008; 8 2006 2005 2004 2015 2014 2013 2009; 802 2018; 14 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_29_1 Proakis JG (e_1_2_7_23_1) 2014 e_1_2_7_25_1 Erceg V (e_1_2_7_24_1) 2004 e_1_2_7_22_1 Rappaport TS (e_1_2_7_28_1) 1996 e_1_2_7_21_1 e_1_2_7_20_1 Group IW (e_1_2_7_26_1) 2009; 802 Ziboon DH (e_1_2_7_9_1) 2010; 28 Prasad R (e_1_2_7_27_1) 2004 Kojima S (e_1_2_7_13_1) 2018; 14 |
References_xml | – volume: 28 issue: 14 year: 2010 article-title: Design and implementation of adaptive modulation modem based on software defined radio publication-title: Eng Tech J – start-page: 31 year: 2013 end-page: 36 – start-page: 1 year: 2015 end-page: 6 – year: 2005 – volume: 58 start-page: 1375 issue: 3 year: 2008 end-page: 1386 article-title: Joint rate and power adaptation for wireless local area networks in generalized Nakagami fading channels publication-title: IEEE Trans Veh Technol – start-page: 656 year: 2007 end-page: 661 – year: 1996 – year: 2014 – volume: 8 start-page: 28 issue: 1 year: 2008 end-page: 54 article-title: Wireless LAN comes of age: Understanding the IEEE 802.11 n amendment publication-title: IEEE Circ Syst Mag – volume: 18 start-page: 1387 issue: 5 year: 2010 end-page: 1400 article-title: Engineering wireless mesh networks: joint scheduling, routing, power control, and rate adaptation publication-title: IEEE/ACM Trans Netw (TON) – start-page: 29 year: 2009 end-page: 62 – year: 2012 – volume: 2007 issue: 1 year: 2007 article-title: Channel impulse response length and noise variance estimation for OFDM systems with adaptive guard interval publication-title: EURASIP J Wireless Commun Netw – volume: 46 issue: 7 year: 2008 article-title: IEEE 802.11 n development: History, process, and technology publication-title: IEEE Communications Magazine – start-page: 243 year: 2004 end-page: 253 – volume: 14 start-page: 9 issue: 1 year: 2013 end-page: 21 article-title: A comparative simulation study of rate adaptation algorithms in wireless LANs publication-title: Int J Sensor Netw – start-page: 103 year: 2011 end-page: 118 – volume: 6 start-page: 3058 issue: 8 year: 2007 end-page: 3068 article-title: Quality‐of‐service driven power and rate adaptation over wireless links publication-title: IEEE Trans Wireless Commun – year: 2004 – start-page: 1 year: 2013 end-page: 5 – start-page: 146 year: 2006 end-page: 157 – volume: 802 year: 2009 article-title: Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 5: enhancements for higher throughput publication-title: IEEE Std – volume: 14 issue: 4 year: 2018 article-title: Throughput maximization by adaptive switching with modulation coding scheme and frequency symbol spreading publication-title: J Commun Softw Syst – volume: 35 start-page: 19 issue: 12 year: 2002 end-page: 21 article-title: OFDM: Back to the wireless future publication-title: Computer – start-page: 126 year: 2004 end-page: 134 – year: 2013 – ident: e_1_2_7_29_1 doi: 10.1002/0471715220 – volume: 802 year: 2009 ident: e_1_2_7_26_1 article-title: Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 5: enhancements for higher throughput publication-title: IEEE Std – volume: 28 issue: 14 year: 2010 ident: e_1_2_7_9_1 article-title: Design and implementation of adaptive modulation modem based on software defined radio publication-title: Eng Tech J doi: 10.30684/etj.28.14.5 – ident: e_1_2_7_17_1 doi: 10.1155/2007/24342 – ident: e_1_2_7_15_1 doi: 10.1109/TWC.2007.051075 – ident: e_1_2_7_5_1 doi: 10.1109/MCOM.2008.4557042 – ident: e_1_2_7_14_1 doi: 10.1109/TVT.2008.928641 – volume-title: OFDM For Wireless Communications Systems year: 2004 ident: e_1_2_7_27_1 – ident: e_1_2_7_7_1 – ident: e_1_2_7_6_1 doi: 10.1109/MCAS.2008.915504 – volume-title: Digital Communications year: 2014 ident: e_1_2_7_23_1 – ident: e_1_2_7_4_1 doi: 10.1007/978-94-007-0107-6_8 – ident: e_1_2_7_25_1 doi: 10.1017/CBO9780511841224 – ident: e_1_2_7_10_1 doi: 10.1145/1161089.1161107 – ident: e_1_2_7_22_1 doi: 10.1109/VTCFall.2013.6692094 – volume-title: Wireless Communications: Principles and Practice. 2 year: 1996 ident: e_1_2_7_28_1 – ident: e_1_2_7_19_1 doi: 10.1117/12.523283 – ident: e_1_2_7_12_1 doi: 10.1109/FRUCT.2013.6737942 – volume: 14 issue: 4 year: 2018 ident: e_1_2_7_13_1 article-title: Throughput maximization by adaptive switching with modulation coding scheme and frequency symbol spreading publication-title: J Commun Softw Syst – ident: e_1_2_7_21_1 – ident: e_1_2_7_16_1 doi: 10.1109/TNET.2010.2041788 – ident: e_1_2_7_20_1 doi: 10.1109/ANTS.2015.7413630 – volume-title: IEEE 802.11 document 03/940r4 (TGn Channel Models) year: 2004 ident: e_1_2_7_24_1 – ident: e_1_2_7_8_1 doi: 10.1109/WCNC.2007.126 – ident: e_1_2_7_3_1 doi: 10.1007/978-1-4419-0673-1_2 – ident: e_1_2_7_18_1 – ident: e_1_2_7_2_1 doi: 10.1109/MC.2002.1106171 – ident: e_1_2_7_11_1 doi: 10.1504/IJSNET.2013.056318 |
SSID | ssj0008265 |
Score | 2.2010405 |
Snippet | Summary
IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive... IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adaptation Algorithms BER Broadband Coding Computer simulation IEEE 802.11n Impulse response Interference Local area networks Modulation OFDM Orthogonal Frequency Division Multiplexing TGn channel throughput Transmission rate (communications) Wireless networks WLAN |
Title | IEEE 802.11n: Joint modulation‐coding and guard interval adaptation scheme for throughput enhancement |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.4347 https://www.proquest.com/docview/2386108132 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4IwoFGQnBlDaO7cRhq1qqqhIMiEqVGCK_UipoWtF0YeIn8Bv5Jdh5tAWBhJiynPPw3dnfXc7fAXAe4hihmDNHCY4dy47iMEKUIzxJpatFoGKbh7y59bt90hvQQVFVac_C5PwQi4Sb9YxsvbYOzsWssSQNVeZ5BBN7kBxh39Lmt--WzFEGNdOy3JBiikreWddrlAO_7kRLeLkKUrNdprMFHsr3y4tLnurzVNTl6zfqxv99wDbYLMAnbObWsgPWdLILNlYoCffA0EZ_kLmeWeWSK9ibjJIUjieq6PL18fYuJ3a7gzxRcGjtC46ysklzX674NP-zD03MrMcaGkQMi05A03kKdfJojcwmJPdBv3N93-o6RTMGRxpEEDicIxazgFOhCZIuUSbUyiibQu1jSSkW1A9RHLiaUu1LLLHLKRdcM4RM9C7wAagkk0QfAhgLGiCkNA45IhrFzEBUHjLJA6aYCoMquCwVE8mCqdw2zHiOco5lLzJTF9mpq4KzheQ0Z-f4QaZW6jYq_HMWGaBicCMzoXgVXGRK-nV81G627PXor4LHYN2zQblLHY_WQCV9mesTg1xScZrZ6CcWDOrq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwEB1xFEDBjVhYwEgIqrBxbG8cqFYcWs4CgUSBFPkKICC7gmxDxSfwjXwJdg4WEEiIKs04hz32vDd23gCsRSTBOBHc01IQz6mjeJxS7clAMeUbGerE5SFPTpvtC3p4yS4HYLv6F6bQh_hIuLmZka_XboK7hHSjrxqq7QMpoeEgDFOLMxzz2j3ra0dZ3MyqA4eMMFwpz_pBo2r5NRb1AeZnmJrHmf0JuKresDhecrfZy-Smev4m3vjPT5iE8RJ_olbhMFMwYNJpGPukSjgD144AIu4HdqFLt9Bh5zbN0ENHl4W-3l5eVcdFPCRSja6di6Hb_OSkva_Qolts7iNLm82DQRYUo7IYULeXIZPeOD9zOclZuNjfO99pe2U9Bk9ZUBB6QmCe8FAwaShWPtWWbeWqTZFpEsUYkawZ4ST0DWOmqYgivmBCCsMxtgRekjkYSjupmQeUSBZirA2JBKYGJ9yiVBFxJUKuuY7CGmxUIxOrUqzc1cy4jwuZ5SC2XRe7rqvB6odltxDo-MGmXg1uXE7Rp9hiFQsduWXjNVjPR-nX9vFua8ddF_5quAIj7fOT4_j44PRoEUYDx9F95gWsDkPZY88sWSCTyeXcYd8By-nvCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5cQPTgLj7XCKKn-pomaVNvoj7cEVEQPJRsVVH7Htp38eRP8Df6S0y6-FQUxFMvky6ZmeSbyfQbgNWYpBingntaCuI5dhSPU6o9GSimfCMjnbo85PFJuHdBDy7ZZVVV6f6FKfkhPhJuzjOK9do5eEenzR5pqLbPo4RG_TBIQwskHCA661FHWdjM6npDRhiuiWf9oFmP_LoV9fDlZ5RabDOtMbiqX7CsLrnb6OZyQz1_42783xeMw2iFPtFWaS4T0GeySRj5xEk4Bdcu_EPcD-wyl22ig_ZtlqOHtq7afL29vKq22--QyDS6dgaGbou6SXtfoUWnPNpHNmg2DwZZSIyqVkCdbo5MduOszGUkp-GitXu-vedV3Rg8ZSFB5AmBecojwaShWPlU21ir4GyKTUgUY0SyMMZp5BvGTKiIIr5gQgrDMbbhuyQzMJC1MzMLKJUswlgbEgtMDU65xagi5kpEXHMdRw1YrxWTqIqq3HXMuE9KkuUgsVOXuKlrwMqHZKek5_hBZqHWbVI56FNikYoFjtzG4g1YK5T06_hkZ2vbXef-KrgMQ6c7reRo_-RwHoYDF6D7zAvYAgzkj12zaFFMLpcKc30HFK7tuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IEEE+802.11n%3A+Joint+modulation%E2%80%90coding+and+guard+interval+adaptation+scheme+for+throughput+enhancement&rft.jtitle=International+journal+of+communication+systems&rft.au=Patil%2C+Pravinkumar&rft.au=Patil%2C+Meenakshi&rft.au=Itraj%2C+Santosh&rft.au=Bombale%2C+Uttam&rft.date=2020-05-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=33&rft.issue=8&rft_id=info:doi/10.1002%2Fdac.4347&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |