Energy classification in a nonstandard fourth‐order parabolic equation with a Navier boundary condition

This paper deals with a fourth‐order parabolic equation involving variable exponents, subject to Navier boundary conditions. We firstly give an optimal classification on the initial energy for blow‐up or global solutions, which is characterized by the sign of the Nehari energy and the difference bet...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 46; no. 4; pp. 3703 - 3720
Main Authors Liu, Bingchen, Sun, Xizheng, Wang, Yiming
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 15.03.2023
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.8717

Cover

Loading…
Abstract This paper deals with a fourth‐order parabolic equation involving variable exponents, subject to Navier boundary conditions. We firstly give an optimal classification on the initial energy for blow‐up or global solutions, which is characterized by the sign of the Nehari energy and the difference between the initial energy and the depth of the potential well. Then, large time estimates of solutions are obtained. The results of the paper extend and complete the ones in “Applied Mathematics Letters 78(2018)141–146.”
AbstractList This paper deals with a fourth‐order parabolic equation involving variable exponents, subject to Navier boundary conditions. We firstly give an optimal classification on the initial energy for blow‐up or global solutions, which is characterized by the sign of the Nehari energy and the difference between the initial energy and the depth of the potential well. Then, large time estimates of solutions are obtained. The results of the paper extend and complete the ones in “Applied Mathematics Letters 78(2018)141–146.”
This paper deals with a fourth‐order parabolic equation involving variable exponents, subject to Navier boundary conditions. We firstly give an optimal classification on the initial energy for blow‐up or global solutions, which is characterized by the sign of the Nehari energy and the difference between the initial energy and the depth of the potential well. Then, large time estimates of solutions are obtained. The results of the paper extend and complete the ones in “ Applied Mathematics Letters 78(2018)141–146.”
Author Sun, Xizheng
Liu, Bingchen
Wang, Yiming
Author_xml – sequence: 1
  givenname: Bingchen
  orcidid: 0000-0003-4136-5375
  surname: Liu
  fullname: Liu, Bingchen
  email: bcliu@upc.edu.cn
  organization: China University of Petroleum
– sequence: 2
  givenname: Xizheng
  surname: Sun
  fullname: Sun, Xizheng
  organization: China University of Petroleum
– sequence: 3
  givenname: Yiming
  surname: Wang
  fullname: Wang, Yiming
  organization: China University of Petroleum
BookMark eNp1kL1OwzAURi0EEm1B4hEisbCk2I5T22NVlR-phQVmy3Ec6iq1Wzuh6sYj8Iw8CU7DhGCydHXOd32_ITi1zmoArhAcIwjx7WYjx4wiegIGCHKeIkInp2AAEYUpwYicg2EIawghQwgPgJlb7d8OiaplCKYySjbG2cTYRCYxOTTSltKXSeVa36y-Pj6dL7VPttLLwtVGJXrX9sreNKsoPcl3E4HCtZ0Yg50tTQdcgLNK1kFf_rwj8Ho3f5k9pIvn-8fZdJEqzDOaSi4p01QrxpQsSZFnOOeMQEYV1xDnsKgmWKOcVogjQijkE4qkJqTiTMdRNgLXfe7Wu12rQyPW8e82rhSY0owzigmM1LinlHcheF0JZZrjIY2XphYIiq5OEesUXZ1RuPklbL3ZxAv_QtMe3ZtaH_7lxHI5PfLfoYeHdA
CitedBy_id crossref_primary_10_11650_tjm_250301
Cites_doi 10.1016/j.jde.2015.08.022
10.1109/TIP.2003.819229
10.2991/978-94-6239-112-3
10.1016/j.nonrwa.2018.03.009
10.1016/j.aml.2012.12.017
10.1016/j.camwa.2018.01.047
10.1016/S0022-247X(03)00474-8
10.1515/anona-2020-0141
10.1016/j.aml.2016.08.013
10.1016/j.nonrwa.2020.103155
10.1007/s00205-002-0208-7
10.1016/j.aml.2013.07.012
10.1016/j.jfa.2013.03.010
10.1016/j.jde.2020.03.047
10.1016/j.na.2008.11.030
10.1007/s00033-011-0148-x
10.1007/s11425-017-9280-x
10.1016/j.aml.2017.11.015
10.1016/0022-0248(95)01048-3
10.1016/j.nonrwa.2019.01.001
10.1017/S0308210510000399
10.1109/83.869184
10.1016/j.jmaa.2017.08.047
10.1080/00036811.2011.632767
10.1016/j.aml.2020.106664
10.1007/s11565-006-0002-9
10.1016/j.nonrwa.2019.01.020
10.3934/dcds.2016.36.715
10.1016/j.jmaa.2013.10.040
10.1201/b17415
10.1090/S0033-569X-2010-01197-0
10.1137/050624522
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.8717
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 3720
ExternalDocumentID 10_1002_mma_8717
MMA8717
Genre article
GrantInformation_xml – fundername: Shandong Provincial Natural Science Foundation of China
  funderid: ZR2020MA020; ZR2021MA003
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 202111016
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2937-a9a78e7ec88cad4b5325984087c9e0250bf62e157f19144709671ae44f98e1913
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:12:02 EDT 2025
Tue Jul 01 03:02:47 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Wed Jan 22 16:24:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-a9a78e7ec88cad4b5325984087c9e0250bf62e157f19144709671ae44f98e1913
Notes Funding information
Shandong Provincial Natural Science Foundation of China (ZR2021MA003 and ZR2020MA020) and the Fundamental Research Funds for the Central Universities (202111016).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4136-5375
PQID 2773987240
PQPubID 1016386
PageCount 18
ParticipantIDs proquest_journals_2773987240
crossref_citationtrail_10_1002_mma_8717
crossref_primary_10_1002_mma_8717
wiley_primary_10_1002_mma_8717_MMA8717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 March 2023
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 15 March 2023
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 64
2012; 142
2006; 52
2013; 26
2020; 63
2000; 9
2011; 62
2014; 27
2009
2020; 269
2013; 92
2020; 56
2013; 264
1996; 163
2018; 43
2016; 36
2014; 412
2003; 12
2021; 10
2010; 68
2015; 259
2018; 458
2002; 164
2006; 66
2009; 71
2019; 48
2017
2015
2021; 111
2014
2018; 78
2005; 18
2003; 286
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Gazzola F (e_1_2_8_32_1) 2005; 18
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 43
  start-page: 451
  year: 2018
  end-page: 466
  article-title: A class of fourth‐order parabolic equation with arbitrary initial energy
  publication-title: Nonlinear Anal Real World Appl
– year: 2009
– volume: 264
  start-page: 2732
  year: 2013
  end-page: 2763
  article-title: Global existence and finite time blow‐up for a class of semilinear pseudo‐parabolic equations
  publication-title: J Funct Anal
– volume: 68
  start-page: 459
  year: 2010
  end-page: 468
  article-title: Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data
  publication-title: Q Appl Math
– volume: 36
  start-page: 715
  year: 2016
  end-page: 730
  article-title: Finite‐time blow‐up and extinction rates of solutions to an initial Neumann problem involving the ‐Laplace operator and a non‐local term
  publication-title: Disc Cont Dyn Syst
– volume: 412
  start-page: 326
  year: 2014
  end-page: 333
  article-title: Blow‐up versus extinction in a nonlocal ‐Laplace equation with Neumann boundary conditions
  publication-title: J Math Anal Appl
– volume: 52
  start-page: 19
  year: 2006
  end-page: 36
  article-title: On stationary thermo‐rheological viscous flows
  publication-title: Ann Univ Ferrara Sez VII Sci Mat
– volume: 164
  start-page: 213
  year: 2002
  end-page: 259
  article-title: Regularity results for stationary electro‐rheological fluids
  publication-title: Arch Ration Mech Anal
– volume: 56
  start-page: 103155
  year: 2020
  article-title: Potential well method for ‐Laplacian equations with variable exponent sources
  publication-title: Nonlinear Anal Real World Appl
– volume: 10
  start-page: 261
  year: 2021
  end-page: 288
  article-title: Global existence and finite time blowup for a nonlocal semilinear pseudo‐parabolic equation
  publication-title: Ad Nonlinear Anal
– volume: 62
  start-page: 909
  year: 2011
  end-page: 926
  article-title: Study of weak solutions for a fourth‐order parabolic equation with variable exponent of nonlinearity
  publication-title: Z Angew Math Phys
– volume: 142
  start-page: 1027
  year: 2012
  end-page: 1042
  article-title: Critical exponents for a semilinear parabolic equation with variable reaction
  publication-title: Proc Roy Soc Edinburgh Sect A
– volume: 64
  start-page: 67
  year: 2017
  end-page: 73
  article-title: Blow‐up phenomena for a pseudo‐parabolic equation with variable exponents
  publication-title: Appl Math Lett
– volume: 48
  start-page: 54
  year: 2019
  end-page: 70
  article-title: Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth
  publication-title: Nonlinear Anal Real World Appl
– year: 2014
– volume: 9
  start-page: 1723
  year: 2000
  end-page: 1730
  article-title: Fourth‐order partial differential equations for noise removal
  publication-title: IEEE Trans Image Process
– volume: 163
  start-page: 8
  year: 1996
  end-page: 21
  article-title: Some causes and a consequence of epitaxial roughening
  publication-title: J Cryst Growth
– volume: 92
  start-page: 651
  year: 2013
  end-page: 664
  article-title: Asymptotic analysis for blow‐up solutions in parabolic equations involving variable exponents
  publication-title: Appl Anal
– volume: 71
  start-page: 1094
  year: 2009
  end-page: 1099
  article-title: Blow‐up for parabolic and hyperbolic problems with variable exponents
  publication-title: Nonlinear Anal
– volume: 63
  start-page: 321
  year: 2020
  end-page: 356
  article-title: Global well‐posedness of coupled parabolic systems
  publication-title: Science China Math
– volume: 458
  start-page: 9
  year: 2018
  end-page: 20
  article-title: Finite time blow‐up for a thin‐film equation with initial data at arbitrary energy level
  publication-title: J Math Anal Appl
– volume: 48
  start-page: 383
  year: 2019
  end-page: 409
  article-title: A nonlinear diffusion problem with convection and anisotropic nonstandard growth conditions
  publication-title: Nonlinear Anal Real World Appl
– volume: 66
  start-page: 1383
  year: 2006
  end-page: 1406
  article-title: Variable exponent, linear growth functionals in image restoration
  publication-title: SIAM J Math Appl
– volume: 269
  start-page: 4914
  year: 2020
  end-page: 4959
  article-title: Global existence and blow up of solutions for pseudo‐parabolic equation with singular potential
  publication-title: J Differ Equ
– volume: 26
  start-page: 539
  year: 2013
  end-page: 543
  article-title: Blow‐up of solutions for a semilinear parabolic equation involving variable source and positive initial energy
  publication-title: Appl Math Lett
– volume: 286
  start-page: 459
  year: 2003
  end-page: 490
  article-title: A fourth‐order parabolic equation modeling epitaxial thin‐film growth
  publication-title: J Math Anal Appl
– volume: 111
  start-page: 106664
  year: 2021
  article-title: A complete classification of initial energy in a ‐Laplace pseudo‐parabolic equation
  publication-title: Appl Math Lett
– volume: 18
  start-page: 961
  year: 2005
  end-page: 990
  article-title: Finite time blow up and global solutions for semilinear parabolic equations with initial data at high energy level
  publication-title: Differ Integr Equ
– year: 2017
– volume: 27
  start-page: 49
  year: 2014
  end-page: 52
  article-title: Lower bounds for the blow‐up time in a semilinear parabolic problem involving a variable source
  publication-title: Appl Math Lett
– volume: 78
  start-page: 141
  year: 2018
  end-page: 146
  article-title: Asymptotic behavior for a fourth‐order parabolic equation modeling thin film growth
  publication-title: Appl Math Lett
– volume: 259
  start-page: 7260
  year: 2015
  end-page: 7283
  article-title: Solutions of fourth‐order parabolic equation modeling thin film growth
  publication-title: J Differ Equ
– year: 2015
– volume: 12
  start-page: 1579
  year: 2003
  end-page: 1590
  article-title: Noise removal using fourth‐order partial differential equation with applications to medical magnetic resonance images in space and time
  publication-title: IEEE Trans Image Process
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jde.2015.08.022
– ident: e_1_2_8_3_1
  doi: 10.1109/TIP.2003.819229
– volume: 18
  start-page: 961
  year: 2005
  ident: e_1_2_8_32_1
  article-title: Finite time blow up and global solutions for semilinear parabolic equations with initial data at high energy level
  publication-title: Differ Integr Equ
– ident: e_1_2_8_35_1
  doi: 10.2991/978-94-6239-112-3
– ident: e_1_2_8_5_1
  doi: 10.1016/j.nonrwa.2018.03.009
– ident: e_1_2_8_17_1
  doi: 10.1016/j.aml.2012.12.017
– ident: e_1_2_8_24_1
  doi: 10.1016/j.camwa.2018.01.047
– ident: e_1_2_8_6_1
  doi: 10.1016/S0022-247X(03)00474-8
– ident: e_1_2_8_29_1
  doi: 10.1515/anona-2020-0141
– ident: e_1_2_8_20_1
  doi: 10.1016/j.aml.2016.08.013
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nonrwa.2020.103155
– ident: e_1_2_8_12_1
  doi: 10.1007/s00205-002-0208-7
– ident: e_1_2_8_18_1
  doi: 10.1016/j.aml.2013.07.012
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jfa.2013.03.010
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jde.2020.03.047
– ident: e_1_2_8_15_1
  doi: 10.1016/j.na.2008.11.030
– ident: e_1_2_8_22_1
  doi: 10.1007/s00033-011-0148-x
– ident: e_1_2_8_30_1
  doi: 10.1007/s11425-017-9280-x
– ident: e_1_2_8_2_1
  doi: 10.1016/j.aml.2017.11.015
– ident: e_1_2_8_10_1
  doi: 10.1016/0022-0248(95)01048-3
– ident: e_1_2_8_11_1
  doi: 10.1016/j.nonrwa.2019.01.001
– ident: e_1_2_8_16_1
  doi: 10.1017/S0308210510000399
– ident: e_1_2_8_4_1
  doi: 10.1109/83.869184
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jmaa.2017.08.047
– ident: e_1_2_8_19_1
  doi: 10.1080/00036811.2011.632767
– ident: e_1_2_8_27_1
  doi: 10.1016/j.aml.2020.106664
– ident: e_1_2_8_13_1
  doi: 10.1007/s11565-006-0002-9
– ident: e_1_2_8_25_1
  doi: 10.1016/j.nonrwa.2019.01.020
– ident: e_1_2_8_21_1
  doi: 10.3934/dcds.2016.36.715
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jmaa.2013.10.040
– ident: e_1_2_8_34_1
  doi: 10.1201/b17415
– ident: e_1_2_8_23_1
– ident: e_1_2_8_31_1
  doi: 10.1090/S0033-569X-2010-01197-0
– ident: e_1_2_8_14_1
  doi: 10.1137/050624522
SSID ssj0008112
Score 2.3148582
Snippet This paper deals with a fourth‐order parabolic equation involving variable exponents, subject to Navier boundary conditions. We firstly give an optimal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3703
SubjectTerms Applications of mathematics
asymptotic behavior
blow‐up
Boundary conditions
Classification
extinction
Fluid flow
higher order parabolic equation
Mathematical analysis
potential well method
Title Energy classification in a nonstandard fourth‐order parabolic equation with a Navier boundary condition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.8717
https://www.proquest.com/docview/2773987240
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHdVNxOiWC-OPQbWnTJT0O2RhCdxAHAw8l6VIU3dStu3jyT_Bv9C_xvbTdVBTEU6EkbZqX13yTvHxCyHHCWMs1mjuoHRyeNMGlWlI7gWDGE0nCPRtEE_ZbvQG_HPrDPKoS98JkfIjFhBt6hv1fo4MrPWssoaHjsaqD2seN5BiqhXroakmOkswudCIdxuEu4wV3tuk2ioxfe6KlvPwsUm0v090gN0X5suCS-_o81fX45Ru68X8fsEnWc_FJ21lrKZMVM6mQtXBBbp1VSDl39hk9y4nU51vkrmN3CNIYpTbGFllz0rsJVXSSCUycjqAJvCC9fX99s0BPilhxjdxhap4zojjFaV_I1FfYHVNtz3SawoMfceUcEmyTQbdzfdFz8jManBiEgnBUoIQ0wsRSxmrEte_BeAoGjVLEgUF9pRNoC8wXCYLkuIARk2DKcJ4E0sAtb4eUoKBml9BAqliOAiNxtdaIplQBtzwzDqKWjfwqOS3sFcU5wBzP0XiIMvSyG0GNRlijVXK0SPmUQTt-SFMrTB7lbjuLXCG8QApQOVVyYm33a_4oDNt43ftrwn2yikfVY_wa82uklE7n5gAETaoPbdP9AAhL8gs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JTsMwEIZHUA7AgR1RViMhlkPaOnFqR5wQApUlPSCQOCBFTuoIBBRoy4UTj8Az8iTMOEkLCCTEKVJkJ47tif_x8g3ARsp53TWxcEg7OCKtoUnVVewEkhtPpqnw7CaasFlvXIjjS_9yCHaLszAZH6I_4UaWYf_XZOA0IV0dUEPv73UF5b4chhEK6G39qbMBO0pxu9RJfBhHuFwU5NmaWy1yfh2LBgLzs0y148zhJFwVJcy2l9xWnntxJXn5Bm_85ydMwUSuP9le1mGmYci0Z2A87MNbuzMwndt7l23nUOqdWbg5sIcEWUJqm7YX2RZlN22mWTvTmDQjwVJ8Qe_6_fXNMj0ZkcVjQg8z85RBxRnN_GKmpqYRmcU2rFMHH_xAi-eYYA4uDg_O9xtOHqbBSVArSEcHWiojTaJUolsi9j10qdBvVDIJDEmsOMXuwH2ZEktOSHSaJNdGiDRQBm9581DCgpoFYIHSiWoFRtGCrZE1pQNhkWYCdS1v-WXYKhosSnKGOYXSuIsy-rIbYY1GVKNlWO-nfMy4HT-kWS7aPMottxu5UnqBkih0yrBpG-_X_FEY7tF18a8J12C0cR6eRqdHzZMlGKPI9bSdjfvLUOp1ns0K6ptevGr78QchSPYm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JS8QwFMcfLiB6cBfHNYK4HDpO2nSSHkUd3GYQURA8lLSToKjjMuPFkx_Bz-gn8b20nVFREE-FkrRpXl7zT_LyC8Cq5bzqm0R4pB08YSvoUlWVeJHkJpDWisAF0dQb1f1zcXgRXuRRlbQXJuNDdCfcyDPc_5oc_KFpt3rQ0Ls7XUa1L_thUFQrilr07mkPHaW4W-kkPIwnfC4K8GzF3ypyfu2Kevrys0p13UxtDC6LAmbRJTfl505STl--sRv_9wXjMJqrT7adNZcJ6DOtSRipd9Gt7UmYyL29zTZyJPXmFFzvuS2CLCWtTcFFzp7susU0a2UKk-YjmMUXdK7eX98c0ZMRVzwh8DAzjxlSnNG8L2ZqaOqPWeIOdXrCB9_T0jkmmIbz2t7Zzr6XH9LgpagUpKcjLZWRJlUq1U2RhAEOqHDUqGQaGRJYicXGwENpiSQnJA6ZJNdGCBspg7eCGRjAgppZYJHSqWpGRtFyrZEVpSPhgGYCVS1vhiVYL-wVpznBnA7SuI0z9rIfY43GVKMlWOmmfMioHT-kWShMHud-2459KYNISZQ5JVhztvs1f1yvb9N17q8Jl2HoZLcWHx80juZhmI6tp1g2Hi7AQOfp2SyiuOkkS64VfwBoHfTe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+classification+in+a+nonstandard+fourth%E2%80%90order+parabolic+equation+with+a+Navier+boundary+condition&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Liu%2C+Bingchen&rft.au=Sun%2C+Xizheng&rft.au=Wang%2C+Yiming&rft.date=2023-03-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=4&rft.spage=3703&rft.epage=3720&rft_id=info:doi/10.1002%2Fmma.8717&rft.externalDBID=10.1002%252Fmma.8717&rft.externalDocID=MMA8717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon