Concrete dam deformation prediction model for health monitoring based on extreme learning machine

Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future...

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 24; no. 10; pp. e1997 - n/a
Main Authors Kang, Fei, Liu, Jia, Li, Junjie, Li, Shouju
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)‐based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of feedforward neural networks with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring.
AbstractList Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)-based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of feedforward neural networks with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring.
Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)‐based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of feedforward neural networks with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring.
Author Li, Junjie
Liu, Jia
Kang, Fei
Li, Shouju
Author_xml – sequence: 1
  givenname: Fei
  surname: Kang
  fullname: Kang, Fei
  email: kangfei@dlut.edu.cn, kangfei2009@163.com
  organization: Dalian University of Technology
– sequence: 2
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
  organization: Dalian University of Technology
– sequence: 3
  givenname: Junjie
  surname: Li
  fullname: Li, Junjie
  organization: Tibet University
– sequence: 4
  givenname: Shouju
  surname: Li
  fullname: Li, Shouju
  organization: Dalian University of Technology
BookMark eNp1kE9LAzEQxYNUsK2CH2HBi5etSbbZ3Rxl8R8UPFjPIZtMbMpuUrMp2m9v2ooH0dM85v3eDLwJGjnvAKFLgmcEY3ozRDUjnFcnaEzYnOWUlsXoRzN2hibDsE5kSWs2RrLxTgWIkGnZZxqMD72M1rtsE0BbdZC919BlycpWILu4Sgtnow_WvWWtHEBnCYLPGKCHrAMZ3N7ppVpZB-fo1MhugIvvOUWv93fL5jFfPD88NbeLXFFeVDnnLaYG14CN0RhLDLyq54TVtayo5gQ41QyX3CjGS1OqmgBudVVKYqSqVFtM0dXx7ib49y0MUaz9Nrj0UhBesJpX1Zwm6vpIqeCHIYARm2B7GXaCYLEvUKQCxb7AhM5-ocrGQzcxSNv9FciPgQ_bwe7fw-Jl2Rz4L_7MhLY
CitedBy_id crossref_primary_10_1002_stc_2897
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1002_stc_2417
crossref_primary_10_1016_j_istruc_2023_05_136
crossref_primary_10_1111_mice_12911
crossref_primary_10_1080_27678490_2023_2218844
crossref_primary_10_2139_ssrn_4515439
crossref_primary_10_1016_j_measurement_2023_112605
crossref_primary_10_4028_www_scientific_net_KEM_827_476
crossref_primary_10_1016_j_ndteint_2024_103271
crossref_primary_10_1061__ASCE_CP_1943_5487_0000916
crossref_primary_10_1007_s13369_018_3253_8
crossref_primary_10_1155_2019_7620948
crossref_primary_10_1177_14759217231199569
crossref_primary_10_1016_j_asoc_2017_07_011
crossref_primary_10_3390_su142316025
crossref_primary_10_3390_app12094152
crossref_primary_10_3390_w16243687
crossref_primary_10_1177_14759217211056832
crossref_primary_10_3390_app122312296
crossref_primary_10_1109_TSM_2021_3135434
crossref_primary_10_3390_math10193490
crossref_primary_10_1007_s13369_018_3307_y
crossref_primary_10_1016_j_wse_2023_09_002
crossref_primary_10_1177_1369433218788635
crossref_primary_10_1016_j_advengsoft_2019_03_003
crossref_primary_10_1016_j_tust_2020_103287
crossref_primary_10_1177_14759217231203243
crossref_primary_10_1007_s42107_025_01281_3
crossref_primary_10_1016_j_aei_2024_102925
crossref_primary_10_1155_2019_6792189
crossref_primary_10_1016_j_engstruct_2023_116827
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_1061__ASCE_EM_1943_7889_0001917
crossref_primary_10_1016_j_aei_2023_102345
crossref_primary_10_1016_j_istruc_2025_108507
crossref_primary_10_1177_0142331219842281
crossref_primary_10_1007_s00366_019_00924_9
crossref_primary_10_1016_j_aei_2020_101154
crossref_primary_10_3390_w16121646
crossref_primary_10_1007_s13349_021_00487_8
crossref_primary_10_3390_w16121643
crossref_primary_10_1002_stc_2809
crossref_primary_10_3390_math12091345
crossref_primary_10_1177_14759217241271055
crossref_primary_10_1007_s11356_022_18559_7
crossref_primary_10_1016_j_apm_2020_10_028
crossref_primary_10_1016_j_wse_2023_09_005
crossref_primary_10_1002_stc_2911
crossref_primary_10_1177_14759217221079013
crossref_primary_10_1002_stc_2633
crossref_primary_10_1007_s00366_020_00956_6
crossref_primary_10_1016_j_apm_2019_09_046
crossref_primary_10_1016_j_conbuildmat_2022_128076
crossref_primary_10_2166_aqua_2023_042
crossref_primary_10_1016_j_measurement_2022_112109
crossref_primary_10_3390_s20236780
crossref_primary_10_1016_j_istruc_2022_08_040
crossref_primary_10_1016_j_measurement_2020_108161
crossref_primary_10_1007_s13349_022_00641_w
crossref_primary_10_1016_j_ymssp_2020_107460
crossref_primary_10_3390_s19224933
crossref_primary_10_1016_j_aei_2023_101881
crossref_primary_10_1016_j_aei_2024_102574
crossref_primary_10_3390_app12052735
crossref_primary_10_1016_j_engappai_2025_110483
crossref_primary_10_1007_s00366_021_01515_3
crossref_primary_10_1155_2020_5463893
crossref_primary_10_1109_JSEN_2021_3090449
crossref_primary_10_1177_01423312211018305
crossref_primary_10_1016_j_asoc_2022_109476
crossref_primary_10_3390_rs16213978
crossref_primary_10_1007_s13349_022_00557_5
crossref_primary_10_1002_stc_2501
crossref_primary_10_1155_2023_2979822
crossref_primary_10_1016_j_conbuildmat_2021_126146
crossref_primary_10_1016_j_engstruct_2018_11_065
crossref_primary_10_1109_TSMC_2020_3048696
crossref_primary_10_1002_stc_2188
crossref_primary_10_1016_j_aei_2022_101855
crossref_primary_10_1016_j_engstruct_2018_03_080
crossref_primary_10_1016_j_aei_2022_101615
crossref_primary_10_3390_buildings14103230
crossref_primary_10_3390_w15061081
crossref_primary_10_1007_s00521_019_04216_7
crossref_primary_10_1038_s41598_022_13073_9
crossref_primary_10_1007_s11831_020_09471_9
crossref_primary_10_1155_2019_4581672
crossref_primary_10_1007_s42107_023_00748_5
crossref_primary_10_1007_s00521_019_04375_7
crossref_primary_10_1007_s10489_024_05741_2
crossref_primary_10_1109_ACCESS_2020_3014919
crossref_primary_10_1155_2020_9434065
crossref_primary_10_1108_EC_06_2019_0288
crossref_primary_10_1016_j_measurement_2024_115094
crossref_primary_10_1177_1475921719872939
crossref_primary_10_2166_hydro_2021_178
crossref_primary_10_1177_14759217221142006
crossref_primary_10_1016_j_istruc_2022_08_021
crossref_primary_10_1002_stc_2618
crossref_primary_10_1002_stc_2859
crossref_primary_10_1016_j_aei_2025_103252
crossref_primary_10_1016_j_measurement_2023_113579
crossref_primary_10_1016_j_aei_2022_101863
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_3390_s21062005
crossref_primary_10_1088_1361_6501_ad2e68
crossref_primary_10_1016_j_eswa_2023_122328
crossref_primary_10_3390_geomatics1010006
crossref_primary_10_1016_j_eng_2022_07_016
crossref_primary_10_1038_s41598_025_92806_y
crossref_primary_10_1080_19648189_2022_2090445
crossref_primary_10_1007_s13349_020_00380_w
crossref_primary_10_1016_j_advengsoft_2020_102870
crossref_primary_10_1155_2021_6655657
crossref_primary_10_3390_ma16031277
crossref_primary_10_1109_ACCESS_2021_3056588
crossref_primary_10_1007_s00500_018_3598_7
crossref_primary_10_1016_j_wse_2021_03_001
crossref_primary_10_1177_1475921719884861
crossref_primary_10_1002_stc_2603
crossref_primary_10_3390_w14213380
crossref_primary_10_1155_2020_8831965
crossref_primary_10_1002_stc_2969
crossref_primary_10_1007_s13369_019_04095_z
crossref_primary_10_3390_w16131766
crossref_primary_10_3390_w16213043
crossref_primary_10_1177_1475921717748608
crossref_primary_10_3390_ijgi9010047
crossref_primary_10_1002_stc_2685
crossref_primary_10_1007_s00500_018_3185_y
crossref_primary_10_1007_s13349_020_00452_x
crossref_primary_10_1142_S0219455422501619
crossref_primary_10_17531_ein_2022_1_17
crossref_primary_10_1016_j_eswa_2023_120835
crossref_primary_10_1016_j_conbuildmat_2024_138311
crossref_primary_10_1016_j_engstruct_2021_113400
crossref_primary_10_3390_s18010298
crossref_primary_10_1016_j_engappai_2024_109310
crossref_primary_10_1016_j_engappai_2024_108586
crossref_primary_10_3390_math11071729
crossref_primary_10_3389_feart_2023_1126394
crossref_primary_10_1155_2023_6664981
crossref_primary_10_1016_j_aei_2021_101407
crossref_primary_10_1016_j_eswa_2021_115728
crossref_primary_10_1007_s00500_018_3482_5
crossref_primary_10_1007_s00521_018_3679_7
crossref_primary_10_1016_j_engstruct_2020_111488
crossref_primary_10_1061__ASCE_ST_1943_541X_0002467
crossref_primary_10_1016_j_engstruct_2024_118845
crossref_primary_10_1111_mice_12810
crossref_primary_10_1016_j_engstruct_2022_114687
crossref_primary_10_3390_w15193511
crossref_primary_10_1016_j_engstruct_2022_114686
crossref_primary_10_3390_buildings14123780
crossref_primary_10_1002_stc_3090
crossref_primary_10_1016_j_asoc_2023_110411
crossref_primary_10_1016_j_engappai_2024_109104
crossref_primary_10_1061_JSENDH_STENG_13973
crossref_primary_10_3390_app131910827
crossref_primary_10_1155_2023_2189912
crossref_primary_10_1016_j_aej_2021_06_101
crossref_primary_10_1016_j_engstruct_2022_114285
crossref_primary_10_1002_nag_3812
crossref_primary_10_1007_s00521_021_06169_2
crossref_primary_10_3390_buildings12081280
crossref_primary_10_1002_stc_2548
crossref_primary_10_1111_mice_13232
crossref_primary_10_1002_stc_2304
crossref_primary_10_3390_w16131868
crossref_primary_10_1007_s00603_017_1287_y
crossref_primary_10_1016_j_iintel_2024_100122
crossref_primary_10_1155_2023_7854792
crossref_primary_10_1016_j_autcon_2022_104365
crossref_primary_10_1177_14759217211044116
crossref_primary_10_1177_14759217211069639
crossref_primary_10_3390_polym15020308
crossref_primary_10_1002_stc_2940
crossref_primary_10_1002_stc_2300
crossref_primary_10_1007_s11356_021_16749_3
crossref_primary_10_1016_j_aei_2023_102002
crossref_primary_10_3390_w16202979
crossref_primary_10_1016_j_engstruct_2023_115686
crossref_primary_10_1016_j_jmsy_2024_10_009
crossref_primary_10_3390_app11167334
crossref_primary_10_1016_j_jrmge_2022_06_015
crossref_primary_10_1177_13694332221084381
crossref_primary_10_1016_j_eswa_2024_126135
Cites_doi 10.1016/j.strusafe.2014.02.004
10.1016/j.engstruct.2006.04.001
10.1016/j.advengsoft.2013.06.019
10.1109/TNN.2005.857952
10.1177/1475921710395807
10.1002/stc.1575
10.4028/www.scientific.net/AMM.578-579.1101
10.1016/j.neunet.2014.10.001
10.1016/j.camwa.2011.09.057
10.1016/j.neucom.2015.11.122
10.1007/s13349-014-0079-2
10.1007/s40328-014-0091-3
10.1109/TCYB.2014.2363492
10.1061/(ASCE)CP.1943-5487.0000514
10.1016/j.neucom.2005.12.126
10.1016/j.engstruct.2006.04.022
10.1007/s10704-006-6582-7
10.1016/j.soildyn.2014.12.004
10.1007/s11431-010-0060-1
10.1016/j.apm.2016.01.050
10.1007/s11806-011-0527-7
10.1016/j.engstruct.2011.11.011
10.1016/j.compgeo.2014.08.010
10.1080/19648189.2016.1169225
10.1016/j.enggeo.2004.10.014
10.1007/s00521-013-1522-8
10.1016/j.strusafe.2015.05.001
10.1016/j.engappai.2011.09.020
10.1016/j.engstruct.2010.12.011
10.1109/TSMCB.2011.2168604
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.1997
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_1997
STC1997
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51109028
– fundername: National Key R&D Program of China
  funderid: 2016YFC0401600
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
PQGLB
SOI
ID FETCH-LOGICAL-c2937-99b02f08e0ffd00a0e97841588a72d91e92d5069fc596f6c81e0bd76a1fac7cb3
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Wed Aug 13 06:01:20 EDT 2025
Tue Jul 01 01:26:28 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Wed Jan 22 16:37:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-99b02f08e0ffd00a0e97841588a72d91e92d5069fc596f6c81e0bd76a1fac7cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1935897742
PQPubID 2034347
PageCount 11
ParticipantIDs proquest_journals_1935897742
crossref_primary_10_1002_stc_1997
crossref_citationtrail_10_1002_stc_1997
wiley_primary_10_1002_stc_1997_STC1997
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2006; 70
2015; 56
2014; 578
2010; 53
2016; 209
2013; 65
2010; 17
2015; 50
2011; 62
2015; 76
2002; 2
2014; 48
2011; 33
2014; 25
2016; 30
1996
2011; 10
2004
2011; 14
2002
2013; 7
2012; 35
2006; 137
2011; 18
2014; 21
2007; 29
2015; 45
2014; 4
2000
2006; 22
2015; 61
2006; 28
2015; 63
2015; 253
2016; 40
2016
2012; 25
2005; 16
2012; 42
2005; 79
Ahmadi-Nedushan (10.1002/stc.1997-BIB0031|stc1997-cit-0032) 2002
Hagan (10.1002/stc.1997-BIB0038|stc1997-cit-0039) 1996
10.1002/stc.1997-BIB0023|stc1997-cit-0024
Huang (10.1002/stc.1997-BIB0020|stc1997-cit-0021) 2005; 16
Huang (10.1002/stc.1997-BIB0026|stc1997-cit-0027) 2015; 61
Hsu (10.1002/stc.1997-BIB0013|stc1997-cit-0014) 2010; 17
Ardito (10.1002/stc.1997-BIB0003|stc1997-cit-0004) 2006; 28
Szostak-Chrzanowski (10.1002/stc.1997-BIB0006|stc1997-cit-0007) 2005; 79
Rankovic (10.1002/stc.1997-BIB0017|stc1997-cit-0018) 2012; 35
Rosipal (10.1002/stc.1997-BIB0011|stc1997-cit-0012) 2002; 2
Hu (10.1002/stc.1997-BIB0010|stc1997-cit-0011) 2014; 578
Stojanovic (10.1002/stc.1997-BIB0002|stc1997-cit-0003) 2013; 65
Bartsh (10.1002/stc.1997-BIB0035|stc1997-cit-0036) 2011; 18
Mata (10.1002/stc.1997-BIB0036|stc1997-cit-0037) 2014; 21
Jafari (10.1002/stc.1997-BIB0033|stc1997-cit-0034) 2015; 50
Xi (10.1002/stc.1997-BIB0015|stc1997-cit-0016) 2011; 62
Rankovic (10.1002/stc.1997-BIB0018|stc1997-cit-0019) 2014; 48
Huang (10.1002/stc.1997-BIB0025|stc1997-cit-0026) 2006; 70
Yu (10.1002/stc.1997-BIB0009|stc1997-cit-0010) 2010; 53
Kang (10.1002/stc.1997-BIB0028|stc1997-cit-0029) 2016
Bukenya (10.1002/stc.1997-BIB0032|stc1997-cit-0033) 2014; 4
Ding (10.1002/stc.1997-BIB0019|stc1997-cit-0020) 2014; 25
He (10.1002/stc.1997-BIB0004|stc1997-cit-0005) 2015; 76
Loh (10.1002/stc.1997-BIB0014|stc1997-cit-0015) 2011; 10
De Sortisa (10.1002/stc.1997-BIB0001|stc1997-cit-0002) 2007; 29
10.1002/stc.1997-BIB0029|stc1997-cit-0030
Xu (10.1002/stc.1997-BIB0012|stc1997-cit-0013) 2011; 14
Kang (10.1002/stc.1997-BIB0022|stc1997-cit-0023) 2016; 40
Xu (10.1002/stc.1997-BIB0016|stc1997-cit-0017) 2012; 25
Zhou (10.1002/stc.1997-BIB0027|stc1997-cit-0028) 2015; 45
Salazar (10.1002/stc.1997-BIB0037|stc1997-cit-0038) 2015; 56
Kang (10.1002/stc.1997-BIB0021|stc1997-cit-0022) 2016; 30
Kang (10.1002/stc.1997-BIB0039|stc1997-cit-0040) 2016; 209
Kang (10.1002/stc.1997-BIB0040|stc1997-cit-0041) 2015; 63
Chelidze (10.1002/stc.1997-BIB0034|stc1997-cit-0035) 2013; 7
Shu (10.1002/stc.1997-BIB0005|stc1997-cit-0006) 2006; 22
Sharma (10.1002/stc.1997-BIB0008|stc1997-cit-0009) 2015; 253
Mata (10.1002/stc.1997-BIB0007|stc1997-cit-0008) 2011; 33
Huang (10.1002/stc.1997-BIB0024|stc1997-cit-0025) 2012; 42
Fedele (10.1002/stc.1997-BIB0030|stc1997-cit-0031) 2006; 137
References_xml – volume: 17
  start-page: 338
  issue: 3
  year: 2010
  publication-title: Struct. Control Health Monit.
– volume: 209
  start-page: 46
  year: 2016
  publication-title: Neurocomput.
– volume: 61
  start-page: 32
  year: 2015
  publication-title: Neural Netw.
– volume: 35
  start-page: 107
  year: 2012
  publication-title: Eng. Struct.
– volume: 62
  start-page: 3980
  issue: 10
  year: 2011
  publication-title: Comput. Math. Appl.
– volume: 16
  start-page: 1651
  issue: 6
  year: 2005
  publication-title: IEEE Trans. Neural Netw.
– volume: 4
  start-page: 235
  issue: 4
  year: 2014
  publication-title: J. Civil Struct. Health Monit.
– volume: 65
  start-page: 182
  year: 2013
  publication-title: Adv. Eng. Softw.
– volume: 30
  issue: 3
  year: 2016
  publication-title: J. Comput. Civ. Eng.
– volume: 48
  start-page: 33
  year: 2014
  publication-title: Struct. Saf.
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  publication-title: Neurocomputing
– volume: 7
  start-page: 188
  issue: 2
  year: 2013
  publication-title: Frontiers Archit. Civil Eng. China
– year: 1996
– volume: 253
  start-page: 126
  year: 2015
  publication-title: Appl. Math Comput.
– volume: 50
  start-page: 187
  issue: 2
  year: 2015
  publication-title: Acta. Geod. Geophys
– volume: 21
  start-page: 423
  issue: 3
  year: 2014
  publication-title: Struct. Control Health Monit.
– volume: 53
  start-page: 1088
  issue: 4
  year: 2010
  publication-title: Sci. China Technol. Sci.
– start-page: 159
  year: 2000
  end-page: 180
– volume: 40
  start-page: 6105
  issue: 11–12
  year: 2016
  publication-title: App. Math. Model.
– volume: 2
  start-page: 97
  issue: 2
  year: 2002
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 903
  year: 2011
  publication-title: Eng. Struct.
– volume: 79
  start-page: 3
  year: 2005
  publication-title: Eng. Geol.
– volume: 25
  start-page: 549
  issue: 3–4
  year: 2014
  publication-title: Neural Computing and Applications
– volume: 29
  start-page: 110
  issue: 1
  year: 2007
  publication-title: Eng. Struct.
– volume: 18
  start-page: 51
  year: 2011
  publication-title: Hydro‐power and Dams
– volume: 137
  start-page: 151
  issue: 1
  year: 2006
  publication-title: Int. J. Fract.
– volume: 578
  start-page: 1101
  year: 2014
  publication-title: Appl. Mech. Mat.
– volume: 28
  start-page: 2036
  issue: 14
  year: 2006
  publication-title: Eng. Struct.
– volume: 76
  start-page: 136
  year: 2015
  publication-title: Soil Dyn. Earthq. Eng.
– volume: 22
  start-page: 34
  issue: 2
  year: 2006
  publication-title: Des. Hydroelectr. Pow. Stat.
– year: 2002
– year: 2004
– volume: 14
  start-page: 230
  issue: 3
  year: 2011
  publication-title: Geo‐Spatial Inf. Sci.
– volume: 25
  start-page: 468
  issue: 3
  year: 2012
  publication-title: Eng. Appl. Artif. Intel.
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 56
  start-page: 9
  year: 2015
  publication-title: Struct. Saf.
– volume: 63
  start-page: 13
  year: 2015
  publication-title: Comput. Geotech.
– volume: 45
  start-page: 2013
  issue: 9
  year: 2015
  publication-title: IEEE Trans. on Cybernet.
– year: 2016
  publication-title: Eur. J. Environ. Civil Eng.
– volume: 10
  start-page: 587
  issue: 6
  year: 2011
  publication-title: Struct. Health Monit.
– ident: 10.1002/stc.1997-BIB0023|stc1997-cit-0024
– volume: 48
  start-page: 33
  year: 2014
  ident: 10.1002/stc.1997-BIB0018|stc1997-cit-0019
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.02.004
– volume: 28
  start-page: 2036
  issue: 14
  year: 2006
  ident: 10.1002/stc.1997-BIB0003|stc1997-cit-0004
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2006.04.001
– volume: 65
  start-page: 182
  year: 2013
  ident: 10.1002/stc.1997-BIB0002|stc1997-cit-0003
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.06.019
– volume: 22
  start-page: 34
  issue: 2
  year: 2006
  ident: 10.1002/stc.1997-BIB0005|stc1997-cit-0006
  publication-title: Des. Hydroelectr. Pow. Stat.
– volume: 16
  start-page: 1651
  issue: 6
  year: 2005
  ident: 10.1002/stc.1997-BIB0020|stc1997-cit-0021
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.857952
– volume: 10
  start-page: 587
  issue: 6
  year: 2011
  ident: 10.1002/stc.1997-BIB0014|stc1997-cit-0015
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921710395807
– volume: 7
  start-page: 188
  issue: 2
  year: 2013
  ident: 10.1002/stc.1997-BIB0034|stc1997-cit-0035
  publication-title: Frontiers Archit. Civil Eng. China
– volume: 21
  start-page: 423
  issue: 3
  year: 2014
  ident: 10.1002/stc.1997-BIB0036|stc1997-cit-0037
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1575
– volume: 253
  start-page: 126
  year: 2015
  ident: 10.1002/stc.1997-BIB0008|stc1997-cit-0009
  publication-title: Appl. Math Comput.
– volume: 578
  start-page: 1101
  year: 2014
  ident: 10.1002/stc.1997-BIB0010|stc1997-cit-0011
  publication-title: Appl. Mech. Mat.
  doi: 10.4028/www.scientific.net/AMM.578-579.1101
– volume: 61
  start-page: 32
  year: 2015
  ident: 10.1002/stc.1997-BIB0026|stc1997-cit-0027
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.10.001
– volume: 62
  start-page: 3980
  issue: 10
  year: 2011
  ident: 10.1002/stc.1997-BIB0015|stc1997-cit-0016
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.09.057
– volume: 209
  start-page: 46
  year: 2016
  ident: 10.1002/stc.1997-BIB0039|stc1997-cit-0040
  publication-title: Neurocomput.
  doi: 10.1016/j.neucom.2015.11.122
– volume: 4
  start-page: 235
  issue: 4
  year: 2014
  ident: 10.1002/stc.1997-BIB0032|stc1997-cit-0033
  publication-title: J. Civil Struct. Health Monit.
  doi: 10.1007/s13349-014-0079-2
– volume: 50
  start-page: 187
  issue: 2
  year: 2015
  ident: 10.1002/stc.1997-BIB0033|stc1997-cit-0034
  publication-title: Acta. Geod. Geophys
  doi: 10.1007/s40328-014-0091-3
– volume-title: Neural Network Design
  year: 1996
  ident: 10.1002/stc.1997-BIB0038|stc1997-cit-0039
– volume: 17
  start-page: 338
  issue: 3
  year: 2010
  ident: 10.1002/stc.1997-BIB0013|stc1997-cit-0014
  publication-title: Struct. Control Health Monit.
– volume: 45
  start-page: 2013
  issue: 9
  year: 2015
  ident: 10.1002/stc.1997-BIB0027|stc1997-cit-0028
  publication-title: IEEE Trans. on Cybernet.
  doi: 10.1109/TCYB.2014.2363492
– volume: 30
  issue: 3
  year: 2016
  ident: 10.1002/stc.1997-BIB0021|stc1997-cit-0022
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000514
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1002/stc.1997-BIB0025|stc1997-cit-0026
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10.1002/stc.1997-BIB0029|stc1997-cit-0030
– volume: 29
  start-page: 110
  issue: 1
  year: 2007
  ident: 10.1002/stc.1997-BIB0001|stc1997-cit-0002
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2006.04.022
– volume: 137
  start-page: 151
  issue: 1
  year: 2006
  ident: 10.1002/stc.1997-BIB0030|stc1997-cit-0031
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-006-6582-7
– volume: 76
  start-page: 136
  year: 2015
  ident: 10.1002/stc.1997-BIB0004|stc1997-cit-0005
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2014.12.004
– volume: 53
  start-page: 1088
  issue: 4
  year: 2010
  ident: 10.1002/stc.1997-BIB0009|stc1997-cit-0010
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-010-0060-1
– volume: 2
  start-page: 97
  issue: 2
  year: 2002
  ident: 10.1002/stc.1997-BIB0011|stc1997-cit-0012
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 6105
  issue: 11-12
  year: 2016
  ident: 10.1002/stc.1997-BIB0022|stc1997-cit-0023
  publication-title: App. Math. Model.
  doi: 10.1016/j.apm.2016.01.050
– volume: 14
  start-page: 230
  issue: 3
  year: 2011
  ident: 10.1002/stc.1997-BIB0012|stc1997-cit-0013
  publication-title: Geo-Spatial Inf. Sci.
  doi: 10.1007/s11806-011-0527-7
– volume: 35
  start-page: 107
  year: 2012
  ident: 10.1002/stc.1997-BIB0017|stc1997-cit-0018
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.11.011
– volume: 63
  start-page: 13
  year: 2015
  ident: 10.1002/stc.1997-BIB0040|stc1997-cit-0041
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2014.08.010
– year: 2016
  ident: 10.1002/stc.1997-BIB0028|stc1997-cit-0029
  publication-title: Eur. J. Environ. Civil Eng.
  doi: 10.1080/19648189.2016.1169225
– volume: 79
  start-page: 3
  year: 2005
  ident: 10.1002/stc.1997-BIB0006|stc1997-cit-0007
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2004.10.014
– volume: 18
  start-page: 51
  year: 2011
  ident: 10.1002/stc.1997-BIB0035|stc1997-cit-0036
  publication-title: Hydro-power and Dams
– volume: 25
  start-page: 549
  issue: 3-4
  year: 2014
  ident: 10.1002/stc.1997-BIB0019|stc1997-cit-0020
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1522-8
– volume: 56
  start-page: 9
  year: 2015
  ident: 10.1002/stc.1997-BIB0037|stc1997-cit-0038
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2015.05.001
– volume: 25
  start-page: 468
  issue: 3
  year: 2012
  ident: 10.1002/stc.1997-BIB0016|stc1997-cit-0017
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2011.09.020
– volume: 33
  start-page: 903
  year: 2011
  ident: 10.1002/stc.1997-BIB0007|stc1997-cit-0008
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.12.011
– volume: 42
  start-page: 513
  issue: 2
  year: 2012
  ident: 10.1002/stc.1997-BIB0024|stc1997-cit-0025
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume-title: Multivariate Statistical Analysis of Monitoring Data for Dams
  year: 2002
  ident: 10.1002/stc.1997-BIB0031|stc1997-cit-0032
SSID ssj0026285
Score 2.5518587
Snippet Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations,...
Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e1997
SubjectTerms Artificial neural networks
Back propagation
Back propagation networks
Concrete dams
dam health monitoring
Dams
Detention dams
extreme learning machine
Feedforward control
Gravity dams
Learning algorithms
Mathematical models
Monitoring
multiple linear regression
Neural networks
Nodes
Prediction models
Regression analysis
Seepage
Space shuttle
Statistical models
stepwise regression
Title Concrete dam deformation prediction model for health monitoring based on extreme learning machine
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.1997
https://www.proquest.com/docview/1935897742
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34FtfHEkH01DXNtk1zXNddRFRkH7DgoeTpQV3FrRd_vZm03V1FQTy1NJPSZiaZj2TmG4SOHYKWzZDKwEpNA2cUUSAjJgLn2lgaEyKafkP_5ja5HEZXo3hURlVCLkzBDzHdcIOZ4ddrmOBCTs5mpKGTXEGqHSSSQ6gW4KHelDmKQmagp0qN4sCZbFzxzhJ6VnX86olm8HIepHov011D99X3FcElj433XDbUxzfqxv_9wDpaLcEnbhXWsoEWzHgTrcxREm4h0X4ZOyCZG6zFM9ZmmtyIX9_gTMff-vI52DXhIo3SPYCVAd6AwS1q7ITcqg97j7isS_GAn33cptlGw25n0L4MyjIMgXJYgAWcS0ItSQ2xVjvtEcPhsDJOU8Go5qHhVMck4VbFPLGJSkNDpGaJCK1QTMnmDlocv4zNLsJUAMGgllYIFUluuLRKMsVSzkJtk6iGTiuVZKrkKIdSGU9Zwa5MMzdoGQxaDR1NJV8LXo4fZA4qrWblzJy4hmacAuilNXTi1fNr_6w_aMN176-C-2iZgtf3sX4HaDF_ezeHDrPkso6WWhc31313Pe_c3vXq3lo_AQ6-7d4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F9RhA9VdNs2zR4kkVZnwddwYNQ8vSgrqL14q83k7brAwXx1NJMS5uZZL5OMt8AbHoErdoxU5FThkXeKJJIJVxG3rXxPKVUtkNA_-w8614lx9fp9RDsNbkwFT_EIOCGIyPM1zjAMSC9-8Ea-lJqzLXjwzCKBb3D_9TFgDuKYW5gIEtN0sgbbdowz1K229z51Rd9AMzPMDX4mcMpuGnesNpecrfzWqod_faNvPGfnzANkzX-JPuVwczAkO3PwsQnVsI5kJ3HvseSpSVGPhBjB_mN5OkZl3XCaaigQ3wTqTIp_QWcHPAJBD2jIV7IT_wYfiR1aYpb8hC2btp5uDo86HW6UV2JIdIeDvBICEWZo7mlzhmvQGoFrlemeS45MyK2gpmUZsLpVGQu03lsqTI8k7GTmmvVXoCR_mPfLgJhEjkGjXJS6kQJK5TTimueCx4blyUt2G50UuiaphyrZdwXFcEyK3ynFdhpLdgYSD5V1Bw_yKw0ai3qwfniG9ppjriXtWAr6OfX-4vLXgePS38VXIexbu_stDg9Oj9ZhnGGICBs_VuBkfL51a56CFOqtWCq7-WJ7ss
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tRZrGAx_bEGWFGQltT6GOm8Tx49RSsQ0QglaqtIfInzxstBVNX_bXz-ckLUybhPaUKD5Hie_s-8m--x3AiUfQqhczFTllWOSNIolUwmXkXRvPU0plL2zoX15l5-Pk6ySd1FGVmAtT8UOsNtxwZoT1Gif43LjumjR0UWpMteMvYSPJaI4WPbhZUUcxTA0MXKlJGnmbTRviWcq6Tc-nrmiNLx-j1OBmhtvwvfnAKrrkx-myVKf61x_cjf_3BzuwVaNP8rkyl114YadvYPMRJ-FbkP3Z1CPJ0hIj74mxq-xGMn_AQ51wG-rnEN9EqjxK_wCXBnwDQb9oiBfyyz5uPpK6MMUduQ-Bm_YdjIdno_55VNdhiLQHAzwSQlHmaG6pc8arj1qBp5VpnkvOjIitYCalmXA6FZnLdB5bqgzPZOyk5lr19qA1nU3tPhAmkWHQKCelTpSwQjmtuOa54LFxWdKGT41KCl2TlGOtjJ9FRa_MCj9oBQ5aG45XkvOKmOMvMp1Gq0U9NRe-oZfmiHpZGz4G9fyzf3E76uP14LmCH-DV9WBYXHy5-vYeXjNEACHurwOt8mFpDz1-KdVRMNTfTnntgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+dam+deformation+prediction+model+for+health+monitoring+based+on+extreme+learning+machine&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Kang%2C+Fei&rft.au=Liu%2C+Jia&rft.au=Li%2C+Junjie&rft.au=Li%2C+Shouju&rft.date=2017-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=24&rft.issue=10&rft_id=info:doi/10.1002%2Fstc.1997&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon