Concrete dam deformation prediction model for health monitoring based on extreme learning machine
Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future...
Saved in:
Published in | Structural control and health monitoring Vol. 24; no. 10; pp. e1997 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)‐based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of feedforward neural networks with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring. |
---|---|
AbstractList | Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)-based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of feedforward neural networks with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring. Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations, stresses and strains, seepage, and so forth, is an important method to evaluate operational states of concrete dams correctly and predict the future structural behaviors accurately. Traditionally, statistical model is widely applied in practical engineering for structural health monitoring. In this paper, an extreme learning machine (ELM)‐based health monitoring model is proposed for displacement prediction of gravity dams. ELM is one type of feedforward neural networks with a single layer of hidden nodes, where the weights connecting inputs to hidden nodes are randomly assigned. The model can produce good generalization performance and learns faster than networks trained using the back propagation algorithm. The advantages such as easy operating, high prediction accuracy, and fast training speed of the ELM health monitoring model are verified by monitoring data of a real concrete dam. Results are also compared with that of the back propagation neural networks, multiple linear regression, and stepwise regression models for dam health monitoring. |
Author | Li, Junjie Liu, Jia Kang, Fei Li, Shouju |
Author_xml | – sequence: 1 givenname: Fei surname: Kang fullname: Kang, Fei email: kangfei@dlut.edu.cn, kangfei2009@163.com organization: Dalian University of Technology – sequence: 2 givenname: Jia surname: Liu fullname: Liu, Jia organization: Dalian University of Technology – sequence: 3 givenname: Junjie surname: Li fullname: Li, Junjie organization: Tibet University – sequence: 4 givenname: Shouju surname: Li fullname: Li, Shouju organization: Dalian University of Technology |
BookMark | eNp1kE9LAzEQxYNUsK2CH2HBi5etSbbZ3Rxl8R8UPFjPIZtMbMpuUrMp2m9v2ooH0dM85v3eDLwJGjnvAKFLgmcEY3ozRDUjnFcnaEzYnOWUlsXoRzN2hibDsE5kSWs2RrLxTgWIkGnZZxqMD72M1rtsE0BbdZC919BlycpWILu4Sgtnow_WvWWtHEBnCYLPGKCHrAMZ3N7ppVpZB-fo1MhugIvvOUWv93fL5jFfPD88NbeLXFFeVDnnLaYG14CN0RhLDLyq54TVtayo5gQ41QyX3CjGS1OqmgBudVVKYqSqVFtM0dXx7ib49y0MUaz9Nrj0UhBesJpX1Zwm6vpIqeCHIYARm2B7GXaCYLEvUKQCxb7AhM5-ocrGQzcxSNv9FciPgQ_bwe7fw-Jl2Rz4L_7MhLY |
CitedBy_id | crossref_primary_10_1002_stc_2897 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1002_stc_2417 crossref_primary_10_1016_j_istruc_2023_05_136 crossref_primary_10_1111_mice_12911 crossref_primary_10_1080_27678490_2023_2218844 crossref_primary_10_2139_ssrn_4515439 crossref_primary_10_1016_j_measurement_2023_112605 crossref_primary_10_4028_www_scientific_net_KEM_827_476 crossref_primary_10_1016_j_ndteint_2024_103271 crossref_primary_10_1061__ASCE_CP_1943_5487_0000916 crossref_primary_10_1007_s13369_018_3253_8 crossref_primary_10_1155_2019_7620948 crossref_primary_10_1177_14759217231199569 crossref_primary_10_1016_j_asoc_2017_07_011 crossref_primary_10_3390_su142316025 crossref_primary_10_3390_app12094152 crossref_primary_10_3390_w16243687 crossref_primary_10_1177_14759217211056832 crossref_primary_10_3390_app122312296 crossref_primary_10_1109_TSM_2021_3135434 crossref_primary_10_3390_math10193490 crossref_primary_10_1007_s13369_018_3307_y crossref_primary_10_1016_j_wse_2023_09_002 crossref_primary_10_1177_1369433218788635 crossref_primary_10_1016_j_advengsoft_2019_03_003 crossref_primary_10_1016_j_tust_2020_103287 crossref_primary_10_1177_14759217231203243 crossref_primary_10_1007_s42107_025_01281_3 crossref_primary_10_1016_j_aei_2024_102925 crossref_primary_10_1155_2019_6792189 crossref_primary_10_1016_j_engstruct_2023_116827 crossref_primary_10_1016_j_engappai_2023_106813 crossref_primary_10_1061__ASCE_EM_1943_7889_0001917 crossref_primary_10_1016_j_aei_2023_102345 crossref_primary_10_1016_j_istruc_2025_108507 crossref_primary_10_1177_0142331219842281 crossref_primary_10_1007_s00366_019_00924_9 crossref_primary_10_1016_j_aei_2020_101154 crossref_primary_10_3390_w16121646 crossref_primary_10_1007_s13349_021_00487_8 crossref_primary_10_3390_w16121643 crossref_primary_10_1002_stc_2809 crossref_primary_10_3390_math12091345 crossref_primary_10_1177_14759217241271055 crossref_primary_10_1007_s11356_022_18559_7 crossref_primary_10_1016_j_apm_2020_10_028 crossref_primary_10_1016_j_wse_2023_09_005 crossref_primary_10_1002_stc_2911 crossref_primary_10_1177_14759217221079013 crossref_primary_10_1002_stc_2633 crossref_primary_10_1007_s00366_020_00956_6 crossref_primary_10_1016_j_apm_2019_09_046 crossref_primary_10_1016_j_conbuildmat_2022_128076 crossref_primary_10_2166_aqua_2023_042 crossref_primary_10_1016_j_measurement_2022_112109 crossref_primary_10_3390_s20236780 crossref_primary_10_1016_j_istruc_2022_08_040 crossref_primary_10_1016_j_measurement_2020_108161 crossref_primary_10_1007_s13349_022_00641_w crossref_primary_10_1016_j_ymssp_2020_107460 crossref_primary_10_3390_s19224933 crossref_primary_10_1016_j_aei_2023_101881 crossref_primary_10_1016_j_aei_2024_102574 crossref_primary_10_3390_app12052735 crossref_primary_10_1016_j_engappai_2025_110483 crossref_primary_10_1007_s00366_021_01515_3 crossref_primary_10_1155_2020_5463893 crossref_primary_10_1109_JSEN_2021_3090449 crossref_primary_10_1177_01423312211018305 crossref_primary_10_1016_j_asoc_2022_109476 crossref_primary_10_3390_rs16213978 crossref_primary_10_1007_s13349_022_00557_5 crossref_primary_10_1002_stc_2501 crossref_primary_10_1155_2023_2979822 crossref_primary_10_1016_j_conbuildmat_2021_126146 crossref_primary_10_1016_j_engstruct_2018_11_065 crossref_primary_10_1109_TSMC_2020_3048696 crossref_primary_10_1002_stc_2188 crossref_primary_10_1016_j_aei_2022_101855 crossref_primary_10_1016_j_engstruct_2018_03_080 crossref_primary_10_1016_j_aei_2022_101615 crossref_primary_10_3390_buildings14103230 crossref_primary_10_3390_w15061081 crossref_primary_10_1007_s00521_019_04216_7 crossref_primary_10_1038_s41598_022_13073_9 crossref_primary_10_1007_s11831_020_09471_9 crossref_primary_10_1155_2019_4581672 crossref_primary_10_1007_s42107_023_00748_5 crossref_primary_10_1007_s00521_019_04375_7 crossref_primary_10_1007_s10489_024_05741_2 crossref_primary_10_1109_ACCESS_2020_3014919 crossref_primary_10_1155_2020_9434065 crossref_primary_10_1108_EC_06_2019_0288 crossref_primary_10_1016_j_measurement_2024_115094 crossref_primary_10_1177_1475921719872939 crossref_primary_10_2166_hydro_2021_178 crossref_primary_10_1177_14759217221142006 crossref_primary_10_1016_j_istruc_2022_08_021 crossref_primary_10_1002_stc_2618 crossref_primary_10_1002_stc_2859 crossref_primary_10_1016_j_aei_2025_103252 crossref_primary_10_1016_j_measurement_2023_113579 crossref_primary_10_1016_j_aei_2022_101863 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_3390_s21062005 crossref_primary_10_1088_1361_6501_ad2e68 crossref_primary_10_1016_j_eswa_2023_122328 crossref_primary_10_3390_geomatics1010006 crossref_primary_10_1016_j_eng_2022_07_016 crossref_primary_10_1038_s41598_025_92806_y crossref_primary_10_1080_19648189_2022_2090445 crossref_primary_10_1007_s13349_020_00380_w crossref_primary_10_1016_j_advengsoft_2020_102870 crossref_primary_10_1155_2021_6655657 crossref_primary_10_3390_ma16031277 crossref_primary_10_1109_ACCESS_2021_3056588 crossref_primary_10_1007_s00500_018_3598_7 crossref_primary_10_1016_j_wse_2021_03_001 crossref_primary_10_1177_1475921719884861 crossref_primary_10_1002_stc_2603 crossref_primary_10_3390_w14213380 crossref_primary_10_1155_2020_8831965 crossref_primary_10_1002_stc_2969 crossref_primary_10_1007_s13369_019_04095_z crossref_primary_10_3390_w16131766 crossref_primary_10_3390_w16213043 crossref_primary_10_1177_1475921717748608 crossref_primary_10_3390_ijgi9010047 crossref_primary_10_1002_stc_2685 crossref_primary_10_1007_s00500_018_3185_y crossref_primary_10_1007_s13349_020_00452_x crossref_primary_10_1142_S0219455422501619 crossref_primary_10_17531_ein_2022_1_17 crossref_primary_10_1016_j_eswa_2023_120835 crossref_primary_10_1016_j_conbuildmat_2024_138311 crossref_primary_10_1016_j_engstruct_2021_113400 crossref_primary_10_3390_s18010298 crossref_primary_10_1016_j_engappai_2024_109310 crossref_primary_10_1016_j_engappai_2024_108586 crossref_primary_10_3390_math11071729 crossref_primary_10_3389_feart_2023_1126394 crossref_primary_10_1155_2023_6664981 crossref_primary_10_1016_j_aei_2021_101407 crossref_primary_10_1016_j_eswa_2021_115728 crossref_primary_10_1007_s00500_018_3482_5 crossref_primary_10_1007_s00521_018_3679_7 crossref_primary_10_1016_j_engstruct_2020_111488 crossref_primary_10_1061__ASCE_ST_1943_541X_0002467 crossref_primary_10_1016_j_engstruct_2024_118845 crossref_primary_10_1111_mice_12810 crossref_primary_10_1016_j_engstruct_2022_114687 crossref_primary_10_3390_w15193511 crossref_primary_10_1016_j_engstruct_2022_114686 crossref_primary_10_3390_buildings14123780 crossref_primary_10_1002_stc_3090 crossref_primary_10_1016_j_asoc_2023_110411 crossref_primary_10_1016_j_engappai_2024_109104 crossref_primary_10_1061_JSENDH_STENG_13973 crossref_primary_10_3390_app131910827 crossref_primary_10_1155_2023_2189912 crossref_primary_10_1016_j_aej_2021_06_101 crossref_primary_10_1016_j_engstruct_2022_114285 crossref_primary_10_1002_nag_3812 crossref_primary_10_1007_s00521_021_06169_2 crossref_primary_10_3390_buildings12081280 crossref_primary_10_1002_stc_2548 crossref_primary_10_1111_mice_13232 crossref_primary_10_1002_stc_2304 crossref_primary_10_3390_w16131868 crossref_primary_10_1007_s00603_017_1287_y crossref_primary_10_1016_j_iintel_2024_100122 crossref_primary_10_1155_2023_7854792 crossref_primary_10_1016_j_autcon_2022_104365 crossref_primary_10_1177_14759217211044116 crossref_primary_10_1177_14759217211069639 crossref_primary_10_3390_polym15020308 crossref_primary_10_1002_stc_2940 crossref_primary_10_1002_stc_2300 crossref_primary_10_1007_s11356_021_16749_3 crossref_primary_10_1016_j_aei_2023_102002 crossref_primary_10_3390_w16202979 crossref_primary_10_1016_j_engstruct_2023_115686 crossref_primary_10_1016_j_jmsy_2024_10_009 crossref_primary_10_3390_app11167334 crossref_primary_10_1016_j_jrmge_2022_06_015 crossref_primary_10_1177_13694332221084381 crossref_primary_10_1016_j_eswa_2024_126135 |
Cites_doi | 10.1016/j.strusafe.2014.02.004 10.1016/j.engstruct.2006.04.001 10.1016/j.advengsoft.2013.06.019 10.1109/TNN.2005.857952 10.1177/1475921710395807 10.1002/stc.1575 10.4028/www.scientific.net/AMM.578-579.1101 10.1016/j.neunet.2014.10.001 10.1016/j.camwa.2011.09.057 10.1016/j.neucom.2015.11.122 10.1007/s13349-014-0079-2 10.1007/s40328-014-0091-3 10.1109/TCYB.2014.2363492 10.1061/(ASCE)CP.1943-5487.0000514 10.1016/j.neucom.2005.12.126 10.1016/j.engstruct.2006.04.022 10.1007/s10704-006-6582-7 10.1016/j.soildyn.2014.12.004 10.1007/s11431-010-0060-1 10.1016/j.apm.2016.01.050 10.1007/s11806-011-0527-7 10.1016/j.engstruct.2011.11.011 10.1016/j.compgeo.2014.08.010 10.1080/19648189.2016.1169225 10.1016/j.enggeo.2004.10.014 10.1007/s00521-013-1522-8 10.1016/j.strusafe.2015.05.001 10.1016/j.engappai.2011.09.020 10.1016/j.engstruct.2010.12.011 10.1109/TSMCB.2011.2168604 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.1997 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_1997 STC1997 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51109028 – fundername: National Key R&D Program of China funderid: 2016YFC0401600 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 PQGLB SOI |
ID | FETCH-LOGICAL-c2937-99b02f08e0ffd00a0e97841588a72d91e92d5069fc596f6c81e0bd76a1fac7cb3 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Wed Aug 13 06:01:20 EDT 2025 Tue Jul 01 01:26:28 EDT 2025 Thu Apr 24 23:13:08 EDT 2025 Wed Jan 22 16:37:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2937-99b02f08e0ffd00a0e97841588a72d91e92d5069fc596f6c81e0bd76a1fac7cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1935897742 |
PQPubID | 2034347 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1935897742 crossref_primary_10_1002_stc_1997 crossref_citationtrail_10_1002_stc_1997 wiley_primary_10_1002_stc_1997_STC1997 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2006; 70 2015; 56 2014; 578 2010; 53 2016; 209 2013; 65 2010; 17 2015; 50 2011; 62 2015; 76 2002; 2 2014; 48 2011; 33 2014; 25 2016; 30 1996 2011; 10 2004 2011; 14 2002 2013; 7 2012; 35 2006; 137 2011; 18 2014; 21 2007; 29 2015; 45 2014; 4 2000 2006; 22 2015; 61 2006; 28 2015; 63 2015; 253 2016; 40 2016 2012; 25 2005; 16 2012; 42 2005; 79 Ahmadi-Nedushan (10.1002/stc.1997-BIB0031|stc1997-cit-0032) 2002 Hagan (10.1002/stc.1997-BIB0038|stc1997-cit-0039) 1996 10.1002/stc.1997-BIB0023|stc1997-cit-0024 Huang (10.1002/stc.1997-BIB0020|stc1997-cit-0021) 2005; 16 Huang (10.1002/stc.1997-BIB0026|stc1997-cit-0027) 2015; 61 Hsu (10.1002/stc.1997-BIB0013|stc1997-cit-0014) 2010; 17 Ardito (10.1002/stc.1997-BIB0003|stc1997-cit-0004) 2006; 28 Szostak-Chrzanowski (10.1002/stc.1997-BIB0006|stc1997-cit-0007) 2005; 79 Rankovic (10.1002/stc.1997-BIB0017|stc1997-cit-0018) 2012; 35 Rosipal (10.1002/stc.1997-BIB0011|stc1997-cit-0012) 2002; 2 Hu (10.1002/stc.1997-BIB0010|stc1997-cit-0011) 2014; 578 Stojanovic (10.1002/stc.1997-BIB0002|stc1997-cit-0003) 2013; 65 Bartsh (10.1002/stc.1997-BIB0035|stc1997-cit-0036) 2011; 18 Mata (10.1002/stc.1997-BIB0036|stc1997-cit-0037) 2014; 21 Jafari (10.1002/stc.1997-BIB0033|stc1997-cit-0034) 2015; 50 Xi (10.1002/stc.1997-BIB0015|stc1997-cit-0016) 2011; 62 Rankovic (10.1002/stc.1997-BIB0018|stc1997-cit-0019) 2014; 48 Huang (10.1002/stc.1997-BIB0025|stc1997-cit-0026) 2006; 70 Yu (10.1002/stc.1997-BIB0009|stc1997-cit-0010) 2010; 53 Kang (10.1002/stc.1997-BIB0028|stc1997-cit-0029) 2016 Bukenya (10.1002/stc.1997-BIB0032|stc1997-cit-0033) 2014; 4 Ding (10.1002/stc.1997-BIB0019|stc1997-cit-0020) 2014; 25 He (10.1002/stc.1997-BIB0004|stc1997-cit-0005) 2015; 76 Loh (10.1002/stc.1997-BIB0014|stc1997-cit-0015) 2011; 10 De Sortisa (10.1002/stc.1997-BIB0001|stc1997-cit-0002) 2007; 29 10.1002/stc.1997-BIB0029|stc1997-cit-0030 Xu (10.1002/stc.1997-BIB0012|stc1997-cit-0013) 2011; 14 Kang (10.1002/stc.1997-BIB0022|stc1997-cit-0023) 2016; 40 Xu (10.1002/stc.1997-BIB0016|stc1997-cit-0017) 2012; 25 Zhou (10.1002/stc.1997-BIB0027|stc1997-cit-0028) 2015; 45 Salazar (10.1002/stc.1997-BIB0037|stc1997-cit-0038) 2015; 56 Kang (10.1002/stc.1997-BIB0021|stc1997-cit-0022) 2016; 30 Kang (10.1002/stc.1997-BIB0039|stc1997-cit-0040) 2016; 209 Kang (10.1002/stc.1997-BIB0040|stc1997-cit-0041) 2015; 63 Chelidze (10.1002/stc.1997-BIB0034|stc1997-cit-0035) 2013; 7 Shu (10.1002/stc.1997-BIB0005|stc1997-cit-0006) 2006; 22 Sharma (10.1002/stc.1997-BIB0008|stc1997-cit-0009) 2015; 253 Mata (10.1002/stc.1997-BIB0007|stc1997-cit-0008) 2011; 33 Huang (10.1002/stc.1997-BIB0024|stc1997-cit-0025) 2012; 42 Fedele (10.1002/stc.1997-BIB0030|stc1997-cit-0031) 2006; 137 |
References_xml | – volume: 17 start-page: 338 issue: 3 year: 2010 publication-title: Struct. Control Health Monit. – volume: 209 start-page: 46 year: 2016 publication-title: Neurocomput. – volume: 61 start-page: 32 year: 2015 publication-title: Neural Netw. – volume: 35 start-page: 107 year: 2012 publication-title: Eng. Struct. – volume: 62 start-page: 3980 issue: 10 year: 2011 publication-title: Comput. Math. Appl. – volume: 16 start-page: 1651 issue: 6 year: 2005 publication-title: IEEE Trans. Neural Netw. – volume: 4 start-page: 235 issue: 4 year: 2014 publication-title: J. Civil Struct. Health Monit. – volume: 65 start-page: 182 year: 2013 publication-title: Adv. Eng. Softw. – volume: 30 issue: 3 year: 2016 publication-title: J. Comput. Civ. Eng. – volume: 48 start-page: 33 year: 2014 publication-title: Struct. Saf. – volume: 70 start-page: 489 issue: 1 year: 2006 publication-title: Neurocomputing – volume: 7 start-page: 188 issue: 2 year: 2013 publication-title: Frontiers Archit. Civil Eng. China – year: 1996 – volume: 253 start-page: 126 year: 2015 publication-title: Appl. Math Comput. – volume: 50 start-page: 187 issue: 2 year: 2015 publication-title: Acta. Geod. Geophys – volume: 21 start-page: 423 issue: 3 year: 2014 publication-title: Struct. Control Health Monit. – volume: 53 start-page: 1088 issue: 4 year: 2010 publication-title: Sci. China Technol. Sci. – start-page: 159 year: 2000 end-page: 180 – volume: 40 start-page: 6105 issue: 11–12 year: 2016 publication-title: App. Math. Model. – volume: 2 start-page: 97 issue: 2 year: 2002 publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 903 year: 2011 publication-title: Eng. Struct. – volume: 79 start-page: 3 year: 2005 publication-title: Eng. Geol. – volume: 25 start-page: 549 issue: 3–4 year: 2014 publication-title: Neural Computing and Applications – volume: 29 start-page: 110 issue: 1 year: 2007 publication-title: Eng. Struct. – volume: 18 start-page: 51 year: 2011 publication-title: Hydro‐power and Dams – volume: 137 start-page: 151 issue: 1 year: 2006 publication-title: Int. J. Fract. – volume: 578 start-page: 1101 year: 2014 publication-title: Appl. Mech. Mat. – volume: 28 start-page: 2036 issue: 14 year: 2006 publication-title: Eng. Struct. – volume: 76 start-page: 136 year: 2015 publication-title: Soil Dyn. Earthq. Eng. – volume: 22 start-page: 34 issue: 2 year: 2006 publication-title: Des. Hydroelectr. Pow. Stat. – year: 2002 – year: 2004 – volume: 14 start-page: 230 issue: 3 year: 2011 publication-title: Geo‐Spatial Inf. Sci. – volume: 25 start-page: 468 issue: 3 year: 2012 publication-title: Eng. Appl. Artif. Intel. – volume: 42 start-page: 513 issue: 2 year: 2012 publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. – volume: 56 start-page: 9 year: 2015 publication-title: Struct. Saf. – volume: 63 start-page: 13 year: 2015 publication-title: Comput. Geotech. – volume: 45 start-page: 2013 issue: 9 year: 2015 publication-title: IEEE Trans. on Cybernet. – year: 2016 publication-title: Eur. J. Environ. Civil Eng. – volume: 10 start-page: 587 issue: 6 year: 2011 publication-title: Struct. Health Monit. – ident: 10.1002/stc.1997-BIB0023|stc1997-cit-0024 – volume: 48 start-page: 33 year: 2014 ident: 10.1002/stc.1997-BIB0018|stc1997-cit-0019 publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2014.02.004 – volume: 28 start-page: 2036 issue: 14 year: 2006 ident: 10.1002/stc.1997-BIB0003|stc1997-cit-0004 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2006.04.001 – volume: 65 start-page: 182 year: 2013 ident: 10.1002/stc.1997-BIB0002|stc1997-cit-0003 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.06.019 – volume: 22 start-page: 34 issue: 2 year: 2006 ident: 10.1002/stc.1997-BIB0005|stc1997-cit-0006 publication-title: Des. Hydroelectr. Pow. Stat. – volume: 16 start-page: 1651 issue: 6 year: 2005 ident: 10.1002/stc.1997-BIB0020|stc1997-cit-0021 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.857952 – volume: 10 start-page: 587 issue: 6 year: 2011 ident: 10.1002/stc.1997-BIB0014|stc1997-cit-0015 publication-title: Struct. Health Monit. doi: 10.1177/1475921710395807 – volume: 7 start-page: 188 issue: 2 year: 2013 ident: 10.1002/stc.1997-BIB0034|stc1997-cit-0035 publication-title: Frontiers Archit. Civil Eng. China – volume: 21 start-page: 423 issue: 3 year: 2014 ident: 10.1002/stc.1997-BIB0036|stc1997-cit-0037 publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1575 – volume: 253 start-page: 126 year: 2015 ident: 10.1002/stc.1997-BIB0008|stc1997-cit-0009 publication-title: Appl. Math Comput. – volume: 578 start-page: 1101 year: 2014 ident: 10.1002/stc.1997-BIB0010|stc1997-cit-0011 publication-title: Appl. Mech. Mat. doi: 10.4028/www.scientific.net/AMM.578-579.1101 – volume: 61 start-page: 32 year: 2015 ident: 10.1002/stc.1997-BIB0026|stc1997-cit-0027 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.10.001 – volume: 62 start-page: 3980 issue: 10 year: 2011 ident: 10.1002/stc.1997-BIB0015|stc1997-cit-0016 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.09.057 – volume: 209 start-page: 46 year: 2016 ident: 10.1002/stc.1997-BIB0039|stc1997-cit-0040 publication-title: Neurocomput. doi: 10.1016/j.neucom.2015.11.122 – volume: 4 start-page: 235 issue: 4 year: 2014 ident: 10.1002/stc.1997-BIB0032|stc1997-cit-0033 publication-title: J. Civil Struct. Health Monit. doi: 10.1007/s13349-014-0079-2 – volume: 50 start-page: 187 issue: 2 year: 2015 ident: 10.1002/stc.1997-BIB0033|stc1997-cit-0034 publication-title: Acta. Geod. Geophys doi: 10.1007/s40328-014-0091-3 – volume-title: Neural Network Design year: 1996 ident: 10.1002/stc.1997-BIB0038|stc1997-cit-0039 – volume: 17 start-page: 338 issue: 3 year: 2010 ident: 10.1002/stc.1997-BIB0013|stc1997-cit-0014 publication-title: Struct. Control Health Monit. – volume: 45 start-page: 2013 issue: 9 year: 2015 ident: 10.1002/stc.1997-BIB0027|stc1997-cit-0028 publication-title: IEEE Trans. on Cybernet. doi: 10.1109/TCYB.2014.2363492 – volume: 30 issue: 3 year: 2016 ident: 10.1002/stc.1997-BIB0021|stc1997-cit-0022 publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000514 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1002/stc.1997-BIB0025|stc1997-cit-0026 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10.1002/stc.1997-BIB0029|stc1997-cit-0030 – volume: 29 start-page: 110 issue: 1 year: 2007 ident: 10.1002/stc.1997-BIB0001|stc1997-cit-0002 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2006.04.022 – volume: 137 start-page: 151 issue: 1 year: 2006 ident: 10.1002/stc.1997-BIB0030|stc1997-cit-0031 publication-title: Int. J. Fract. doi: 10.1007/s10704-006-6582-7 – volume: 76 start-page: 136 year: 2015 ident: 10.1002/stc.1997-BIB0004|stc1997-cit-0005 publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2014.12.004 – volume: 53 start-page: 1088 issue: 4 year: 2010 ident: 10.1002/stc.1997-BIB0009|stc1997-cit-0010 publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-010-0060-1 – volume: 2 start-page: 97 issue: 2 year: 2002 ident: 10.1002/stc.1997-BIB0011|stc1997-cit-0012 publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 6105 issue: 11-12 year: 2016 ident: 10.1002/stc.1997-BIB0022|stc1997-cit-0023 publication-title: App. Math. Model. doi: 10.1016/j.apm.2016.01.050 – volume: 14 start-page: 230 issue: 3 year: 2011 ident: 10.1002/stc.1997-BIB0012|stc1997-cit-0013 publication-title: Geo-Spatial Inf. Sci. doi: 10.1007/s11806-011-0527-7 – volume: 35 start-page: 107 year: 2012 ident: 10.1002/stc.1997-BIB0017|stc1997-cit-0018 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.11.011 – volume: 63 start-page: 13 year: 2015 ident: 10.1002/stc.1997-BIB0040|stc1997-cit-0041 publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2014.08.010 – year: 2016 ident: 10.1002/stc.1997-BIB0028|stc1997-cit-0029 publication-title: Eur. J. Environ. Civil Eng. doi: 10.1080/19648189.2016.1169225 – volume: 79 start-page: 3 year: 2005 ident: 10.1002/stc.1997-BIB0006|stc1997-cit-0007 publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2004.10.014 – volume: 18 start-page: 51 year: 2011 ident: 10.1002/stc.1997-BIB0035|stc1997-cit-0036 publication-title: Hydro-power and Dams – volume: 25 start-page: 549 issue: 3-4 year: 2014 ident: 10.1002/stc.1997-BIB0019|stc1997-cit-0020 publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1522-8 – volume: 56 start-page: 9 year: 2015 ident: 10.1002/stc.1997-BIB0037|stc1997-cit-0038 publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2015.05.001 – volume: 25 start-page: 468 issue: 3 year: 2012 ident: 10.1002/stc.1997-BIB0016|stc1997-cit-0017 publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2011.09.020 – volume: 33 start-page: 903 year: 2011 ident: 10.1002/stc.1997-BIB0007|stc1997-cit-0008 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.12.011 – volume: 42 start-page: 513 issue: 2 year: 2012 ident: 10.1002/stc.1997-BIB0024|stc1997-cit-0025 publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2011.2168604 – volume-title: Multivariate Statistical Analysis of Monitoring Data for Dams year: 2002 ident: 10.1002/stc.1997-BIB0031|stc1997-cit-0032 |
SSID | ssj0026285 |
Score | 2.5518587 |
Snippet | Summary
Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations,... Summary Structural health monitoring via quantities that can reflect behaviors of concrete dams, like horizontal and vertical displacements, rotations,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e1997 |
SubjectTerms | Artificial neural networks Back propagation Back propagation networks Concrete dams dam health monitoring Dams Detention dams extreme learning machine Feedforward control Gravity dams Learning algorithms Mathematical models Monitoring multiple linear regression Neural networks Nodes Prediction models Regression analysis Seepage Space shuttle Statistical models stepwise regression |
Title | Concrete dam deformation prediction model for health monitoring based on extreme learning machine |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.1997 https://www.proquest.com/docview/1935897742 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34FtfHEkH01DXNtk1zXNddRFRkH7DgoeTpQV3FrRd_vZm03V1FQTy1NJPSZiaZj2TmG4SOHYKWzZDKwEpNA2cUUSAjJgLn2lgaEyKafkP_5ja5HEZXo3hURlVCLkzBDzHdcIOZ4ddrmOBCTs5mpKGTXEGqHSSSQ6gW4KHelDmKQmagp0qN4sCZbFzxzhJ6VnX86olm8HIepHov011D99X3FcElj433XDbUxzfqxv_9wDpaLcEnbhXWsoEWzHgTrcxREm4h0X4ZOyCZG6zFM9ZmmtyIX9_gTMff-vI52DXhIo3SPYCVAd6AwS1q7ITcqg97j7isS_GAn33cptlGw25n0L4MyjIMgXJYgAWcS0ItSQ2xVjvtEcPhsDJOU8Go5qHhVMck4VbFPLGJSkNDpGaJCK1QTMnmDlocv4zNLsJUAMGgllYIFUluuLRKMsVSzkJtk6iGTiuVZKrkKIdSGU9Zwa5MMzdoGQxaDR1NJV8LXo4fZA4qrWblzJy4hmacAuilNXTi1fNr_6w_aMN176-C-2iZgtf3sX4HaDF_ezeHDrPkso6WWhc31313Pe_c3vXq3lo_AQ6-7d4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSDb3F9RhA9VdNs2zR4kkVZnwddwYNQ8vSgrqL14q83k7brAwXx1NJMS5uZZL5OMt8AbHoErdoxU5FThkXeKJJIJVxG3rXxPKVUtkNA_-w8614lx9fp9RDsNbkwFT_EIOCGIyPM1zjAMSC9-8Ea-lJqzLXjwzCKBb3D_9TFgDuKYW5gIEtN0sgbbdowz1K229z51Rd9AMzPMDX4mcMpuGnesNpecrfzWqod_faNvPGfnzANkzX-JPuVwczAkO3PwsQnVsI5kJ3HvseSpSVGPhBjB_mN5OkZl3XCaaigQ3wTqTIp_QWcHPAJBD2jIV7IT_wYfiR1aYpb8hC2btp5uDo86HW6UV2JIdIeDvBICEWZo7mlzhmvQGoFrlemeS45MyK2gpmUZsLpVGQu03lsqTI8k7GTmmvVXoCR_mPfLgJhEjkGjXJS6kQJK5TTimueCx4blyUt2G50UuiaphyrZdwXFcEyK3ynFdhpLdgYSD5V1Bw_yKw0ai3qwfniG9ppjriXtWAr6OfX-4vLXgePS38VXIexbu_stDg9Oj9ZhnGGICBs_VuBkfL51a56CFOqtWCq7-WJ7ss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9tRZrGAx_bEGWFGQltT6GOm8Tx49RSsQ0QglaqtIfInzxstBVNX_bXz-ckLUybhPaUKD5Hie_s-8m--x3AiUfQqhczFTllWOSNIolUwmXkXRvPU0plL2zoX15l5-Pk6ySd1FGVmAtT8UOsNtxwZoT1Gif43LjumjR0UWpMteMvYSPJaI4WPbhZUUcxTA0MXKlJGnmbTRviWcq6Tc-nrmiNLx-j1OBmhtvwvfnAKrrkx-myVKf61x_cjf_3BzuwVaNP8rkyl114YadvYPMRJ-FbkP3Z1CPJ0hIj74mxq-xGMn_AQ51wG-rnEN9EqjxK_wCXBnwDQb9oiBfyyz5uPpK6MMUduQ-Bm_YdjIdno_55VNdhiLQHAzwSQlHmaG6pc8arj1qBp5VpnkvOjIitYCalmXA6FZnLdB5bqgzPZOyk5lr19qA1nU3tPhAmkWHQKCelTpSwQjmtuOa54LFxWdKGT41KCl2TlGOtjJ9FRa_MCj9oBQ5aG45XkvOKmOMvMp1Gq0U9NRe-oZfmiHpZGz4G9fyzf3E76uP14LmCH-DV9WBYXHy5-vYeXjNEACHurwOt8mFpDz1-KdVRMNTfTnntgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+dam+deformation+prediction+model+for+health+monitoring+based+on+extreme+learning+machine&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Kang%2C+Fei&rft.au=Liu%2C+Jia&rft.au=Li%2C+Junjie&rft.au=Li%2C+Shouju&rft.date=2017-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=24&rft.issue=10&rft_id=info:doi/10.1002%2Fstc.1997&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |