Bidirectional temporal feature for 3D human pose and shape estimation from a video

3D human pose and shape estimation is the foundation of analyzing human motion. However, estimating accurate and temporally consistent 3D human motion from a video remains a challenge. By now, most of the video‐based methods for estimating 3D human pose and shape rely on unidirectional temporal feat...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 34; no. 3-4
Main Authors Sun, Libo, Tang, Ting, Qu, Yuke, Qin, Wenhu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D human pose and shape estimation is the foundation of analyzing human motion. However, estimating accurate and temporally consistent 3D human motion from a video remains a challenge. By now, most of the video‐based methods for estimating 3D human pose and shape rely on unidirectional temporal features and lack more comprehensive information. To solve this problem, we propose a novel model “bidirectional temporal feature for human motion recovery” (BTMR), which consists of a human motion generator and a discriminator. The transformer‐based generator effectively captures the forward and reverse temporal features to enhance the temporal correlation between frames and reduces the loss of spatial information. The motion discriminator based on Bi‐LSTM can distinguish whether the generated pose sequences are consistent with the realistic sequences of the AMASS dataset. In the process of continuous generation and discrimination, the model can learn more realistic and accurate poses. We evaluate our BTMR on 3DPW and MPI‐INF‐3DHP datasets. Without the training set of 3DPW, BTMR outperforms VIBE by 2.4 mm and 14.9 mm/s2 in PA‐MPJPE and Accel metrics and outperforms TCMR by 1.7 mm in PA‐MPJPE metric on 3DPW. The results demonstrate that our BTMR produces better accurate and temporal consistent 3D human motion. Our bidirectional temporal feature for human motion recovery improves both temporal consistency and accuracy for estimating human motion from a video. It also helps to solve the problem of abnormal pose estimation for complex human motion.
AbstractList 3D human pose and shape estimation is the foundation of analyzing human motion. However, estimating accurate and temporally consistent 3D human motion from a video remains a challenge. By now, most of the video‐based methods for estimating 3D human pose and shape rely on unidirectional temporal features and lack more comprehensive information. To solve this problem, we propose a novel model “bidirectional temporal feature for human motion recovery” (BTMR), which consists of a human motion generator and a discriminator. The transformer‐based generator effectively captures the forward and reverse temporal features to enhance the temporal correlation between frames and reduces the loss of spatial information. The motion discriminator based on Bi‐LSTM can distinguish whether the generated pose sequences are consistent with the realistic sequences of the AMASS dataset. In the process of continuous generation and discrimination, the model can learn more realistic and accurate poses. We evaluate our BTMR on 3DPW and MPI‐INF‐3DHP datasets. Without the training set of 3DPW, BTMR outperforms VIBE by 2.4 mm and 14.9 mm/s2 in PA‐MPJPE and Accel metrics and outperforms TCMR by 1.7 mm in PA‐MPJPE metric on 3DPW. The results demonstrate that our BTMR produces better accurate and temporal consistent 3D human motion.
3D human pose and shape estimation is the foundation of analyzing human motion. However, estimating accurate and temporally consistent 3D human motion from a video remains a challenge. By now, most of the video‐based methods for estimating 3D human pose and shape rely on unidirectional temporal features and lack more comprehensive information. To solve this problem, we propose a novel model “bidirectional temporal feature for human motion recovery” (BTMR), which consists of a human motion generator and a discriminator. The transformer‐based generator effectively captures the forward and reverse temporal features to enhance the temporal correlation between frames and reduces the loss of spatial information. The motion discriminator based on Bi‐LSTM can distinguish whether the generated pose sequences are consistent with the realistic sequences of the AMASS dataset. In the process of continuous generation and discrimination, the model can learn more realistic and accurate poses. We evaluate our BTMR on 3DPW and MPI‐INF‐3DHP datasets. Without the training set of 3DPW, BTMR outperforms VIBE by 2.4 mm and 14.9 mm/s 2 in PA‐MPJPE and Accel metrics and outperforms TCMR by 1.7 mm in PA‐MPJPE metric on 3DPW. The results demonstrate that our BTMR produces better accurate and temporal consistent 3D human motion.
3D human pose and shape estimation is the foundation of analyzing human motion. However, estimating accurate and temporally consistent 3D human motion from a video remains a challenge. By now, most of the video‐based methods for estimating 3D human pose and shape rely on unidirectional temporal features and lack more comprehensive information. To solve this problem, we propose a novel model “bidirectional temporal feature for human motion recovery” (BTMR), which consists of a human motion generator and a discriminator. The transformer‐based generator effectively captures the forward and reverse temporal features to enhance the temporal correlation between frames and reduces the loss of spatial information. The motion discriminator based on Bi‐LSTM can distinguish whether the generated pose sequences are consistent with the realistic sequences of the AMASS dataset. In the process of continuous generation and discrimination, the model can learn more realistic and accurate poses. We evaluate our BTMR on 3DPW and MPI‐INF‐3DHP datasets. Without the training set of 3DPW, BTMR outperforms VIBE by 2.4 mm and 14.9 mm/s2 in PA‐MPJPE and Accel metrics and outperforms TCMR by 1.7 mm in PA‐MPJPE metric on 3DPW. The results demonstrate that our BTMR produces better accurate and temporal consistent 3D human motion. Our bidirectional temporal feature for human motion recovery improves both temporal consistency and accuracy for estimating human motion from a video. It also helps to solve the problem of abnormal pose estimation for complex human motion.
Author Sun, Libo
Tang, Ting
Qu, Yuke
Qin, Wenhu
Author_xml – sequence: 1
  givenname: Libo
  orcidid: 0000-0002-7838-9410
  surname: Sun
  fullname: Sun, Libo
  email: sunlibo@seu.edu.cn
  organization: Southeast University
– sequence: 2
  givenname: Ting
  orcidid: 0009-0009-4845-4953
  surname: Tang
  fullname: Tang, Ting
  organization: Southeast University
– sequence: 3
  givenname: Yuke
  orcidid: 0000-0003-0263-8262
  surname: Qu
  fullname: Qu, Yuke
  organization: Southeast University
– sequence: 4
  givenname: Wenhu
  orcidid: 0000-0002-9265-7397
  surname: Qin
  fullname: Qin, Wenhu
  email: qinwenhu@seu.edu.cn
  organization: Southeast University
BookMark eNp1kE9LAzEUxINUsK2CHyHgxcvWJLtJdo-1_oWCICrewms2S1N2N2uyrfTbm7biQfT05vCbx8yM0KB1rUHonJIJJYRdadhMGM3lERpSnokkY_J98KMFPUGjEFaRFIySIXq-tqX1RvfWtVDj3jSd81FUBvq1N7hyHqc3eLluoMWdCwZDW-KwhM5gE3rbwM6JK-8aDHhjS-NO0XEFdTBn33eMXu9uX2YPyfzp_nE2nSeaFalMKIiCCElMlue6opkGMKXmwnBW5FkJAIVmCymJpJrnZMG4hoKXZiFpLjgh6RhdHP523n2sYxi1cmsfWwTFcsa4SKmQkZocKO1dCN5UStt-H7r3YGtFidrtpuJuardbNFz-MnQ-1vTbv9DkgH7a2mz_5dRs-rbnvwDf8H2A
CitedBy_id crossref_primary_10_1007_s00371_024_03329_y
crossref_primary_10_1007_s00371_024_03389_0
crossref_primary_10_1007_s10639_024_13279_6
crossref_primary_10_1007_s00371_024_03331_4
crossref_primary_10_1007_s00371_024_03614_w
crossref_primary_10_1109_ACCESS_2024_3494023
crossref_primary_10_1002_cav_2209
crossref_primary_10_1109_TMM_2024_3521755
crossref_primary_10_1007_s00371_024_03601_1
Cites_doi 10.1109/CVPR46437.2021.00339
10.1109/CVPR42600.2020.00316
10.1109/ICCV.2019.00234
10.1109/TPAMI.2021.3050505
10.1109/CVPR46437.2021.00199
10.1109/CVPR42600.2020.00530
10.1109/3DV.2017.00064
10.1016/j.cviu.2021.103305
10.1109/TPAMI.2022.3194167
10.1109/ICCV.2019.00554
10.1109/TPAMI.2013.248
10.1007/978-3-030-58539-6_36
10.1109/ICCV48922.2021.01145
10.1109/WACV51458.2022.00071
10.1007/978-3-319-46454-1_34
10.1016/j.neunet.2005.06.042
10.1109/ICCV.2019.00545
10.1109/CVPR.2019.00576
10.1109/CVPR52688.2022.01286
10.1007/978-3-031-20065-6_34
10.1109/CVPR.2019.01123
10.1109/CVPR46437.2021.00894
10.1109/CVPR52688.2022.01280
10.1109/CVPR46437.2021.00200
10.1007/978-3-030-58452-8_13
10.1145/2816795.2818013
10.1109/ICCV48922.2021.01279
10.1109/CVPR.2018.00744
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2187
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2187
CAV2187
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2020YFB160070301
– fundername: Jiangsu Provincial Key Research and Development Program
  funderid: BE2019311
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2937-1a690670e488cf14caaedc56e52984daaa9c2b77071c580b25ca95deb71865003
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Jul 25 04:17:10 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Wed Jan 22 16:22:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2937-1a690670e488cf14caaedc56e52984daaa9c2b77071c580b25ca95deb71865003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7838-9410
0000-0003-0263-8262
0009-0009-4845-4953
0000-0002-9265-7397
PQID 2822563167
PQPubID 2034909
PageCount 13
ParticipantIDs proquest_journals_2822563167
crossref_citationtrail_10_1002_cav_2187
crossref_primary_10_1002_cav_2187
wiley_primary_10_1002_cav_2187_CAV2187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/August 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May/August 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 34
2016
2013; 36
2023; 45
2022
2020
2005; 18
2021; 213
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
Hongsuk C (e_1_2_10_12_1) 2020
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Luo Z (e_1_2_10_21_1) 2020
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – start-page: 213
  year: 2020
  end-page: 29
– volume: 45
  start-page: 5070
  issue: 4
  year: 2023
  end-page: 86
  article-title: Out‐of‐domain human mesh reconstruction via dynamic bilevel online adaptation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 36
  start-page: 1325
  issue: 7
  year: 2013
  end-page: 39
  article-title: Human3.6 m: large scale datasets and predictive methods for 3d human sensing in natural environments
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 3170
  year: 2022
  end-page: 84
  article-title: PaMIR: parametric model‐conditioned implicit representation for image‐based human reconstruction
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 34
  start-page: 1
  issue: 6
  year: 2015
  end-page: 16
  article-title: SMPL: a skinned multi‐person linear model
  publication-title: ACM Trans Graph
– start-page: 769
  year: 2020
  end-page: 87
– start-page: 590
  year: 2022
  end-page: 606
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  end-page: 10
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw
– start-page: 598
  year: 2020
  end-page: 613
– start-page: 561
  year: 2016
  end-page: 78
– year: 2020
– volume: 213
  year: 2021
  article-title: Self‐attentive 3D human pose and shape estimation from videos
  publication-title: Comput Vis Image Underst
– ident: e_1_2_10_20_1
  doi: 10.1109/CVPR46437.2021.00339
– ident: e_1_2_10_3_1
  doi: 10.1109/CVPR42600.2020.00316
– ident: e_1_2_10_6_1
  doi: 10.1109/ICCV.2019.00234
– ident: e_1_2_10_2_1
  doi: 10.1109/TPAMI.2021.3050505
– ident: e_1_2_10_27_1
  doi: 10.1109/CVPR46437.2021.00199
– ident: e_1_2_10_33_1
– ident: e_1_2_10_13_1
– ident: e_1_2_10_10_1
  doi: 10.1109/CVPR42600.2020.00530
– ident: e_1_2_10_35_1
  doi: 10.1109/3DV.2017.00064
– ident: e_1_2_10_31_1
  doi: 10.1016/j.cviu.2021.103305
– ident: e_1_2_10_32_1
  doi: 10.1109/TPAMI.2022.3194167
– ident: e_1_2_10_36_1
– ident: e_1_2_10_16_1
  doi: 10.1109/ICCV.2019.00554
– ident: e_1_2_10_37_1
  doi: 10.1109/TPAMI.2013.248
– ident: e_1_2_10_17_1
  doi: 10.1007/978-3-030-58539-6_36
– ident: e_1_2_10_28_1
  doi: 10.1109/ICCV48922.2021.01145
– ident: e_1_2_10_29_1
  doi: 10.1109/WACV51458.2022.00071
– start-page: 769
  volume-title: ECCV
  year: 2020
  ident: e_1_2_10_12_1
– ident: e_1_2_10_19_1
  doi: 10.1007/978-3-319-46454-1_34
– ident: e_1_2_10_24_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neunet.2005.06.042
– ident: e_1_2_10_14_1
  doi: 10.1109/ICCV.2019.00545
– ident: e_1_2_10_34_1
– ident: e_1_2_10_9_1
  doi: 10.1109/CVPR.2019.00576
– ident: e_1_2_10_22_1
  doi: 10.1109/CVPR52688.2022.01286
– ident: e_1_2_10_7_1
  doi: 10.1007/978-3-031-20065-6_34
– ident: e_1_2_10_18_1
  doi: 10.1109/CVPR.2019.01123
– ident: e_1_2_10_4_1
  doi: 10.1109/CVPR46437.2021.00894
– ident: e_1_2_10_30_1
  doi: 10.1109/CVPR52688.2022.01280
– ident: e_1_2_10_11_1
  doi: 10.1109/CVPR46437.2021.00200
– ident: e_1_2_10_26_1
  doi: 10.1007/978-3-030-58452-8_13
– ident: e_1_2_10_25_1
– volume-title: ACCV
  year: 2020
  ident: e_1_2_10_21_1
– ident: e_1_2_10_8_1
  doi: 10.1145/2816795.2818013
– ident: e_1_2_10_23_1
  doi: 10.1109/ICCV48922.2021.01279
– ident: e_1_2_10_5_1
  doi: 10.1109/CVPR.2018.00744
SSID ssj0026210
Score 2.3604558
Snippet 3D human pose and shape estimation is the foundation of analyzing human motion. However, estimating accurate and temporally consistent 3D human motion from a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bi‐LSTM
Datasets
Discriminators
Estimation
Human motion
human pose and shape estimation
Spatial data
Three dimensional motion
transformer
Title Bidirectional temporal feature for 3D human pose and shape estimation from a video
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2187
https://www.proquest.com/docview/2822563167
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fS8MwEMeD7Ekf_C1Op0QQferWpkl_PM7pEEEfhhsDH8olTXE4tmE3H_zrzTXtpqIgPhVKAm0u1_s23H2OkHOfxyn2JXSYNO7GPQ6O9DLhhD5InknF4wI8f_8Q3Pb53VAMy6xKrIWxfIjlgRt6RvG9RgcHmbdW0FAFb00Tn7CQHFO1UA_1luQoFjALIhA8cPAvoeLOuqxVTfwaiVby8rNILaJMd4s8Vc9nk0temou5bKr3b-jG_73ANtksxSdt292yQ9b0ZJdsDEb5wt7N90jvamSjXHFESEty1ZhmuiCAUqNxqX9Ni9Z-dDbNNYVJSvNnmGmKwA5bCUmxaoUCxSK_6T7pd28eO7dO2XfBUSb4h44HSC8OXW2cW2UeVwA6VSLQgsURTwEgVkyGoVEnSkSuZEJBLFItTZwzgs_1D0htMp3oQ0Ix1UpGaYzYeW6UF0DG_Sx1QXAt3Sirk8vKBokqoeTYG2OcWJwyS8wqJbhKdXK2HDmzII4fxjQqMyalK-YJ5smKAAv-6-SisMev85NOe4DXo78OPCbr2H7eJkA2SG3-utAnRqTM5WmxHT8A9TTi3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3JTsMwEEBHLAfgwI4oq5FYTmlTx06aAwegoLIeECBuwXYcgUBtRVoQ_BK_wkfhiZOyCCQuHDhFipwo8cx4xtbMG4BVj4Ux9iV0qDTmxqpMOLKacCfwhGSJVCzMwPPHJ37jnB1c8ss-eClqYSwfonfghpaRrddo4HggXXmnhirxUDYOKsgzKg_106PZr6Wb-3Uj3DVK93bPdhpO3lLAUcavBU5VIJg3cLXRW5VUmRJCx4r7mtOwxmIhRKioDALjeBWvuZJyJUIea2mWcBPLuJ55bz8MYgNxBPXXT3usKupTiz7gzHdwX1KQbl1aKb70s-97D2g_hsWZX9sbg9diRmw6y22525Fl9fwFFvlPpmwcRvP4mmxZg5iAPt2chJGLm7Rr76ZTcLp9Yx15dgpKcjjXHUl0BjklJownXp1k3QtJu5VqIpoxSa9FWxNkkthiT4KFOUQQrGNsTcP5n_zUDAw0W009CwSzyWQtDpGsz0xwKUTCvCR2BWdaurWkBBuF0COVc9ex_cddZInRNDJSiVAqJVjpjWxb1sg3YxYKvYny1SaNMBWY-8g0KMF6pgA_Ph_tbF3gde63A5dhqHF2fBQd7Z8czsMwNTGezfdcgIHOfVcvmpisI5cyWyBw9dea9AZoyEAo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1bS8MwFMcPOkH0wbs4nRrBy1O3Lk3a9cGH6RzeEdGxt5qkKQ7HNuym6Efyq_ilTJp2XlDwxQefCiUtbU5Ozj_h5HcANh3ih7ouoYW5cjdSJszi5YhansM4ibggfgKePzt3D6_JcZM2R-AlOwtj-BDDDTftGcl8rR28F0ald2ioYA9FFZ-8NKHyRD49quVavHtUU7bdwrh-cLV_aKUVBSyhwppnlZnm8nq2VMNWRGUiGJOhoK6k2K-QkDHmC8w9T8VdQSs2x1Qwn4aSqxlcSRnbUe8dhTHi2r4uE1G7HKKqsIsN-YAS19LLkgx0a-NS9qWfQ9-7nv2oipOwVp-G16xDTDbLXXHQ50Xx_IUV-T96bAamUnWNqsYdZmFEduZgstGKB-ZuPA-Xey0TxpM9UJSiudookgniFCkRj5waSmoXol43loh1QhTfsp5EmkhijnoifSwHMaRPMXYX4PpPfmoRcp1uRy4B0rlkvBL6mqtPlLRkLCJOFNqMEsntSpSHnczmgUip67r4RzswvGgcKKsE2ip52Bi27BnSyDdtCtmwCdK5Jg50IjB1NdEgD9uJ_X98PtivNvR1-bcN12H8olYPTo_OT1ZgAiuBZ5I9C5Dr3w_kqhJkfb6WeAKCm78eSG9L0z7X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bidirectional+temporal+feature+for+3D+human+pose+and+shape+estimation+from+a+video&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Sun%2C+Libo&rft.au=Tang%2C+Ting&rft.au=Qu%2C+Yuke&rft.au=Qin%2C+Wenhu&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=34&rft.issue=3-4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2187&rft.externalDBID=10.1002%252Fcav.2187&rft.externalDocID=CAV2187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon