High‐order ghost‐point immersed boundary method for viscous compressible flows based on summation‐by‐parts operators

Summary A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 89; no. 7; pp. 256 - 282
Main Authors Khalili, M. Ehsan, Larsson, Martin, Müller, Bernhard
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high‐order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross‐section of a human upper airway is simulated. A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts (SBP) difference operators. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high‐order polynomials.
AbstractList Summary A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high‐order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross‐section of a human upper airway is simulated. A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts (SBP) difference operators. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high‐order polynomials.
A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high‐order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross‐section of a human upper airway is simulated.
Summary A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference operators. The immersed boundaries are treated as sharp interfaces by enforcing the solid wall boundary conditions via flow variables at ghost points. Two different interpolation schemes are tested to compute values at the ghost points and a hybrid treatment is used. The first method provides the bilinearly interpolated flow variables at the image points of the corresponding ghost points and the second method applies the boundary condition at the immersed boundary by using the weighted least squares method with high‐order polynomials. The approach is verified and validated for compressible flow past a circular cylinder at moderate Reynolds numbers. The tonal sound generated by vortex shedding from a circular cylinder is also investigated. In order to demonstrate the capability of the solver to handle complex geometries in practical cases, flow in a cross‐section of a human upper airway is simulated.
Author Larsson, Martin
Khalili, M. Ehsan
Müller, Bernhard
Author_xml – sequence: 1
  givenname: M. Ehsan
  orcidid: 0000-0002-5445-0002
  surname: Khalili
  fullname: Khalili, M. Ehsan
  email: mohammadtaghi.khalili@ntnu.no, mt.e.khalili@gmail.com
  organization: Norwegian University of Science and Technology (NTNU)
– sequence: 2
  givenname: Martin
  surname: Larsson
  fullname: Larsson, Martin
  organization: Sportradar AS
– sequence: 3
  givenname: Bernhard
  surname: Müller
  fullname: Müller, Bernhard
  organization: Norwegian University of Science and Technology (NTNU)
BookMark eNp1kM9Kw0AQhxepYFsFH2HBi5fU_ZNkk6NUa4WCFz2HbHbSbkkycTdRCh58BJ_RJzGxXj0NA9_vN8w3I5MGGyDkkrMFZ0zclJVZhHEan5ApZ6kKmIzlhEyZUDwQLOVnZOb9njGWikROycfabnffn1_oDDi63aHvhq1F23TU1jU4D4Zq7BuTuwOtoduhoSU6-mZ9gb2nBdatA--troCWFb57qvMxhA31fV3nncVmqNSHsTd3nafYgss7dP6cnJZ55eHib87Jy-r-ebkONk8Pj8vbTVCIVMYBJFKA4ilnYVJE3Ki8jItS6DyWYaoY6CTWiSkZB-CRlsZoo0QkwYCJokiHck6ujr2tw9cefJftsXfNcDITXIWDllQlA3V9pAqH3jsos9bZeng74ywb3WaD22x0O6DBEX23FRz-5bLV5u6X_wFbOoOP
CitedBy_id crossref_primary_10_1016_j_compfluid_2020_104794
crossref_primary_10_1007_s10494_022_00364_4
crossref_primary_10_1016_j_compfluid_2023_105986
crossref_primary_10_3390_fluids8060182
crossref_primary_10_1002_fld_4821
crossref_primary_10_1007_s10915_021_01747_x
crossref_primary_10_1016_j_ast_2021_107228
crossref_primary_10_1063_5_0023423
crossref_primary_10_1007_s10665_024_10357_z
crossref_primary_10_3390_bioengineering11030239
crossref_primary_10_1002_pamm_202300206
crossref_primary_10_1137_22M1532019
crossref_primary_10_1016_j_jcp_2022_111125
crossref_primary_10_1016_j_jcp_2023_112667
Cites_doi 10.1006/jcph.1996.0036
10.1016/j.jcp.2008.05.001
10.1016/j.jcp.2009.05.010
10.1016/j.jcp.2009.06.003
10.1016/j.jcp.2004.07.018
10.1016/0021-9991(92)90046-2
10.1016/j.compfluid.2008.01.033
10.1002/aic.10117
10.1017/S0022112080000419
10.2514/3.10382
10.1016/j.compfluid.2006.01.004
10.1016/j.compfluid.2007.02.008
10.1016/j.jcp.2004.09.017
10.1016/j.jcp.2009.10.005
10.1017/S0022112070001428
10.2514/6.2003-1124
10.1016/j.jfluidstructs.2016.09.001
10.1016/0021-9991(72)90065-4
10.1016/B978-0-12-336156-1.50013-6
10.1146/annurev.fl.04.010172.001525
10.1006/jcph.1997.5859
10.1016/j.jcp.2009.07.023
10.1017/S0022112077000135
10.1006/jcph.2000.6483
10.1016/j.jcp.2006.12.007
10.1016/j.paerosci.2013.09.003
10.1016/j.jcp.2003.07.024
10.1016/j.jcp.2005.03.017
10.1016/j.jcp.2005.07.022
10.1017/S0022112059000829
10.1016/j.jcp.2011.01.045
10.1006/jcph.1999.6211
10.1016/0021-9991(77)90100-0
10.1146/annurev.fluid.37.061903.175743
10.1017/jfm.2015.635
10.1017/S0962492902000077
10.1016/j.jcp.2015.04.023
10.1006/jcph.1994.1005
10.2514/1.J054628
10.1006/jcph.2000.6484
10.1016/S0021-9991(03)00321-8
10.1016/j.jcp.2007.03.008
10.1186/1472-6815-14-11
10.1016/0021-9991(80)90174-6
10.1016/S0045-7930(03)00058-6
10.1017/S0022112095004125
10.1016/j.jcp.2008.01.028
10.1006/jcph.2002.7117
10.1016/j.jcp.2010.10.017
10.1017/S0022112002002124
10.1006/jcph.1993.1081
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/fld.4696
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 282
ExternalDocumentID 10_1002_fld_4696
FLD4696
Genre article
GrantInformation_xml – fundername: Research Council of Norway
  funderid: 231741
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7QH
7SC
7TB
7U5
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c2936-e832e7191048c51d7af6cf2ba634970eb86b8df01ee15b3ddbd7253eded555b43
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Thu Oct 10 19:57:11 EDT 2024
Fri Aug 23 02:24:20 EDT 2024
Sat Aug 24 00:40:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-e832e7191048c51d7af6cf2ba634970eb86b8df01ee15b3ddbd7253eded555b43
ORCID 0000-0002-5445-0002
PQID 2174209978
PQPubID 996375
PageCount 1
ParticipantIDs proquest_journals_2174209978
crossref_primary_10_1002_fld_4696
wiley_primary_10_1002_fld_4696_FLD4696
PublicationCentury 2000
PublicationDate 10 March 2019
PublicationDateYYYYMMDD 2019-03-10
PublicationDate_xml – month: 03
  year: 2019
  text: 10 March 2019
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical methods in fluids
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 225
1977; 25
2006; 35
2010; 229
2015; 785
2002; 471
2002; 11
2008; 37
2003; 192
2008; 227
2003; 191
2014; 65
2006; 213
1959; 6
2011; 230
2015; 295
2004; 33
1980; 36
2002; 181
2001
2000; 160
2000; 161
2014; 14
1972; 10
1977; 79
2005; 37
1994; 110
1994; 994
1992; 101
1997
2008
2007
1995
2003
1998; 139
1972; 4
1993; 105
1996; 123
2004; 50
1990; 28
2005; 202
2005; 204
1980; 98
1999; 151
1995; 302
2005; 209
2017
1970; 42
2016
2015
2009; 228
2009; 38
2016; 67
e_1_2_7_5_1
e_1_2_7_3_1
Gustafsson B (e_1_2_7_38_1) 1995
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Press WH (e_1_2_7_43_1) 2007
Majumdar S (e_1_2_7_17_1) 2001
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Mohd‐Yusof J (e_1_2_7_12_1) 1997
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Gustafsson B (e_1_2_7_39_1) 2008
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
References_xml – volume: 471
  start-page: 285
  year: 2002
  end-page: 314
  article-title: Sound generation by a two‐dimensional circular cylinder in a uniform flow
  publication-title: J Fluid Mech
– volume: 230
  start-page: 3479
  issue: 9
  year: 2011
  end-page: 3499
  article-title: An immersed boundary method based on discrete stream function formulation for two‐and three‐dimensional incompressible flows
  publication-title: J Comput Phys
– volume: 230
  start-page: 1000
  issue: 4
  year: 2011
  end-page: 1019
  article-title: A high‐order immersed boundary method for acoustic wave scattering and low‐Mach number flow‐induced sound in complex geometries
  publication-title: J Comput Phys
– volume: 33
  start-page: 375
  issue: 3
  year: 2004
  end-page: 404
  article-title: Modeling complex boundaries using an external force field on fixed Cartesian grids in large‐eddy simulations
  publication-title: Comput Fluids
– volume: 227
  start-page: 4825
  issue: 10
  year: 2008
  end-page: 4852
  article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
  publication-title: J Comput Phys
– volume: 191
  start-page: 660
  issue: 2
  year: 2003
  end-page: 669
  article-title: A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids
  publication-title: J Comput Phys
– volume: 785
  start-page: 349
  year: 2015
  end-page: 371
  article-title: Two‐dimensional compressible viscous flow around a circular cylinder
  publication-title: J Fluid Mech
– volume: 151
  start-page: 597
  issue: 2
  year: 1999
  end-page: 615
  article-title: On the cancellation problem in calculating compressible low Mach number flows
  publication-title: J Comput Phys
– volume: 36
  start-page: 55
  issue: 1
  year: 1980
  end-page: 70
  article-title: A nonreflecting outflow boundary condition for subsonic Navier‐Stokes calculations
  publication-title: J Comput Phys
– volume: 213
  start-page: 1
  issue: 1
  year: 2006
  end-page: 30
  article-title: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources
  publication-title: J Comput Phys
– volume: 204
  start-page: 157
  issue: 1
  year: 2005
  end-page: 192
  article-title: A high‐order immersed interface method for simulating unsteady incompressible flows on irregular domains
  publication-title: J Comput Phys
– start-page: 2734
  year: 2016
  end-page: 2741
  article-title: High‐order immersed‐boundary method for incompressible flows
  publication-title: AIAA J
– volume: 65
  start-page: 1
  year: 2014
  end-page: 21
  article-title: Immersed boundary methods for simulating fluid–structure interaction
  publication-title: Prog Aerosp Sci
– volume: 192
  start-page: 593
  issue: 2
  year: 2003
  end-page: 623
  article-title: A ghost‐cell immersed boundary method for flow in complex geometry
  publication-title: J Comput Phys
– volume: 50
  start-page: 1109
  issue: 6
  year: 2004
  end-page: 1118
  article-title: Flow in an impeller‐stirred tank using an immersed‐boundary method
  publication-title: AIChE J
– volume: 994
  start-page: 24
  year: 1994
  end-page: 26
– year: 2008
– volume: 202
  start-page: 577
  issue: 2
  year: 2005
  end-page: 601
  article-title: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem
  publication-title: J Comput Phys
– volume: 42
  start-page: 471
  issue: 3
  year: 1970
  end-page: 489
  article-title: Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100
  publication-title: J Fluid Mech
– volume: 228
  start-page: 5989
  issue: 16
  year: 2009
  end-page: 6015
  article-title: High‐order compact schemes for incompressible flows: a simple and efficient method with quasi‐spectral accuracy
  publication-title: J Comput Phys
– volume: 110
  start-page: 47
  issue: 1
  year: 1994
  end-page: 67
  article-title: Summation by parts for finite difference approximations for
  publication-title: J Comput Phys
– volume: 228
  start-page: 6617
  issue: 18
  year: 2009
  end-page: 6628
  article-title: Short note: a moving‐least‐squares reconstruction for embedded‐boundary formulations
  publication-title: J Comput Phys
– volume: 225
  start-page: 2098
  issue: 2
  year: 2007
  end-page: 2117
  article-title: An immersed boundary method for compressible flows using local grid refinement
  publication-title: J Comput Phys
– year: 2015
– volume: 10
  start-page: 252
  issue: 2
  year: 1972
  end-page: 271
  article-title: Flow patterns around heart valves: a numerical method
  publication-title: J Comput Phys
– volume: 228
  start-page: 7821
  issue: 20
  year: 2009
  end-page: 7836
  article-title: A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
  publication-title: J Comput Phys
– volume: 28
  start-page: 253
  issue: 2
  year: 1990
  end-page: 262
  article-title: Upwind Differencing Scheme for the Time-Accurate Incompressible Navier‐Stokes Equations
  publication-title: AIAA J
– volume: 98
  start-page: 819
  issue: 4
  year: 1980
  end-page: 855
  article-title: A numerical study of steady viscous flow past a circular cylinder
  publication-title: J Fluid Mech
– start-page: 353
  year: 2001
  end-page: 466
  article-title: RANS solvers with adaptive structured boundary nonconforming grids
  publication-title: Cent Turbul Res Annu Res Briefs
– volume: 4
  start-page: 313
  issue: 1
  year: 1972
  end-page: 340
  article-title: Periodic flow phenomena
  publication-title: Annu Rev Fluid Mech
– volume: 25
  start-page: 220
  issue: 3
  year: 1977
  end-page: 252
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J Comput Phys
– year: 2007
– volume: 6
  start-page: 547
  issue: 4
  year: 1959
  end-page: 567
  article-title: Experiments on the flow past a circular cylinder at low Reynolds numbers
  publication-title: J Fluid Mech
– volume: 14
  start-page: 11
  issue: 1
  year: 2014
  article-title: An observational cohort study of the effects of septoplasty with or without inferior turbinate reduction in patients with obstructive sleep apnea
  publication-title: BMC Ear Nose Throat Disord
– volume: 160
  start-page: 705
  issue: 2
  year: 2000
  end-page: 719
  article-title: An immersed boundary method with formal second‐order accuracy and reduced numerical viscosity
  publication-title: J Comput Phys
– year: 2003
– volume: 302
  start-page: 333
  issue: 10
  year: 1995
  end-page: 376
  article-title: Direct numerical simulation of turbulent flow over a modelled riblet‐covered surface
  publication-title: J Fluid Mech
– volume: 227
  start-page: 9303
  issue: 22
  year: 2008
  end-page: 9332
  article-title: An immersed‐boundary method for flow‐structure interaction in biological systems with application to phonation
  publication-title: J Comput Phys
– volume: 295
  start-page: 475
  year: 2015
  end-page: 504
  article-title: A locally stabilized immersed boundary method for the compressible Navier–Stokes equations
  publication-title: J Comput Phys
– volume: 123
  start-page: 450
  issue: 2
  year: 1996
  end-page: 465
  article-title: Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method
  publication-title: J Comput Phys
– volume: 101
  start-page: 104
  issue: 1
  year: 1992
  end-page: 129
  article-title: Boundary conditions for direct simulations of compressible viscous flows
  publication-title: J Comput Phys
– volume: 161
  start-page: 35
  issue: 1
  year: 2000
  end-page: 60
  article-title: Combined immersed‐boundary finite‐difference methods for three‐dimensional complex flow simulations
  publication-title: J Comput Phys
– volume: 67
  start-page: 85
  year: 2016
  end-page: 105
  article-title: Interaction between a simplified soft palate and compressible viscous flow
  publication-title: J Fluids Struct
– volume: 105
  start-page: 354
  issue: 2
  year: 1993
  end-page: 366
  article-title: Modeling a no‐slip flow boundary with an external force field
  publication-title: J Comput Phys
– volume: 225
  start-page: 528
  issue: 1
  year: 2007
  end-page: 553
  article-title: A sharp interface immersed boundary method for compressible viscous flows
  publication-title: J Comput Phys
– volume: 38
  start-page: 1375
  issue: 7
  year: 2009
  end-page: 1383
  article-title: Numerical simulation of confined pulsating jets in human phonation
  publication-title: Comput Fluids
– volume: 79
  start-page: 231
  issue: 2
  year: 1977
  end-page: 256
  article-title: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow
  publication-title: J Fluid Mech
– volume: 229
  start-page: 701
  issue: 3
  year: 2010
  end-page: 727
  article-title: A low numerical dissipation immersed interface method for the compressible Navier–Stokes equations
  publication-title: J Comput Phys
– start-page: 317
  year: 1997
  end-page: 325
  article-title: Combined immersed‐boundary/B‐spline methods for simulations of flow in complex geometries
  publication-title: Cent Turbul Res Annu Res Briefs
– year: 1995
– volume: 35
  start-page: 693
  issue: 7
  year: 2006
  end-page: 702
  article-title: An immersed‐boundary method for compressible viscous flows
  publication-title: Comput Fluids
– volume: 139
  start-page: 35
  issue: 1
  year: 1998
  end-page: 57
  article-title: Preconditioned multigrid methods for unsteady incompressible flows
  publication-title: J Comput Phys
– volume: 209
  start-page: 448
  issue: 2
  year: 2005
  end-page: 476
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J Comput Phys
– year: 2017
– volume: 181
  start-page: 155
  issue: 1
  year: 2002
  end-page: 185
  article-title: On the use of higher‐order finite‐difference schemes on curvilinear and deforming meshes
  publication-title: J Comput Phys
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  article-title: Immersed boundary methods
  publication-title: Annu Rev Fluid Mech
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  article-title: The immersed boundary method
  publication-title: Acta Numer
– volume: 37
  start-page: 450
  issue: 4
  year: 2008
  end-page: 462
  article-title: High order numerical simulation of aeolian tones
  publication-title: Comput Fluids
– ident: e_1_2_7_8_1
  doi: 10.1006/jcph.1996.0036
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jcp.2008.05.001
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jcp.2009.05.010
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jcp.2009.06.003
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jcp.2004.07.018
– ident: e_1_2_7_44_1
  doi: 10.1016/0021-9991(92)90046-2
– ident: e_1_2_7_36_1
  doi: 10.1016/j.compfluid.2008.01.033
– ident: e_1_2_7_16_1
  doi: 10.1002/aic.10117
– ident: e_1_2_7_50_1
  doi: 10.1017/S0022112080000419
– start-page: 317
  year: 1997
  ident: e_1_2_7_12_1
  article-title: Combined immersed‐boundary/B‐spline methods for simulations of flow in complex geometries
  publication-title: Cent Turbul Res Annu Res Briefs
  contributor:
    fullname: Mohd‐Yusof J
– ident: e_1_2_7_60_1
– ident: e_1_2_7_55_1
  doi: 10.2514/3.10382
– ident: e_1_2_7_25_1
  doi: 10.1016/j.compfluid.2006.01.004
– ident: e_1_2_7_35_1
  doi: 10.1016/j.compfluid.2007.02.008
– volume-title: Numerical Recipes: The Art of Scientific Computing
  year: 2007
  ident: e_1_2_7_43_1
  contributor:
    fullname: Press WH
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jcp.2004.09.017
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jcp.2009.10.005
– ident: e_1_2_7_48_1
  doi: 10.1017/S0022112070001428
– ident: e_1_2_7_51_1
  doi: 10.2514/6.2003-1124
– ident: e_1_2_7_57_1
  doi: 10.1016/j.jfluidstructs.2016.09.001
– start-page: 353
  year: 2001
  ident: e_1_2_7_17_1
  article-title: RANS solvers with adaptive structured boundary nonconforming grids
  publication-title: Cent Turbul Res Annu Res Briefs
  contributor:
    fullname: Majumdar S
– ident: e_1_2_7_4_1
  doi: 10.1016/0021-9991(72)90065-4
– ident: e_1_2_7_41_1
  doi: 10.1016/B978-0-12-336156-1.50013-6
– ident: e_1_2_7_52_1
  doi: 10.1146/annurev.fl.04.010172.001525
– ident: e_1_2_7_53_1
  doi: 10.1006/jcph.1997.5859
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jcp.2009.07.023
– ident: e_1_2_7_49_1
  doi: 10.1017/S0022112077000135
– ident: e_1_2_7_9_1
  doi: 10.1006/jcph.2000.6483
– ident: e_1_2_7_18_1
  doi: 10.1016/j.jcp.2006.12.007
– volume-title: High Order Difference Methods for Time Dependent PDE
  year: 2008
  ident: e_1_2_7_39_1
  contributor:
    fullname: Gustafsson B
– ident: e_1_2_7_3_1
  doi: 10.1016/j.paerosci.2013.09.003
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcp.2003.07.024
– ident: e_1_2_7_59_1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jcp.2005.03.017
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jcp.2005.07.022
– ident: e_1_2_7_47_1
  doi: 10.1017/S0022112059000829
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jcp.2011.01.045
– ident: e_1_2_7_34_1
  doi: 10.1006/jcph.1999.6211
– ident: e_1_2_7_5_1
  doi: 10.1016/0021-9991(77)90100-0
– ident: e_1_2_7_2_1
  doi: 10.1146/annurev.fluid.37.061903.175743
– ident: e_1_2_7_46_1
  doi: 10.1017/jfm.2015.635
– ident: e_1_2_7_6_1
  doi: 10.1017/S0962492902000077
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jcp.2015.04.023
– ident: e_1_2_7_37_1
  doi: 10.1006/jcph.1994.1005
– ident: e_1_2_7_28_1
  doi: 10.2514/1.J054628
– ident: e_1_2_7_13_1
  doi: 10.1006/jcph.2000.6484
– ident: e_1_2_7_20_1
  doi: 10.1016/S0021-9991(03)00321-8
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jcp.2007.03.008
– ident: e_1_2_7_58_1
  doi: 10.1186/1472-6815-14-11
– ident: e_1_2_7_45_1
  doi: 10.1016/0021-9991(80)90174-6
– ident: e_1_2_7_14_1
  doi: 10.1016/S0045-7930(03)00058-6
– ident: e_1_2_7_11_1
  doi: 10.1017/S0022112095004125
– ident: e_1_2_7_19_1
  doi: 10.1016/j.jcp.2008.01.028
– ident: e_1_2_7_40_1
  doi: 10.1006/jcph.2002.7117
– ident: e_1_2_7_42_1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jcp.2010.10.017
– volume-title: Time Dependent Problems and Difference Methods
  year: 1995
  ident: e_1_2_7_38_1
  contributor:
    fullname: Gustafsson B
– ident: e_1_2_7_56_1
  doi: 10.1017/S0022112002002124
– ident: e_1_2_7_7_1
  doi: 10.1006/jcph.1993.1081
SSID ssj0009283
Score 2.3791583
Snippet Summary A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference...
A high‐order immersed boundary method is devised for the compressible Navier‐Stokes equations by employing high‐order summation‐by‐parts difference operators....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 256
SubjectTerms Aerodynamics
Boundary conditions
Circular cylinders
Compressible flow
compressible viscous flows
Computational fluid dynamics
Computer simulation
Cylinders
Finite differences
high‐order finite difference method
immersed boundary method
Interfaces
Interpolation
Least squares method
Operators (mathematics)
Polynomials
Respiratory tract
Vortex shedding
Title High‐order ghost‐point immersed boundary method for viscous compressible flows based on summation‐by‐parts operators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.4696
https://www.proquest.com/docview/2174209978
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7Ekx6sVsVqlRXEW9r8brJHsZYi6kEsFDyEbHYjxZKUplUqHnwEn9EncWaT2CoI4ikEMkOyOz_fbma-JeQkQMzOVWzYipuGKyxuAGqVhmtJlZgMchDD5uTrG9bru5cDb1BWVWIvTMEP8bXhhp6h4zU6eCTy9oI0NBnJFqztkG3bcnys5urcLpijuF0wcNq-BYbArYp31rTbleD3TLSAl8sgVWeZbo3cV-9XFJc8tmZT0YpfflA3_u8DNslGCT7pWWEtW2RFpXVSK4EoLd08r5P1JZbCbfKKtSAfb--apZM-YFsI3I2zYTqlQ73vDcJCH880mdPiSGoKWJg-DfM4m-UUy9Z1ua0YKZqMsuecYvKUNEupbp5D4wCVYo56wZZzmo2V_v-f75B-9-LuvGeUhzYYMSAHZigIEcqHVSCEhtizpB8lLE5sETHH5b6pRMBEIBPTUsryhCOlkL7tOUoq6XmecJ1dsppmqdoj1I7dmJmQPSOBDWJ-AHpNaUqeRC7EnqBBjqsJDMcFN0dYsDDbIQxuiIPbIM1qZsPSO_MQl2G6ZRhUnOop-lU-7F518Lr_1wcPyBpgKm7okr8mWZ1OZuoQcMtUHGkL_QR_9PAV
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qHtSDb_FRdQXxlprnJsGTqKVq24MoeBBCN7uRYklKkyoVD_4Ef6O_xNlNYqsgiKewkB2S3Xl8u8x8A3DgSczui1Azha9rNjN8DVEr12yDi0inGIOoLE5utWnj1r68c-4qcFzWwuT8EF8XbtIylL-WBi4vpI_GrKFRj9fwcEenYAat3ZJ9G86ux9xRvplzcJqugargGyXzrG4elTO_x6IxwJyEqSrO1BfhvvzCPL3ksTbMWC18-UHe-M9fWIKFAn-Sk1xhlqEi4hVYLLAoKSw9XYH5CaLCVXiV6SAfb--KqJM8yMoQHPWTbpyRrrr6xslMdWgajEjelZogHCZP3TRMhimRmesq45b1BIl6yXNKZPzkJImJqp-T-oEi2UjKRXVOSdIXKgUgXYPb-vnNaUMr-jZoIYIHqgn0EsLFgyB6h9AxuNuJaBiZrEMt23d1wTzKPB7phhCGwyzOGXdNxxJccMdxmG2tw3ScxGIDiBnaIdUxgHaYrBFzPZSrc537UcdG9-Ntwn65g0E_p-cIciJmM8DFDeTibkK13NqgMNA0kCcxVTWMIg7VHv06P6g3z-Rz668v7sFs46bVDJoX7attmEOI5WsqA7AK09lgKHYQxmRsV6nrJ1wn9C0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL1oBdGF1apYnyOIu7R5TpKlWIvPImKh4CJ0MhMplqQ0raK48BP8Rr_EO5PEVkEQVyGQuSSZ-zgznHsG4MCTmN0XoWYKX9dsZvgaolau2QYXkU6xBlHZnHzVoqdt-7zjdHJWpeyFyfQhvjbcZGSofC0DfMCj-kQ0NOrzGq7t6CzM2RSBrwRENxPpKN_MJDhN10BP8I1CeFY368XI76Vogi-nUaoqM80y3BUvmLFLHmrjEauFLz-0G__3BcuwlKNPcpS5ywrMiLgC5RyJkjzO0wosTskUrsKrJIN8vL0rmU5yL_tC8G6Q9OIR6amNbxzM1PlMw2eSnUlNEAyTx14aJuOUSN664tuyviBRP3lKiayenCQxUd1z0jvQJHuWdtGZU5IMhCIApGvQbp7cHp9q-akNWojQgWoCc4RwcRmIuSF0DO52IxpGJutSy_ZdXTCPMo9HuiGE4TCLc8Zd07EEF9xxHGZb61CKk1hsADFDO6Q6ls8ukx1irod2da5zP-ramHy8KuwXExgMMnGOIJNhNgP8uYH8uVXYLmY2yMMzDeQ6TPUMo4lDNUW_jg-alw153fzrg3swf91oBpdnrYstWEB85WuK_rcNpdFwLHYQw4zYrnLWT6M18tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90order+ghost%E2%80%90point+immersed+boundary+method+for+viscous+compressible+flows+based+on+summation%E2%80%90by%E2%80%90parts+operators&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=M+Ehsan+Khalili&rft.au=Larsson%2C+Martin&rft.au=M%C3%BCller%2C+Bernhard&rft.date=2019-03-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=89&rft.issue=7&rft.spage=256&rft.epage=282&rft_id=info:doi/10.1002%2Ffld.4696&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon