Joint synthesis of trajectory and controlled invariant funnel for discrete‐time systems with locally Lipschitz nonlinearities
This paper presents a joint synthesis algorithm of trajectory and controlled invariant funnel (CIF) for locally Lipschitz nonlinear systems subject to bounded disturbances. The CIF synthesis refers to a procedure of computing controlled invariance sets and corresponding feedback gains. In contrast t...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 34; no. 6; pp. 4157 - 4176 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.7186 |
Cover
Abstract | This paper presents a joint synthesis algorithm of trajectory and controlled invariant funnel (CIF) for locally Lipschitz nonlinear systems subject to bounded disturbances. The CIF synthesis refers to a procedure of computing controlled invariance sets and corresponding feedback gains. In contrast to existing CIF synthesis methods that compute the CIF with a predefined nominal trajectory, our work aims to optimize the nominal trajectory and the CIF jointly to satisfy feasibility conditions without the relaxation of constraints and obtain a more cost‐optimal nominal trajectory. The proposed work has a recursive scheme that mainly optimize trajectory update and funnel update. The trajectory update step optimizes the nominal trajectory while ensuring the feasibility of the CIF. Then, the funnel update step computes the funnel around the nominal trajectory so that the CIF guarantees an invariance property. As a result, with the optimized trajectory and CIF, any resulting trajectory propagated from an initial set by the control law with the computed feedback gain remains within the feasible region around the nominal trajectory under the presence of bounded disturbances. We validate the proposed method via two applications from robotics. |
---|---|
AbstractList | This paper presents a joint synthesis algorithm of trajectory and controlled invariant funnel (CIF) for locally Lipschitz nonlinear systems subject to bounded disturbances. The CIF synthesis refers to a procedure of computing controlled invariance sets and corresponding feedback gains. In contrast to existing CIF synthesis methods that compute the CIF with a predefined nominal trajectory, our work aims to optimize the nominal trajectory and the CIF jointly to satisfy feasibility conditions without the relaxation of constraints and obtain a more cost‐optimal nominal trajectory. The proposed work has a recursive scheme that mainly optimize trajectory update and funnel update. The trajectory update step optimizes the nominal trajectory while ensuring the feasibility of the CIF. Then, the funnel update step computes the funnel around the nominal trajectory so that the CIF guarantees an invariance property. As a result, with the optimized trajectory and CIF, any resulting trajectory propagated from an initial set by the control law with the computed feedback gain remains within the feasible region around the nominal trajectory under the presence of bounded disturbances. We validate the proposed method via two applications from robotics. |
Author | Açıkmeşe, Behçet Kim, Taewan Elango, Purnanand |
Author_xml | – sequence: 1 givenname: Taewan orcidid: 0000-0003-4843-2630 surname: Kim fullname: Kim, Taewan email: twankim@uw.edu organization: University of Washington – sequence: 2 givenname: Purnanand surname: Elango fullname: Elango, Purnanand organization: University of Washington – sequence: 3 givenname: Behçet surname: Açıkmeşe fullname: Açıkmeşe, Behçet organization: University of Washington |
BookMark | eNp1kM1KAzEQx4MoaKvgIwS8eNmaZNPd7FGKnxQF0fOSzc7SlDSpSWpZL_oIPqNPYmo9iZ5mYP4fw2-Adq2zgNAxJSNKCDvzVo1KKooddEBJVWWU5dXuZudVJiqW76NBCHNC0o3xA_R267SNOPQ2ziDogF2Ho5dzUNH5HkvbYuVs9M4YaLG2L9JrmQzdylowuHMetzooDxE-3z-iXkDKChEWAa91nGHjlDSmx1O9DGqm4ytO_xptIeVEDeEQ7XXSBDj6mUP0dHnxOLnOpvdXN5PzaaZYlRcZFIIKWcmGlkIUDcuLsiVt1zAyblmhOCeCcUJF28G4yaUAUohWMt5Ayce8UPkQnWxzl949ryDEeu5W3qbKOhWUnLM8kRqi061KeReCh65eer2Qvq8pqTd464S33uBN0tEvqdJRRr2BJbX5y5BtDWttoP83uH64m3zrvwBG2JFd |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2024_09_027 |
Cites_doi | 10.1109/LCSYS.2023.3290229 10.1002/rnc.1059 10.1109/TRO.2022.3187291 10.1016/j.sysconle.2012.11.004 10.1109/MCS.2022.3187542 10.23919/ECC51009.2020.9143595 10.1007/s10514-018-9779-5 10.1016/j.automatica.2016.11.022 10.1016/j.automatica.2018.11.009 10.15607/RSS.2018.XIV.055 10.1137/11082381X 10.1007/BFb0109870 10.1002/rnc.2827 10.1109/LRA.2021.3057569 10.1002/rnc.5431 10.1109/TAC.2020.2982585 10.1002/rnc.1613 10.1109/CDC45484.2021.9683354 10.1177/0278364917712421 10.2514/1.G004536 10.2514/6.2021-0504 10.1109/CDC45484.2021.9683712 10.1109/TAC.2020.2996985 10.1017/CBO9780511804441 10.1109/ICRA.2019.8794205 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.7186 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 4176 |
ExternalDocumentID | 10_1002_rnc_7186 RNC7186 |
Genre | article |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research, funderid: FA9550‐20‐1‐0053 – fundername: Boeing funderid: 2021‐PD‐PA‐471 – fundername: Office of Naval Research funderid: N00014‐20‐1‐2288 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2936-e6818a9ab17886b2367d0dfb205d26c440824018dfe5b3a8e068da24be74546c3 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 10:35:44 EDT 2025 Tue Jul 01 01:03:15 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Jan 22 16:14:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2936-e6818a9ab17886b2367d0dfb205d26c440824018dfe5b3a8e068da24be74546c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4843-2630 |
PQID | 2937442312 |
PQPubID | 1026344 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2937442312 crossref_primary_10_1002_rnc_7186 crossref_citationtrail_10_1002_rnc_7186 wiley_primary_10_1002_rnc_7186_RNC7186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2021; 31 2023 2017; 36 2011 2021 2023; 7 2019; 43 2020 2013; 62 2017; 77 2006; 16 2019 2018 2011; 21 2022; 42 2004 2020; 66 2012; 22 1997; 4 2019; 100 2022; 39 1999 Jang I (e_1_2_9_22_1) 2021 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Reynolds TP (e_1_2_9_30_1) 2020 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Diehl M (e_1_2_9_31_1) 2011 e_1_2_9_3_1 e_1_2_9_2_1 Yakubovich VA (e_1_2_9_28_1) 1997; 4 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 16 start-page: 333 issue: 7 year: 2006 end-page: 351 article-title: Robust variable horizon model predictive control for vehicle maneuvering publication-title: Int J Robust Nonlinear Control – start-page: 207 year: 1999 end-page: 226 – volume: 66 start-page: 1129 issue: 3 year: 2020 end-page: 1143 article-title: Observer‐based controllers for incrementally quadratic nonlinear systems with disturbances publication-title: IEEE Trans Autom Control – volume: 6 start-page: 1351 issue: 2 year: 2021 end-page: 1358 article-title: Fast funnel computation using multivariate bernstein polynomial publication-title: IEEE Robot Autom Lett – year: 2021 – start-page: 1871 year: 2020 end-page: 1878 – start-page: 6741 year: 2019 end-page: 6747 – start-page: 6714 year: 2021 end-page: 6721 – volume: 21 start-page: 1721 issue: 4 year: 2011 end-page: 1739 article-title: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming publication-title: SIAM J Optim – volume: 62 start-page: 194 issue: 2 year: 2013 end-page: 200 article-title: Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems publication-title: Systems Control Lett – start-page: 3576 year: 2021 end-page: 3583 – year: 2018 article-title: Robust obstacle avoidance using tube NMPC publication-title: Robot Sci Syst – volume: 42 start-page: 40 issue: 5 year: 2022 end-page: 113 article-title: Convex optimization for trajectory generation: a tutorial on generating dynamically feasible trajectories reliably and efficiently publication-title: IEEE Control Syst Mag – year: 2021 article-title: Fast computation of tight funnels for piecewise polynomial systems publication-title: IEEE Control Syst Lett – volume: 77 start-page: 311 year: 2017 end-page: 321 article-title: Robust MPC via min–max differential inequalities publication-title: Automatica – volume: 31 start-page: 3011 issue: 8 year: 2021 end-page: 3035 article-title: Finite horizon robust synthesis using integral quadratic constraints publication-title: Int J Robust Nonlinear Control – volume: 100 start-page: 135 year: 2019 end-page: 143 article-title: Finite horizon robustness analysis of LTV systems using integral quadratic constraints publication-title: Automatica – volume: 22 start-page: 1398 issue: 12 year: 2012 end-page: 1427 article-title: Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering publication-title: Int J Robust Nonlinear Control – year: 2020 article-title: Dual quaternion‐based powered descent guidance with state‐triggered constraints publication-title: J Guid Control Dynam – volume: 21 start-page: 563 issue: 5 year: 2011 end-page: 590 article-title: A robust model predictive control algorithm for incrementally conic uncertain/nonlinear systems publication-title: Int J Robust Nonlinear Control – volume: 39 start-page: 90 issue: 1 year: 2022 end-page: 109 article-title: Real‐time robust receding horizon planning using Hamilton–Jacobi reachability analysis publication-title: IEEE Trans Robot – year: 2004 – year: 2020 – year: 2023 – volume: 7 start-page: 2875 year: 2023 end-page: 2880 article-title: Optimization‐based constrained funnel synthesis for systems with Lipschitz nonlinearities via numerical optimal control publication-title: IEEE Control Syst Lett – year: 2011 article-title: Numerical optimal control publication-title: Optim Eng Center – volume: 66 start-page: 794 issue: 2 year: 2020 end-page: 801 article-title: A computationally efficient robust model predictive control framework for uncertain nonlinear systems publication-title: IEEE Trans Autom Control – volume: 4 start-page: 73 year: 1997 end-page: 93 article-title: S‐procedure in nonlinear control theory publication-title: Vestnick Leningrad Univ Math – volume: 36 start-page: 947 issue: 8 year: 2017 end-page: 982 article-title: Funnel libraries for real‐time robust feedback motion planning publication-title: Int J Robot Res – volume: 43 start-page: 375 issue: 2 year: 2019 end-page: 387 article-title: Robust direct trajectory optimization using approximate invariant funnels publication-title: Auton Robots – ident: e_1_2_9_4_1 doi: 10.1109/LCSYS.2023.3290229 – year: 2021 ident: e_1_2_9_22_1 article-title: Fast computation of tight funnels for piecewise polynomial systems publication-title: IEEE Control Syst Lett – ident: e_1_2_9_15_1 doi: 10.1002/rnc.1059 – ident: e_1_2_9_17_1 doi: 10.1109/TRO.2022.3187291 – ident: e_1_2_9_10_1 doi: 10.1016/j.sysconle.2012.11.004 – ident: e_1_2_9_2_1 doi: 10.1109/MCS.2022.3187542 – ident: e_1_2_9_32_1 doi: 10.23919/ECC51009.2020.9143595 – ident: e_1_2_9_19_1 doi: 10.1007/s10514-018-9779-5 – ident: e_1_2_9_12_1 doi: 10.1016/j.automatica.2016.11.022 – volume: 4 start-page: 73 year: 1997 ident: e_1_2_9_28_1 article-title: S‐procedure in nonlinear control theory publication-title: Vestnick Leningrad Univ Math – ident: e_1_2_9_20_1 doi: 10.1016/j.automatica.2018.11.009 – ident: e_1_2_9_14_1 doi: 10.15607/RSS.2018.XIV.055 – ident: e_1_2_9_27_1 doi: 10.1137/11082381X – volume-title: Computational Guidance and Control for Aerospace Systems year: 2020 ident: e_1_2_9_30_1 – ident: e_1_2_9_9_1 doi: 10.1007/BFb0109870 – ident: e_1_2_9_16_1 doi: 10.1002/rnc.2827 – ident: e_1_2_9_21_1 doi: 10.1109/LRA.2021.3057569 – ident: e_1_2_9_24_1 – ident: e_1_2_9_7_1 doi: 10.1002/rnc.5431 – ident: e_1_2_9_11_1 doi: 10.1109/TAC.2020.2982585 – ident: e_1_2_9_13_1 doi: 10.1002/rnc.1613 – ident: e_1_2_9_29_1 doi: 10.1109/CDC45484.2021.9683354 – ident: e_1_2_9_6_1 doi: 10.1177/0278364917712421 – ident: e_1_2_9_26_1 doi: 10.2514/1.G004536 – ident: e_1_2_9_3_1 doi: 10.2514/6.2021-0504 – ident: e_1_2_9_18_1 doi: 10.1109/CDC45484.2021.9683712 – ident: e_1_2_9_8_1 doi: 10.1109/TAC.2020.2996985 – ident: e_1_2_9_23_1 – ident: e_1_2_9_25_1 doi: 10.1017/CBO9780511804441 – year: 2011 ident: e_1_2_9_31_1 article-title: Numerical optimal control publication-title: Optim Eng Center – ident: e_1_2_9_5_1 doi: 10.1109/ICRA.2019.8794205 |
SSID | ssj0009924 |
Score | 2.412644 |
Snippet | This paper presents a joint synthesis algorithm of trajectory and controlled invariant funnel (CIF) for locally Lipschitz nonlinear systems subject to bounded... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4157 |
SubjectTerms | Algorithms controlled invariant set Discrete time systems Disturbances Feasibility Feedback Invariance Invariants joint feedforward and feedback synthesis nonlinear control Nonlinear systems Nonlinearity Robotics robust control Synthesis Trajectory control Trajectory optimization |
Title | Joint synthesis of trajectory and controlled invariant funnel for discrete‐time systems with locally Lipschitz nonlinearities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7186 https://www.proquest.com/docview/2937442312 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1NS8MwGMeDeNKD7-J0SgTRU7euTbP2KNMxhu4wHAw8lKRNoDq60XbCdtGP4Gf0k_ikabcpCuKpl6TN25PnnzT5PQhdeCZnHmfSAO_HDBXb1mBBEBielB6zHZMIri4n3_doZ0C6Q2dYnKpUd2E0H2Kx4aYsI5-vlYEzntaX0NAE7AcmVkXbbthUYfNv-ktylOfpeLYggA0XREzJnTWtepnxqydaystVkZp7mfY2eizLpw-XPNemGa8F82_oxv9VYAdtFeITX-vRsovWRLyHNleQhPvotTuO4gynsxiUYRqleCxxlrCnfHN_hlkc4uJ0-0iEOIpfYK0NnYPBP0J5MEhgrC76JqDFP97eVeR6rGHRKVZbvjj3naMZvosmqfqFMcexrgtLcrbrARq0bx9aHaMI0mAEoBSoISi4fOYx3oDFNOUKCBeaoeSW6YQWDfKA1rCGc0MpHG4zV5jUDZlFuGgSh9DAPkTr8CFxhDBjimXjWMKVTcIb8EpCSeh6klECKkpW0FXZYX5QEMxVII2Rr9nLlg9N6qsmraDzRcqJpnb8kKZa9rlf2G3qQ5WaBBRmw6qgy7zzfs3v93st9Tz-a8ITtGGBItLHfqpoPUum4hQUTcbP8rH7CXa698E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH3-L6jCB6qtvtptkWT-KDVdc9iIIHoSRtAqtLlbYrrBf9Cf5Gf4mTpnVVFMRTL0mbZDKZb6aTbwC2fFtwX3BlofXjlq5ta_EwDC1fKZ83XJtKoS8nn3dY64qeXrvXI7BX3oUx_BAfATetGfl5rRVcB6RrQ9bQBBUIT1Y2CmMUcYb2vA4vhtxRvm8q2iIEtjyEMSXzrO3Uyp5fbdEQYH6GqbmdOZ6Gm3KEJr3kbrefid3w6Rt54z-nMANTBf4k-2bDzMKIjOdg8hMr4Tw8n95344ykgxjBYdpNyb0iWcJv8_j-gPA4IkWCe09GpBs_oruN8iFoInFABFEw0Xd9E4Tjby-vung9MXzRKdFRX5Kbz96AtLsPqf6L8URiMxme5PSuC3B1fHR50LKKOg1WiGCBWZKh1ec-F3X0p5nQnHCRHSnh2G7ksDCvaY1unBcp6YoG96TNvIg7VMgmdSkLG4tQwQ_JJSCcazob15GealJRx1dSRiPPV5xRBFKqCjulxIKwIDHXtTR6gaFfdgJc0kAvaRU2P1o-GOKOH9qslkIPCtVNA5xSkyLIrDtV2M6l92v_4KJzoJ_Lf224AeOty_N20D7pnK3AhIMAyWQBrUIlS_pyDQFOJtbzjfwO5W_74A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LSvQwFMcPfgryufAujtcIoqtqp5Nm2qWog9dBREFwUZImgdGhDm0Vxo0-gs_ok3jStI6KgrjqJmlzOzm_pMn_AKyHruCh4NpB78cdE9vW4XEcO6HWIW_4LlXCXE4-bbODS3p05V-VpyrNXRirD_G-4WYso5ivjYH3pN4eiIamaD84sbJ_MEIZgoQBovOBdFQY2oC2SMBOgBRTCc-63naV87MrGvDlR0ot3ExrAq6rAtrTJbdb97nYih-_aDf-rQaTMF7SJ9mxw2UKhlQyDWMfNAln4OnorpPkJOsniIZZJyN3muQpvyl29_uEJ5KUx9u7SpJO8oCLbewdgg4Sy0OQgYm56ZsijL8-v5jQ9cSqRWfE7PmSwnl2--Sk08vMP4xHkti68LQQd52Fy9b-xe6BU0ZpcGJEBeYohj6fh1zUcTXNhFGEk67UwnN96bG4iGiNi7hAauWLBg-UywLJPSpUk_qUxY05GMYPqXkgnBsxG99TgW5SUcdXUkZlEGrOKGKUrsFm1WFRXEqYm0ga3ciKL3sRNmlkmrQGa-8pe1a245s0S1WfR6XhZhFWqUkRMeteDTaKzvsxf3Te3jXPhd8mXIXRs71WdHLYPl6E_x7SkT0CtATDeXqvlpFucrFSDOM3CU36jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+synthesis+of+trajectory+and+controlled+invariant+funnel+for+discrete%E2%80%90time+systems+with+locally+Lipschitz+nonlinearities&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Kim%2C+Taewan&rft.au=Elango%2C+Purnanand&rft.au=A%C3%A7%C4%B1kme%C5%9Fe%2C+Beh%C3%A7et&rft.date=2024-04-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=34&rft.issue=6&rft.spage=4157&rft.epage=4176&rft_id=info:doi/10.1002%2Frnc.7186&rft.externalDBID=10.1002%252Frnc.7186&rft.externalDocID=RNC7186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |