H∞ synchronization of Markov jump neural networks with MPDT switching transition probabilities under DoS attacks

In this paper, the H∞$$ {H}_{\infty } $$ synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the transition probability of the Markov chain is considered as time‐varying governed by a mode‐dependent persistent dwell‐time switching rule. The purpo...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 46; no. 14; pp. 15412 - 15425
Main Authors Wang, Xiaomin, Li, Feng, Shen, Hao, Wang, Jing
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 30.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the H∞$$ {H}_{\infty } $$ synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the transition probability of the Markov chain is considered as time‐varying governed by a mode‐dependent persistent dwell‐time switching rule. The purpose of this paper is to design a suitable controller such that mean‐square exponentially stable of the synchronization error system can be accomplished, and an H∞$$ {H}_{\infty } $$ performance is satisfied under denial of service (DoS) attacks. In order to reduce the conservatism of obtained results, some synchronization analysis criteria are obtained by adopting an activation function division method. Based on these criteria, an effective security synchronization controller design method is presented. Conclusively, an example is given to verify the validity of the results.
AbstractList In this paper, the synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the transition probability of the Markov chain is considered as time‐varying governed by a mode‐dependent persistent dwell‐time switching rule. The purpose of this paper is to design a suitable controller such that mean‐square exponentially stable of the synchronization error system can be accomplished, and an performance is satisfied under denial of service (DoS) attacks. In order to reduce the conservatism of obtained results, some synchronization analysis criteria are obtained by adopting an activation function division method. Based on these criteria, an effective security synchronization controller design method is presented. Conclusively, an example is given to verify the validity of the results.
In this paper, the H∞$$ {H}_{\infty } $$ synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the transition probability of the Markov chain is considered as time‐varying governed by a mode‐dependent persistent dwell‐time switching rule. The purpose of this paper is to design a suitable controller such that mean‐square exponentially stable of the synchronization error system can be accomplished, and an H∞$$ {H}_{\infty } $$ performance is satisfied under denial of service (DoS) attacks. In order to reduce the conservatism of obtained results, some synchronization analysis criteria are obtained by adopting an activation function division method. Based on these criteria, an effective security synchronization controller design method is presented. Conclusively, an example is given to verify the validity of the results.
In this paper, the H∞$$ {H}_{\infty } $$ synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the transition probability of the Markov chain is considered as time‐varying governed by a mode‐dependent persistent dwell‐time switching rule. The purpose of this paper is to design a suitable controller such that mean‐square exponentially stable of the synchronization error system can be accomplished, and an H∞$$ {H}_{\infty } $$ performance is satisfied under denial of service (DoS) attacks. In order to reduce the conservatism of obtained results, some synchronization analysis criteria are obtained by adopting an activation function division method. Based on these criteria, an effective security synchronization controller design method is presented. Conclusively, an example is given to verify the validity of the results.
Author Li, Feng
Wang, Xiaomin
Shen, Hao
Wang, Jing
Author_xml – sequence: 1
  givenname: Xiaomin
  surname: Wang
  fullname: Wang, Xiaomin
  organization: Anhui University of Technology
– sequence: 2
  givenname: Feng
  orcidid: 0000-0002-1711-3891
  surname: Li
  fullname: Li, Feng
  email: fengli4131@gmail.com
  organization: Anhui University of Technology
– sequence: 3
  givenname: Hao
  surname: Shen
  fullname: Shen, Hao
  email: haoshen10@gmail.com
  organization: Anhui University of Technology
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Anhui University of Technology
BookMark eNp1kMtOAjEUhhujiYAmPkITN24GexnmsiSgYgLRRFxPzpRWCkOL7YwEn8Cn8OF8Egu4Mrr6z0m-_1z-Njo21kiELijpUkLY9WoF3ZxnyRFqUZLnEY3T5Bi1CE1JFDMan6K29wtCSEYpayE3-vr4xH5rxNxZo9-h1tZgq_AE3NK-4UWzWmMjGwdVkHpj3dLjja7nePI4nGIfSjHX5gXXDozXe_fa2RJKXYVOetyYmXR4aJ8w1DWIpT9DJwoqL89_tIOeb2-mg1E0fri7H_THkWA5TyIQNO5xPpOkTCGXNAPFZcogzoGptKdyJZMyl1wKkXGY9dKS8TIteaxiBUpR3kGXh7nhntdG-rpY2MaZsLJgWY8mlPGwoIO6B0o4672TqhC63qcQPtJVQUmxy7UIuRa7XIPh6pdh7fQK3PYvNDqgG13J7b9cMZn09_w3zWmMvw
CitedBy_id crossref_primary_10_1109_TCSI_2024_3383839
Cites_doi 10.1002/mma.2597
10.1007/s11432-021-3345-1
10.1186/s13662-017-1378-9
10.1016/j.jfranklin.2017.12.036
10.1016/j.chaos.2022.112724
10.1016/j.neucom.2018.11.011
10.1016/j.jfranklin.2020.08.010
10.1109/TFUZZ.2021.3070125
10.1016/j.jfranklin.2021.01.026
10.1016/j.jfranklin.2018.09.037
10.1016/j.amc.2019.04.032
10.1002/mma.5209
10.1016/j.isatra.2020.08.006
10.1109/TNNLS.2021.3055942
10.1109/TCYB.2020.2971265
10.1109/TNNLS.2021.3107607
10.1016/j.ins.2019.08.063
10.1007/s00521-016-2461-y
10.1002/rnc.5831
10.1109/TFUZZ.2010.2047648
10.1016/j.automatica.2010.03.007
10.1002/mma.6745
10.1002/mma.8721
10.3390/sym12061035
10.1007/s11071-014-1412-3
10.1109/TSMCB.2012.2230441
10.1109/TSMC.2021.3117742
10.1109/TNNLS.2015.2507790
10.1016/j.ins.2018.02.066
10.1007/s00034-021-01768-9
10.1109/TSMC.2019.2952539
10.1109/TSMC.2018.2810835
10.1016/j.automatica.2015.02.010
10.1002/mma.5408
10.1016/j.jfranklin.2012.04.004
10.1016/j.inffus.2020.02.006
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.9386
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 15425
ExternalDocumentID 10_1002_mma_9386
MMA9386
Genre article
GrantInformation_xml – fundername: Natural Science Foundation for Distinguished Young Scholars of Higher Education Institutions of Anhui Province
  funderid: 2022AH020034
– fundername: Open Project of China International Science and Technology Cooperation Base on Intelligent Equipment Manufacturing in Special Service Environment
  funderid: ISTC2021KF04
– fundername: Major Technologies Research and Development Special Program of Anhui Province
  funderid: 202003a05020001
– fundername: Key research and development projects of Anhui Province
  funderid: 202104a05020015
– fundername: Natural Science Foundation for Excellent Young Scholars of Anhui Province
  funderid: 2108085Y21
– fundername: Natural Science Foundation for Excellent Young Scholars of Higher Education Institutions of Anhui Province
  funderid: 2022AH030049
– fundername: Major Natural Science Foundation of Higher Education Institutions of Anhui Province
  funderid: KJ2020ZD28
– fundername: National Natural Science Foundation of China
  funderid: 62273006; 62173001; 61873002; 61703004
– fundername: Anhui Provincial Natural Science Foundation
  funderid: 2208085QF202
– fundername: Key Natural Science Foundation of Higher Education Institutions of Anhui Province
  funderid: KJ2021A0369
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2936-ac14533de0b7a9e18af3e72a49a2f75f9fe6b9e3ecc83ad57b23b7b34f4faff13
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 11:57:14 EDT 2025
Tue Jul 01 03:02:53 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
Wed Jan 22 16:20:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-ac14533de0b7a9e18af3e72a49a2f75f9fe6b9e3ecc83ad57b23b7b34f4faff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1711-3891
PQID 2851612345
PQPubID 1016386
PageCount 14
ParticipantIDs proquest_journals_2851612345
crossref_citationtrail_10_1002_mma_9386
crossref_primary_10_1002_mma_9386
wiley_primary_10_1002_mma_9386_MMA9386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 September 2023
PublicationDateYYYYMMDD 2023-09-30
PublicationDate_xml – month: 09
  year: 2023
  text: 30 September 2023
  day: 30
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 29
2021; 44
2023; 34
2017; 2017
2013; 43
2017; 28
2010; 18
2020; 60
2018; 444
2015; 54
2020; 107
2018; 41
2020; 12
2022; 65
2020; 509
2019; 360
2021; 51
2012; 349
2022; 164
2018; 2018
2023; 46
2013; 36
2010; 46
2019; 42
2022
2018; 355
2021; 358
2020; 357
2019; 49
2019; 356
2020; 25
2022; 52
2022; 30
2022; 32
2022; 33
2013
2021; 40
2019; 331
2014; 77
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
Maharajan C. (e_1_2_8_12_1) 2018; 2018
Manickam I. (e_1_2_8_31_1) 2020; 25
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
Wu J. (e_1_2_8_27_1) 2022
e_1_2_8_30_1
References_xml – volume: 46
  start-page: 3783
  issue: 4
  year: 2023
  end-page: 3796
  article-title: static output feedback control for singularly perturbed persistent dwell‐time switched systems with time‐varying delay and deception attacks
  publication-title: Math. Methods Appl. Sci.
– volume: 164
  start-page: 112724
  year: 2022
  article-title: Finite‐time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control
  publication-title: Chaos Solitons Fractals
– volume: 30
  start-page: 1889
  issue: 6
  year: 2022
  end-page: 1899
  article-title: Observer‐based sliding mode control for networked fuzzy singularly perturbed systems under weighted try‐once‐discard protocol
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 36
  start-page: 395
  issue: 4
  year: 2013
  end-page: 412
  article-title: Delay decomposition approach to state estimation of neural networks with mixed time‐varying delays and Markovian jumping parameters
  publication-title: Math. Methods Appl. Sci.
– volume: 355
  start-page: 2735
  issue: 5
  year: 2018
  end-page: 2761
  article-title: A state estimation issue for discrete‐time stochastic impulsive genetic regulatory networks in the presence of leakage, multiple delays and Markovian jumping parameters
  publication-title: J. Franklin Inst.
– volume: 42
  start-page: 982
  issue: 3
  year: 2019
  end-page: 998
  article-title: Robust partially mode‐dependent filtering for discrete‐time nonhomogeneous Markovian jump neural networks with additive gain perturbations
  publication-title: Math. Methods Appl. Sci.
– volume: 29
  start-page: 483
  year: 2018
  end-page: 492
  article-title: Exponential stability of semi‐Markovian jump generalized neural networks with interval time‐varying delays
  publication-title: Neural Comput. Appl.
– start-page: 1854
  year: 2013
  end-page: 1859
– volume: 52
  start-page: 481
  issue: 1
  year: 2022
  end-page: 494
  article-title: Guaranteed cost finite‐time control of uncertain coupled neural networks
  publication-title: IEEE Trans. Cybern.
– volume: 331
  start-page: 403
  year: 2019
  end-page: 411
  article-title: Event‐triggered passive synchronization for Markov jump neural networks subject to randomly occurring gain variations
  publication-title: Neurocomputing
– volume: 357
  start-page: 10329
  issue: 15
  year: 2020
  end-page: 10352
  article-title: Quasi‐time‐dependent robust static output feedback control for uncertain discrete‐time switched systems with mode‐dependent persistent dwell‐time
  publication-title: J. Franklin Inst.
– volume: 107
  start-page: 307
  year: 2020
  end-page: 315
  article-title: Simultaneous estimation of state and packet‐loss occurrences in networked control systems
  publication-title: ISA Trans.
– volume: 444
  start-page: 122
  year: 2018
  end-page: 134
  article-title: A cooperative detection and compensation mechanism against denial‐of‐service attack for cyber‐physical systems
  publication-title: Inf. Sci.
– volume: 356
  start-page: 561
  issue: 1
  year: 2019
  end-page: 591
  article-title: Further mean‐square asymptotic stability of impulsive discrete‐time stochastic BAM neural networks with Markovian jumping and multiple time‐varying delays
  publication-title: J. Franklin Inst.
– volume: 25
  start-page: 726
  issue: 5
  year: 2020
  end-page: 744
  article-title: Novel lagrange sense exponential stability criteria for time‐delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters: a graph‐theoretic approach
  publication-title: Nonlinear Anal. Model. Control
– volume: 358
  start-page: 2895
  issue: 6
  year: 2021
  end-page: 2914
  article-title: Event‐triggered control for network‐based uncertain Markov jump systems under Dos attacks
  publication-title: J. Franklin Inst.
– volume: 349
  start-page: 1989
  issue: 6
  year: 2012
  end-page: 2003
  article-title: control of a class of discrete‐time Markov jump linear systems with piecewise‐constant TPs subject to average dwell time switching
  publication-title: J. Franklin Inst.
– volume: 360
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Synchronization control for Markov jump neural networks subject to HMM observation and partially known detection probabilities
  publication-title: Appl. Math. Comput.
– volume: 509
  start-page: 304
  year: 2020
  end-page: 316
  article-title: Dynamic event‐triggered mechanism for non‐fragile state estimation of complex networks under randomly occurring sensor saturations
  publication-title: Inf. Sci.
– volume: 33
  start-page: 4160
  issue: 9
  year: 2022
  end-page: 4172
  article-title: state estimation for BAM neural networks with binary mode switching and distributed leakage delays under periodic scheduling protocol
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2022
  end-page: 20
  article-title: Recent advances in event‐triggered security control of networked systems: a survey
  publication-title: Int. J. Syst. Sci.
– volume: 52
  start-page: 5152
  issue: 8
  year: 2022
  end-page: 5164
  article-title: Proportional‐integral observer design for uncertain time‐delay systems subject to deception attacks: a outlier‐resistant approach
  publication-title: IEEE Trans. Syst. Man Cybern: Syst.
– volume: 44
  start-page: 419
  issue: 1
  year: 2021
  end-page: 440
  article-title: Stability of discrete‐time fractional‐order time‐delayed neural networks in complex field
  publication-title: Math. Methods Appl. Sci.
– volume: 54
  start-page: 201
  year: 2015
  end-page: 209
  article-title: Non‐weighted quasi‐time‐dependent filtering for switched linear systems with persistent dwell‐time
  publication-title: Automatica
– volume: 65
  start-page: 199204
  issue: 9
  year: 2022
  article-title: Observer‐based ‐ control for singularly perturbed semi‐Markov jump systems with improved weighted TOD protocol
  publication-title: Sci. China Inf. Sci.
– volume: 40
  start-page: 5997
  issue: 12
  year: 2021
  end-page: 6015
  article-title: Passivity and reduced‐order feedback passification of discrete‐time switched systems with mode‐dependent persistent dwell time
  publication-title: Circuits, Syst. Signal Process.
– volume: 12
  start-page: 1035
  issue: 6
  year: 2020
  article-title: An extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with Markovian jumping parameters
  publication-title: Symmetry
– volume: 77
  start-page: 1709
  issue: 4
  year: 2014
  end-page: 1720
  article-title: Finite‐time synchronization control for uncertain Markov jump neural networks with input constraints
  publication-title: Nonlinear Dyn.
– volume: 46
  start-page: 1081
  issue: 6
  year: 2010
  end-page: 1088
  article-title: Markov jump linear systems with switching transition rates: mean square stability with dwell‐time
  publication-title: Automatica
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  end-page: 31
  article-title: Global exponential stability of Markovian jumping stochastic impulsive uncertain BAM neural networks with leakage, mixed time delays, and ‐inverse Hölder activation functions
  publication-title: Adv. Differ. Equa.
– volume: 60
  start-page: 80
  year: 2020
  end-page: 86
  article-title: Extended Kalman filtering subject to random transmission delays: dealing with packet disorders
  publication-title: Inf. Fusion
– volume: 51
  start-page: 3926
  issue: 6
  year: 2021
  end-page: 3938
  article-title: Observer‐based PID security control for discrete time‐delay systems under cyber‐attacks
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 41
  start-page: 6968
  issue: 16
  year: 2018
  end-page: 6983
  article-title: State‐dependent switching control of delayed switched systems with stable and unstable modes
  publication-title: Math. Methods Appl. Sci.
– volume: 32
  start-page: 2760
  issue: 5
  year: 2022
  end-page: 2779
  article-title: Neural‐network‐based control for discrete‐time nonlinear systems with denial‐of‐service attack: the adaptive event‐triggered case
  publication-title: Int. J. Robust Nonlinear Control
– volume: 34
  start-page: 2682
  issue: 5
  year: 2023
  end-page: 2692
  article-title: Non‐fragile synchronization for Markov jump singularly perturbed coupled neural networks subject to double‐layer switching regulation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 28
  article-title: Enhanced robust finite‐time passivity for Markovian jumping discrete‐time BAM neural networks with leakage delay
  publication-title: Adv. Diff. Equ.
– volume: 43
  start-page: 1796
  issue: 6
  year: 2013
  end-page: 1806
  article-title: Stochastic synchronization of Markovian jump neural networks with time‐varying delay using sampled data
  publication-title: IEEE Trans. Cybern.
– volume: 28
  start-page: 740
  issue: 3
  year: 2017
  end-page: 752
  article-title: Sampled‐data synchronization analysis of Markovian neural networks with generally incomplete transition rates
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 49
  start-page: 2026
  issue: 10
  year: 2019
  end-page: 2035
  article-title: Event‐triggered filtering for discrete‐time T–S fuzzy systems via network delay optimization technique
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 18
  start-page: 712
  issue: 4
  year: 2010
  end-page: 725
  article-title: Robust fuzzy output‐feedback control with multiple probabilistic delays and multiple missing measurements
  publication-title: IEEE Trans. Fuzzy Syst.
– ident: e_1_2_8_14_1
  doi: 10.1002/mma.2597
– ident: e_1_2_8_15_1
  doi: 10.1007/s11432-021-3345-1
– ident: e_1_2_8_16_1
  doi: 10.1186/s13662-017-1378-9
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jfranklin.2017.12.036
– ident: e_1_2_8_5_1
  doi: 10.1016/j.chaos.2022.112724
– ident: e_1_2_8_8_1
  doi: 10.1016/j.neucom.2018.11.011
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jfranklin.2020.08.010
– ident: e_1_2_8_18_1
  doi: 10.1109/TFUZZ.2021.3070125
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jfranklin.2021.01.026
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jfranklin.2018.09.037
– ident: e_1_2_8_41_1
  doi: 10.1016/j.amc.2019.04.032
– ident: e_1_2_8_24_1
  doi: 10.1002/mma.5209
– ident: e_1_2_8_32_1
  doi: 10.1016/j.isatra.2020.08.006
– ident: e_1_2_8_3_1
  doi: 10.1109/TNNLS.2021.3055942
– ident: e_1_2_8_7_1
  doi: 10.1109/TCYB.2020.2971265
– ident: e_1_2_8_22_1
  doi: 10.1109/TNNLS.2021.3107607
– ident: e_1_2_8_2_1
  doi: 10.1016/j.ins.2019.08.063
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_2_8_12_1
  article-title: Global exponential stability of Markovian jumping stochastic impulsive uncertain BAM neural networks with leakage, mixed time delays, and α$$ \alpha $$‐inverse Hölder activation functions
  publication-title: Adv. Differ. Equa.
– ident: e_1_2_8_11_1
  doi: 10.1007/s00521-016-2461-y
– ident: e_1_2_8_34_1
  doi: 10.1002/rnc.5831
– ident: e_1_2_8_35_1
– ident: e_1_2_8_40_1
  doi: 10.1109/TFUZZ.2010.2047648
– ident: e_1_2_8_20_1
  doi: 10.1016/j.automatica.2010.03.007
– ident: e_1_2_8_4_1
  doi: 10.1002/mma.6745
– ident: e_1_2_8_23_1
  doi: 10.1002/mma.8721
– start-page: 1
  year: 2022
  ident: e_1_2_8_27_1
  article-title: Recent advances in event‐triggered security control of networked systems: a survey
  publication-title: Int. J. Syst. Sci.
– ident: e_1_2_8_30_1
  doi: 10.3390/sym12061035
– ident: e_1_2_8_10_1
  doi: 10.1007/s11071-014-1412-3
– ident: e_1_2_8_13_1
  doi: 10.1109/TSMCB.2012.2230441
– ident: e_1_2_8_36_1
  doi: 10.1109/TSMC.2021.3117742
– ident: e_1_2_8_17_1
  doi: 10.1109/TNNLS.2015.2507790
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ins.2018.02.066
– volume: 25
  start-page: 726
  issue: 5
  year: 2020
  ident: e_1_2_8_31_1
  article-title: Novel lagrange sense exponential stability criteria for time‐delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters: a graph‐theoretic approach
  publication-title: Nonlinear Anal. Model. Control
– ident: e_1_2_8_25_1
  doi: 10.1007/s00034-021-01768-9
– ident: e_1_2_8_29_1
  doi: 10.1109/TSMC.2019.2952539
– ident: e_1_2_8_33_1
  doi: 10.1109/TSMC.2018.2810835
– ident: e_1_2_8_39_1
  doi: 10.1016/j.automatica.2015.02.010
– ident: e_1_2_8_9_1
  doi: 10.1002/mma.5408
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jfranklin.2012.04.004
– ident: e_1_2_8_28_1
  doi: 10.1016/j.inffus.2020.02.006
SSID ssj0008112
Score 2.339452
Snippet In this paper, the H∞$$ {H}_{\infty } $$ synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the...
In this paper, the synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the transition probability of the...
In this paper, the H∞$$ {H}_{\infty } $$ synchronization issue of discrete‐time Markov jump neural networks under DoS attacks is studied, in which the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15412
SubjectTerms Control systems design
Controllers
Criteria
Denial of service attacks
DoS attacks
H-infinity control
Markov chains
Markov jump neural networks
mode‐dependent persistent dwell‐time switching rule
Neural networks
Switching
synchronization control
Time synchronization
Transition probabilities
Title H∞ synchronization of Markov jump neural networks with MPDT switching transition probabilities under DoS attacks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.9386
https://www.proquest.com/docview/2851612345
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA3iShfq-MDxRQTxsejYJuk0XQ4-GISK-ADBRUk6yUKdjkyroF_gV_hxfom5STujoiCuWmhS2uTe3nPTc08Q2jIRzlxhsad5nJkEhfqeIFx5OtJtn0rKhSWPJ6ft7hU7uQ6vK1Yl1MI4fYjRght4hv1eg4MLWeyPRUP7fdGKKQe1baBqAR46HytH8cD-6AR1GI-RgNW6sz7Zrzt-jURjePkZpNooczyLburnc-SSu9ZjKVvZyzfpxv-9wByaqcAn7jhraaAJlc-j6WSk3FrMo0bl7AXerRSp9xbQsPv--oaL5zyzUrquchMPNIZKn8ETvjU2gUEZ09w8d7zyAsMKL07ODi9xYU4tZROXEBktSQzDTjZOI9zk6hhK2Yb4cHCBRVlC2f8iujo-ujzoetVmDV5mEEPbE1nADHTsKV9GIlYBF5qqiAgWC6KjUMdatWWsqDEZTkUvjCShMpKUaaaF1gFdQpP5IFfLCMuMZDL0VY-Y5JD1IimUT8y9dKi4yWB5E-3UE5dmlZI5bKhxnzoNZpKaoU1haJtoc9Tywal3_NBmrZ77tPLfIiUGiIIwDQubaNtO4q_90yTpwHHlrw1X0RTsWe9IJ2toshw-qnWDbEq5YW34A9xj-Qg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1RT9RAEIAngA_ggwpiPEBdEwL60KPd3bbb-EREcgolBo-EB5Jmt7f7INAj12KCv8Bf4Y_zl7iz294J0cTw1Cbdbdrdme7MduYbgE27wtkrPAuMyErroLAwkFTowKQmCZliQrrg8fwoGZzwT6fx6Ry863JhPB9iuuGGmuG-16jguCG9M6OGXl7KfsZEMg8PsKC386eOZ-woEblfnciHCTiNeEeeDelO1_P2WjQzMP80U906s_8Yzron9OEl5_3rRvXL73fgjfd8hSfwqLU_ya4XmGWY09UKPMyn8NZ6BZZbfa_JmxZK_fYpTAa_fvwk9U1VOpquT94kY0Mw2Wf8jXy1YkEQjmlvXvnQ8prgJi_JP-8NSW1PXdQmaXBxdHFiBIvZeEy4ddcJZrNNyN74C5FNg5n_q3Cy_2H4fhC09RqC0hoNSSDLiFvrcaRDlcpMR0IaplMqeSapSWOTGZ2oTDMrNYLJUZwqylSqGDfcSGMi9gwWqnGlnwNRJS1VHOoRtf4hH6VK6pDae5lYC-vEih5sdzNXlC3MHGtqXBQew0wLO7QFDm0PXk9bXnmAx1_abHSTX7QqXBfU2qLIpuFxD7bcLP6zf5Hnu3hc-9-Gr2BxMMwPi8OPRwfrsIQl7H0MygYsNJNr_cIaOo166QT6N1Wi_SM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEIBH0EqIHqAtoC6U4kqIn0O2ie0kzrHqstpCU1XQSpU4RHZiH2ibrTYpEjxBn6IPx5PgsZNdQCChnhIpdpTYM_GMM_MNwEu7wtkrPAuMyErroLAwkFTowKQmCZliQrrg8fwwmZzw96fxaRdVibkwng8x33BDzXDfa1Twy8rsLKChFxdymDGR3IVlnoQCJXr0cYGOEpH704l4mIDTiPfg2ZDu9D1_X4oW9uWvVqpbZsYP4XP_gD665Gx41aph-f0PduPt3mAVHnTWJ9n14rIGd3S9Div5HN3arMNap-0NedMhqd8-gtnkx_UNab7VpWPp-tRNMjUEU32mX8kXKxQE0Zj25rUPLG8IbvGS_Gh0TBp76mI2SYtLo4sSI1jKxkPCrbNOMJdtRkbTT0S2Leb9P4aT8bvjvUnQVWsISmsyJIEsI25tx0qHKpWZjoQ0TKdU8kxSk8YmMzpRmWZWZgSTVZwqylSqGDfcSGMi9gSW6mmtN4CokpYqDnVFrXfIq1RJHVJ7LxNrYV1YMYDX_cQVZYcyx4oa54WHMNPCDm2BQzuA7XnLS4_v-EubzX7ui06Bm4JaSxTJNDwewCs3if_sX-T5Lh6f_m_DF3DvaDQuDvYPPzyD-1i_3gegbMJSO7vSz62V06otJ84_AYwF-9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H%E2%88%9E+synchronization+of+Markov+jump+neural+networks+with+MPDT+switching+transition+probabilities+under+DoS+attacks&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Wang%2C+Xiaomin&rft.au=Li%2C+Feng&rft.au=Shen%2C+Hao&rft.au=Wang%2C+Jing&rft.date=2023-09-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=14&rft.spage=15412&rft.epage=15425&rft_id=info:doi/10.1002%2Fmma.9386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_9386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon