Interval estimation for inverse Gaussian distribution
In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the...
Saved in:
Published in | Quality and reliability engineering international Vol. 37; no. 5; pp. 2263 - 2275 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐p CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures. |
---|---|
AbstractList | In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐p CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures. Abstract In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐ CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐ p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures. In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐p CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures. |
Author | Wang, Xiaofei Wang, Bing Xing Chen, Yingpei Zhou, Junxing Pan, Xin Hu, Yunkai |
Author_xml | – sequence: 1 givenname: Xiaofei orcidid: 0000-0002-0802-9313 surname: Wang fullname: Wang, Xiaofei organization: Huangshan University – sequence: 2 givenname: Bing Xing surname: Wang fullname: Wang, Bing Xing organization: Zhejiang Gongshang University – sequence: 3 givenname: Xin surname: Pan fullname: Pan, Xin organization: Zhejiang Gongshang University – sequence: 4 givenname: Yunkai surname: Hu fullname: Hu, Yunkai organization: Zhejiang Gongshang University – sequence: 5 givenname: Yingpei surname: Chen fullname: Chen, Yingpei organization: Zhejiang Gongshang University – sequence: 6 givenname: Junxing surname: Zhou fullname: Zhou, Junxing email: zhoujunxing@126.com organization: Zhejiang University of Finance and Economics |
BookMark | eNp10MFKAzEQBuAgFWxV8BEWvHjZOkk22eQopdZCQRQ9h2Q7Cyk12ya7lb69qfXqaS4f88_8EzIKXUBC7ihMKQB73EecMiXkBRlT0LqkkqsRGUNdqVIBra_IJKUNQMZajYlYhh7jwW4LTL3_sr3vQtF2sfDhgDFhsbBDSt6GYu1TH70bTuKGXLZ2m_D2b16Tz-f5x-ylXL0ulrOnVdkwzWWphaNOtNRprWrkkltd0QrXleAga9ZyrrWlDKTg0qKueeN4A4AOlJKuWfNrcn_eu4vdfsgXmk03xJAjDROV1hSoYFk9nFUTu5QitmYX8yvxaCiYUykml2JOpWRanum33-LxX2fe3ue__gd6uGNp |
CitedBy_id | crossref_primary_10_1109_TR_2023_3328369 crossref_primary_10_1080_16843703_2022_2126260 crossref_primary_10_1080_00224065_2022_2053794 |
Cites_doi | 10.1142/5015 10.1080/00401706.1988.10488363 10.1080/00401706.1977.10489586 10.1016/j.apm.2017.09.012 10.1214/aoms/1177706631 10.1016/j.jspi.2009.12.028 10.1016/j.jspi.2007.09.005 10.1080/03610918.2016.1157185 10.1080/00401706.2013.830074 10.1007/s11009-019-09765-x 10.1007/978-1-4612-1456-4 10.1080/02664763.2014.881780 10.1016/j.spl.2014.05.013 10.1109/TR.2006.874918 10.1002/qre.2668 10.1198/004017004000000365 10.1016/j.jspi.2011.10.005 10.1007/s00184-018-0693-9 10.1109/TR.2016.2604298 10.1007/s40096-019-0289-1 10.1080/0740817X.2016.1217102 10.1080/24725854.2018.1468121 10.1016/j.csda.2005.11.012 10.1109/TR.2019.2895352 10.1016/j.csda.2009.09.039 10.2307/3315609 10.1080/00224065.2018.1436839 10.1214/aoms/1177706881 10.1080/02664763.2011.586684 10.1214/aoms/1177706964 10.1016/j.spl.2011.08.022 10.1080/00949655.2011.567986 10.1198/016214505000000736 10.1016/j.csda.2004.07.005 10.1007/978-1-4612-0825-9 10.1016/j.measurement.2006.04.011 10.2307/1269555 10.1080/00401706.2015.1096827 10.1111/j.2517-6161.1978.tb01039.x 10.1080/00401706.2017.1328377 10.1016/j.ress.2019.106631 10.1016/S0378-3758(02)00153-2 10.2307/3314980 10.1109/TR.2019.2948173 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1002/qre.2856 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1638 |
EndPage | 2275 |
ExternalDocumentID | 10_1002_qre_2856 QRE2856 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11801210; 11871431 – fundername: Anhui Provincial Excellent Youth Talent Fund Project funderid: gxyq2017075 – fundername: Huangshan University Research Project funderid: 2013xkj010 – fundername: First Class Discipline of Zhejiang ‐ A (Zhejiang Gongshang University ‐ Statistics) – fundername: Anhui Provincial Department of Education Key Fund funderid: KJ2015A166 – fundername: Natural Science Research Project of Universities in Anhui Province funderid: KJHS2019B06 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY18G010003 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7TB 8FD FR3 |
ID | FETCH-LOGICAL-c2936-95b1b5f1b9987e363a9414ed4530672f3399a1206536ae973cb3c00eb0886bcd3 |
IEDL.DBID | DR2 |
ISSN | 0748-8017 |
IngestDate | Thu Oct 10 20:38:59 EDT 2024 Wed Aug 28 12:35:23 EDT 2024 Sat Aug 24 01:03:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2936-95b1b5f1b9987e363a9414ed4530672f3399a1206536ae973cb3c00eb0886bcd3 |
ORCID | 0000-0002-0802-9313 |
PQID | 2549910152 |
PQPubID | 1016437 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2549910152 crossref_primary_10_1002_qre_2856 wiley_primary_10_1002_qre_2856_QRE2856 |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Quality and reliability engineering international |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 82 2010; 54 2012; 142 2014; 92 2006; 51 2006; 55 2017; 49 2019; 13 2006; 39 2017; 46 2004; 46 1995 2020; 36 2010; 140 2012; 39 2004 1988; 30 2003 2018; 60 2014; 41 2003; 115 2005; 49 1992; 34 1983; 11 1956 1999 2019; 82 2017; 59 1958; 29 1977; 19 2019; 68 1978; 40 2020; 193 2016; 65 2019 2008; 138 2020; 22 2018; 50 1992; 20 1957; 28 2018; 53 2006; 101 2014; 56 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Weerahandi S (e_1_2_9_45_1) 2004 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 Folks JL (e_1_2_9_19_1) 1978; 40 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 46 start-page: 339 issue: 3 year: 2004 end-page: 347 article-title: Moment‐based goodness‐of‐fit tests for the inverse Gaussian distribution publication-title: Technometrics – volume: 39 start-page: 309 issue: 2 year: 2012 end-page: 322 article-title: Estimation of for Burr XII distribution based on the progressively first failure‐censored samples publication-title: J Appl Stat – volume: 46 start-page: 5410 issue: 7 year: 2017 end-page: 5422 article-title: An extensive power evaluation of some tests for the inverse Gaussian distribution publication-title: Commun Stat‐Simul Comput – volume: 20 start-page: 387 issue: 4 year: 1992 end-page: 397 article-title: Goodness of fit for the inverse Gaussian distribution publication-title: Can J Stat – volume: 82 start-page: 1055 issue: 7 year: 2012 end-page: 1072 article-title: Estimation for the three‐parameter inverse Gaussian distribution under progressive type‐II censoring publication-title: J Statist Comput Simul – volume: 41 start-page: 1471 issue: 7 year: 2014 end-page: 1485 article-title: Generalized confidence interval estimation for the mean of delta‐lognormal distribution: an application to New Zealand trawl survey data publication-title: J Appl Statist – volume: 40 start-page: 263 issue: 3 year: 1978 end-page: 275 article-title: The inverse Gaussian distribution and its statistical application: a review publication-title: J R Statist Soc Ser B Methodol – volume: 138 start-page: 2082 issue: 7 year: 2008 end-page: 2089 article-title: Inferences on the difference and ratio of the means of two inverse Gaussian distributions publication-title: J Stat Plan Inference – volume: 28 start-page: 362 issue: 2 year: 1957 end-page: 377 article-title: Statistical properties of inverse Gaussian distributions. I publication-title: Ann Math Stat – volume: 51 start-page: 1156 issue: 2 year: 2006 end-page: 1162 article-title: Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable publication-title: Comput Stat Data Anal – volume: 60 start-page: 235 issue: 2 year: 2018 end-page: 244 article-title: Inference on the gamma distribution publication-title: Technometrics – volume: 92 start-page: 125 year: 2014 end-page: 131 article-title: Inferences on the common mean of several inverse Gaussian populations publication-title: Stat Probab Lett – year: 2003 – volume: 22 start-page: 1193 year: 2020 end-page: 1219 article-title: Purely sequential and k‐stage procedures for estimating the mean of an inverse Gaussian distribution publication-title: Methodol Comput Appl Probab – volume: 142 start-page: 848 issue: 4 year: 2012 end-page: 854 article-title: Inference about reliability parameter with Gamma strength and stress publication-title: J Statal Plan Inference – volume: 53 start-page: 267 year: 2018 end-page: 275 article-title: Inference for the generalized exponential stress‐strength model publication-title: Appl Math Model – year: 2019 article-title: A unified model for system reliability evaluation under dynamic operating conditions publication-title: IEEE Trans Reliab – volume: 54 start-page: 906 issue: 4 year: 2010 end-page: 915 article-title: Inferences on the common mean of several inverse Gaussian populations publication-title: Comput Stat Data Anal – volume: 65 start-page: 1737 issue: 4 year: 2016 end-page: 1744 article-title: Generalized fiducial inference for accelerated life tests with Weibull distribution and progressively type‐II censoring publication-title: IEEE Trans Reliab – volume: 193 year: 2020 article-title: Accurate reliability inference based on Wiener process with random effects for degradation data publication-title: Rel Eng Syst Saf – volume: 50 start-page: 1043 issue: 12 year: 2018 end-page: 1057 article-title: Interval estimation for Wiener processes based on accelerated degradation test data publication-title: IISE Trans – start-page: 13 year: 1956 end-page: 17 article-title: On a use of the Mann‐Whitney statistics – volume: 55 start-page: 270 issue: 2 year: 2006 end-page: 280 article-title: Estimation of for Weibull distributions publication-title: IEEE Trans Reliab – volume: 36 start-page: 1969 issue: 6 year: 2020 end-page: 1981 article-title: Reliability analysis for accelerated degradation data based on the Wiener process with random effects publication-title: Qual Reliab Eng Int – volume: 49 start-page: 344 issue: 3 year: 2017 end-page: 353 article-title: Interval estimation for k‐out‐of‐n load‐sharing systems publication-title: IISE Trans – volume: 140 start-page: 1754 issue: 7 year: 2010 end-page: 1764 article-title: Confidence limits for stress strength reliability involving Weibull models publication-title: J Statal Plan Inference – volume: 11 start-page: 131 issue: 2 year: 1983 end-page: 136 article-title: The inverse Gaussian distribution: some properties and characterizations publication-title: Can J Stat – volume: 49 start-page: 1132 issue: 4 year: 2005 end-page: 1147 article-title: Estimation in the three‐parameter inverse Gaussian distribution publication-title: Comput Stat Data Anal – volume: 29 start-page: 558 issue: 2 year: 1958 end-page: 562 article-title: A Distribution‐free upper confidence bound for , based on independent samples of and publication-title: Ann Math Stat – volume: 82 start-page: 529 issue: 5 year: 2019 end-page: 545 article-title: Inference about the shape parameters of several inverse Gaussian distributions: testing equality and confidence interval for a common value publication-title: Metrika – volume: 39 start-page: 856 issue: 9 year: 2006 end-page: 863 article-title: A generalized confidence interval for a measurand in the presence of type‐A and type‐B uncertainties publication-title: Measurement – volume: 56 start-page: 302 issue: 3 year: 2014 end-page: 311 article-title: The inverse Gaussian process as a degradation model publication-title: Technometrics – volume: 59 start-page: 115 issue: 1 year: 2017 end-page: 125 article-title: Estimation of field reliability based on aggregate lifetime data publication-title: Technometrics – volume: 34 start-page: 83 issue: 1 year: 1992 end-page: 91 article-title: Testing reliability in a stress‐strength model when and are normally distributed publication-title: Technometrics – volume: 28 start-page: 696 issue: 3 year: 1957 end-page: 705 article-title: Statistical properties of inverse Gaussian distributions. II publication-title: Ann Math Stat – volume: 13 start-page: 175 issue: 2 year: 2019 end-page: 191 article-title: Estimation of stress‐strength reliability in the inverse Gaussian distribution under progressively type II censored data publication-title: Math Sci – year: 2004 – volume: 68 start-page: 398 issue: 2 year: 2019 end-page: 409 article-title: Exponential dispersion process for degradation analysis publication-title: IEEE Trans Reliab – year: 1995 – volume: 19 start-page: 461 issue: 4 year: 1977 end-page: 468 article-title: The inverse Gaussian distribution as a lifetime model publication-title: Technometrics – volume: 101 start-page: 254 issue: 473 year: 2006 end-page: 269 article-title: Fiducial generalized confidence intervals publication-title: J Am Stat Assoc – volume: 82 start-page: 96 issue: 1 year: 2012 end-page: 102 article-title: A new generalized p‐value for testing equality of inverse Gaussian means under heterogeneity publication-title: Stat Probab Lett – volume: 50 start-page: 207 issue: 2 year: 2018 end-page: 219 article-title: Uncertainty quantification for monotone stochastic degradation models publication-title: J Qual Technol – volume: 30 start-page: 161 issue: 2 year: 1988 end-page: 168 article-title: Confidence limits for stress‐strength models with explanatory variables publication-title: Technometrics – volume: 115 start-page: 103 issue: 1 year: 2003 end-page: 121 article-title: Inferences on the means of lognormal distributions using generalized p‐values and generalized confidence intervals publication-title: J Stat Plan Inference – year: 1999 – ident: e_1_2_9_33_1 doi: 10.1142/5015 – ident: e_1_2_9_23_1 doi: 10.1080/00401706.1988.10488363 – ident: e_1_2_9_2_1 doi: 10.1080/00401706.1977.10489586 – ident: e_1_2_9_30_1 doi: 10.1016/j.apm.2017.09.012 – ident: e_1_2_9_22_1 doi: 10.1214/aoms/1177706631 – ident: e_1_2_9_26_1 doi: 10.1016/j.jspi.2009.12.028 – ident: e_1_2_9_13_1 doi: 10.1016/j.jspi.2007.09.005 – ident: e_1_2_9_10_1 doi: 10.1080/03610918.2016.1157185 – ident: e_1_2_9_47_1 doi: 10.1080/00401706.2013.830074 – ident: e_1_2_9_7_1 doi: 10.1007/s11009-019-09765-x – ident: e_1_2_9_20_1 doi: 10.1007/978-1-4612-1456-4 – ident: e_1_2_9_44_1 doi: 10.1080/02664763.2014.881780 – ident: e_1_2_9_15_1 doi: 10.1016/j.spl.2014.05.013 – ident: e_1_2_9_25_1 doi: 10.1109/TR.2006.874918 – ident: e_1_2_9_41_1 doi: 10.1002/qre.2668 – ident: e_1_2_9_9_1 doi: 10.1198/004017004000000365 – ident: e_1_2_9_29_1 doi: 10.1016/j.jspi.2011.10.005 – ident: e_1_2_9_18_1 doi: 10.1007/s00184-018-0693-9 – ident: e_1_2_9_27_1 doi: 10.1109/TR.2016.2604298 – ident: e_1_2_9_32_1 doi: 10.1007/s40096-019-0289-1 – ident: e_1_2_9_42_1 doi: 10.1080/0740817X.2016.1217102 – volume-title: Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models year: 2004 ident: e_1_2_9_45_1 contributor: fullname: Weerahandi S – ident: e_1_2_9_39_1 doi: 10.1080/24725854.2018.1468121 – ident: e_1_2_9_17_1 doi: 10.1016/j.csda.2005.11.012 – ident: e_1_2_9_31_1 doi: 10.1109/TR.2019.2895352 – ident: e_1_2_9_3_1 doi: 10.1016/j.csda.2009.09.039 – ident: e_1_2_9_8_1 doi: 10.2307/3315609 – ident: e_1_2_9_21_1 – ident: e_1_2_9_40_1 doi: 10.1080/00224065.2018.1436839 – ident: e_1_2_9_5_1 doi: 10.1214/aoms/1177706881 – ident: e_1_2_9_28_1 doi: 10.1080/02664763.2011.586684 – ident: e_1_2_9_4_1 doi: 10.1214/aoms/1177706964 – ident: e_1_2_9_14_1 doi: 10.1016/j.spl.2011.08.022 – ident: e_1_2_9_12_1 doi: 10.1080/00949655.2011.567986 – ident: e_1_2_9_35_1 doi: 10.1198/016214505000000736 – ident: e_1_2_9_11_1 doi: 10.1016/j.csda.2004.07.005 – ident: e_1_2_9_34_1 doi: 10.1007/978-1-4612-0825-9 – ident: e_1_2_9_36_1 doi: 10.1016/j.measurement.2006.04.011 – ident: e_1_2_9_24_1 doi: 10.2307/1269555 – ident: e_1_2_9_16_1 doi: 10.1080/00401706.2015.1096827 – volume: 40 start-page: 263 issue: 3 year: 1978 ident: e_1_2_9_19_1 article-title: The inverse Gaussian distribution and its statistical application: a review publication-title: J R Statist Soc Ser B Methodol doi: 10.1111/j.2517-6161.1978.tb01039.x contributor: fullname: Folks JL – ident: e_1_2_9_37_1 doi: 10.1080/00401706.2017.1328377 – ident: e_1_2_9_43_1 doi: 10.1016/j.ress.2019.106631 – ident: e_1_2_9_46_1 doi: 10.1016/S0378-3758(02)00153-2 – ident: e_1_2_9_6_1 doi: 10.2307/3314980 – ident: e_1_2_9_38_1 doi: 10.1109/TR.2019.2948173 |
SSID | ssj0010098 |
Score | 2.3315933 |
Snippet | In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized... Abstract In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2263 |
SubjectTerms | confidence interval Confidence intervals Failure rates Failure times generalized confidence interval generalized pivotal quantity inverse Gaussian distribution Inverse Gaussian probability distribution Mathematical models Parameters Reliability Statistical analysis stress–strength |
Title | Interval estimation for inverse Gaussian distribution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.2856 https://www.proquest.com/docview/2549910152 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfspMe_C1Op1QQb9na_Op6FN0cHgSHg4GHkLQpiFB13S7-9eY17TYFQTz10kD6mvfeN-G9TwAuuWROBuQp6dOcEc7CkCRWCxLbRDPn6Cz3tM8HOZrw-6mY1lWV2Avj-RDLAzf0jCpeo4NrU_ZW0NCPme3SvkDadsRirOa6HS_JURFyMj2Bs49BOG64syHtNQO_Z6KVvFwXqVWWGe7AczM_X1zy2l3MTTf9_IFu_N8H7MJ2LT6Da79a9mDDFvuwtYYkPABRHRG65RcgfsP3NQZO2AYvBRZw2OBOL0psvAwyRO7Wt2UdwmQ4eLoZkfpqBZK6_C5JIkxkRB4Zt9uKLZNMJzziNuMCtxDutzndoiOK4FqpbRKz1LA0DK1xQUmaNGNH0CreCnsMgcZGLhbyPDMJz60xlgmZaJf1ciTp2DZcNGZW756goTwrmSpnAoUmaEOnsb-qfahU1dbVRQxB23BVGfLX8epxPMDnyV9fPIVNisUpVd1tB1rz2cKeOXUxN-fVOvoC3i7LTw |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeHWg_qwbdYrRpBvKVNso80eBKtVq0FSws9CMtusgERqvZx8dO7k03aKgjiKZcsJLM7M_9dZn4LcEY5MTIgjd1GkBKXEs9zIy2ZG-pIEuPoJLW0zw5v9en9gA1KcFH0wlg-xOzADT0ji9fo4HggXZ9TQz9GuhY0GF-CZePtBO9tuO7O2FE-kjItg7OBYTgsyLNeUC9Gfs9Fc4G5KFOzPHOzAc_FF9ryktfadKJq8ecPeOM_f2ET1nP96VzaBbMFJT3chrUFKuEOsOyU0KxABwkctrXRMdrWeRliDYd2buV0jL2XToLU3fzCrF3o3zR7Vy03v13BjU2K527ElK9Y6iuz4Qo14URG1Kc6oQx3EWbmjHSRfoDsWi51FJJYkdjztDJxias4IXtQHr4N9T44Enu5iEfTREU01UppwngkTeJLEaajK3Ba2Fm8W4iGsLjkQBgTCDRBBarFBIjcjcYi272aoMGCCpxnlvx1vHjqNvF58NcXT2Cl1Xtsi_Zd5-EQVgOsVcnKcKtQnoym-siIjYk6zhbVF5gcz2c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcHrSB68C1Wq0YQb2mT7CPNUbS1PihaLBQ8LLvJLogQax8XP737SNoqCOIplyxJJjsz_01mfgtwjinSMkClfjNSyMcoCPxEcuLHMuFIOzpSjvbZpZ0-vhuQQVFVaXphHB9i9sHNeIaN18bBh5lqzKGhHyNZj5qELsOKvmBgf9H2Zuio0IAyHYKzaaJwXIJng6hRjvyeiub6clGl2jTT3oSX8gZddclbfToR9fTzB7vxf0-wBRuF-vQu3XTZhiWZ78D6ApNwF4j9Rqjnn2f4G66x0dPK1nvNTQWH9G74dGw6L73MMHeL7bL2oN9uPV91_GJvBT_VCZ76CRGhICoUerkVS0QRT3CIZYaJWUPo96aFCw8jQ66lXCYxSgVKg0AKHZWoSDO0D5X8PZcH4HHTyYUCrDKRYCWFkIjQhOu0pwxKR1bhrDQzGzqEBnOw5IhpEzBjgirUSvuzwonGzK5ddcggURUurCF_Hc-eei1zPPzriaew-njdZg-33fsjWItMoYqtwa1BZTKaymOtNCbixE6pL1lVzhY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval+estimation+for+inverse+Gaussian+distribution&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Wang%2C+Xiaofei&rft.au=Wang%2C+Bing+Xing&rft.au=Pan%2C+Xin&rft.au=Hu%2C+Yunkai&rft.date=2021-07-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=37&rft.issue=5&rft.spage=2263&rft.epage=2275&rft_id=info:doi/10.1002%2Fqre.2856&rft.externalDBID=10.1002%252Fqre.2856&rft.externalDocID=QRE2856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |