Interval estimation for inverse Gaussian distribution

In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the...

Full description

Saved in:
Bibliographic Details
Published inQuality and reliability engineering international Vol. 37; no. 5; pp. 2263 - 2275
Main Authors Wang, Xiaofei, Wang, Bing Xing, Pan, Xin, Hu, Yunkai, Chen, Yingpei, Zhou, Junxing
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐p CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures.
AbstractList In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐p CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures.
Abstract In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐ CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐ p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures.
In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized confidence intervals (GCIs) for the model parameters and some quantities such as the quantile, the reliability function of the lifetime, the failure rate function, and the mean residual lifetime. We verify that the GCI of the scale parameter is the same as its commonly used exact CI. We also obtain the generalized prediction intervals (GPIs) for future failure times based on the observed failure data set. In addition, we get the GCI for the reliability of the stress–strength model when the stress and strength variables follow the IG distributions with different parameters. We compare the proposed GCIs and GPIs with the Wald CIs and bootstrap‐p CIs by simulation. The simulation results show that the proposed GCIs and GPIs are superior to the Wald CIs and the bootstrap‐p CIs in terms of the coverage probability. Finally, two examples are used to illustrate the proposed procedures.
Author Wang, Xiaofei
Wang, Bing Xing
Chen, Yingpei
Zhou, Junxing
Pan, Xin
Hu, Yunkai
Author_xml – sequence: 1
  givenname: Xiaofei
  orcidid: 0000-0002-0802-9313
  surname: Wang
  fullname: Wang, Xiaofei
  organization: Huangshan University
– sequence: 2
  givenname: Bing Xing
  surname: Wang
  fullname: Wang, Bing Xing
  organization: Zhejiang Gongshang University
– sequence: 3
  givenname: Xin
  surname: Pan
  fullname: Pan, Xin
  organization: Zhejiang Gongshang University
– sequence: 4
  givenname: Yunkai
  surname: Hu
  fullname: Hu, Yunkai
  organization: Zhejiang Gongshang University
– sequence: 5
  givenname: Yingpei
  surname: Chen
  fullname: Chen, Yingpei
  organization: Zhejiang Gongshang University
– sequence: 6
  givenname: Junxing
  surname: Zhou
  fullname: Zhou, Junxing
  email: zhoujunxing@126.com
  organization: Zhejiang University of Finance and Economics
BookMark eNp10MFKAzEQBuAgFWxV8BEWvHjZOkk22eQopdZCQRQ9h2Q7Cyk12ya7lb69qfXqaS4f88_8EzIKXUBC7ihMKQB73EecMiXkBRlT0LqkkqsRGUNdqVIBra_IJKUNQMZajYlYhh7jwW4LTL3_sr3vQtF2sfDhgDFhsbBDSt6GYu1TH70bTuKGXLZ2m_D2b16Tz-f5x-ylXL0ulrOnVdkwzWWphaNOtNRprWrkkltd0QrXleAga9ZyrrWlDKTg0qKueeN4A4AOlJKuWfNrcn_eu4vdfsgXmk03xJAjDROV1hSoYFk9nFUTu5QitmYX8yvxaCiYUykml2JOpWRanum33-LxX2fe3ue__gd6uGNp
CitedBy_id crossref_primary_10_1109_TR_2023_3328369
crossref_primary_10_1080_16843703_2022_2126260
crossref_primary_10_1080_00224065_2022_2053794
Cites_doi 10.1142/5015
10.1080/00401706.1988.10488363
10.1080/00401706.1977.10489586
10.1016/j.apm.2017.09.012
10.1214/aoms/1177706631
10.1016/j.jspi.2009.12.028
10.1016/j.jspi.2007.09.005
10.1080/03610918.2016.1157185
10.1080/00401706.2013.830074
10.1007/s11009-019-09765-x
10.1007/978-1-4612-1456-4
10.1080/02664763.2014.881780
10.1016/j.spl.2014.05.013
10.1109/TR.2006.874918
10.1002/qre.2668
10.1198/004017004000000365
10.1016/j.jspi.2011.10.005
10.1007/s00184-018-0693-9
10.1109/TR.2016.2604298
10.1007/s40096-019-0289-1
10.1080/0740817X.2016.1217102
10.1080/24725854.2018.1468121
10.1016/j.csda.2005.11.012
10.1109/TR.2019.2895352
10.1016/j.csda.2009.09.039
10.2307/3315609
10.1080/00224065.2018.1436839
10.1214/aoms/1177706881
10.1080/02664763.2011.586684
10.1214/aoms/1177706964
10.1016/j.spl.2011.08.022
10.1080/00949655.2011.567986
10.1198/016214505000000736
10.1016/j.csda.2004.07.005
10.1007/978-1-4612-0825-9
10.1016/j.measurement.2006.04.011
10.2307/1269555
10.1080/00401706.2015.1096827
10.1111/j.2517-6161.1978.tb01039.x
10.1080/00401706.2017.1328377
10.1016/j.ress.2019.106631
10.1016/S0378-3758(02)00153-2
10.2307/3314980
10.1109/TR.2019.2948173
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1002/qre.2856
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
EndPage 2275
ExternalDocumentID 10_1002_qre_2856
QRE2856
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11801210; 11871431
– fundername: Anhui Provincial Excellent Youth Talent Fund Project
  funderid: gxyq2017075
– fundername: Huangshan University Research Project
  funderid: 2013xkj010
– fundername: First Class Discipline of Zhejiang ‐ A (Zhejiang Gongshang University ‐ Statistics)
– fundername: Anhui Provincial Department of Education Key Fund
  funderid: KJ2015A166
– fundername: Natural Science Research Project of Universities in Anhui Province
  funderid: KJHS2019B06
– fundername: Zhejiang Provincial Natural Science Foundation of China
  funderid: LY18G010003
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7TB
8FD
FR3
ID FETCH-LOGICAL-c2936-95b1b5f1b9987e363a9414ed4530672f3399a1206536ae973cb3c00eb0886bcd3
IEDL.DBID DR2
ISSN 0748-8017
IngestDate Thu Oct 10 20:38:59 EDT 2024
Wed Aug 28 12:35:23 EDT 2024
Sat Aug 24 01:03:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-95b1b5f1b9987e363a9414ed4530672f3399a1206536ae973cb3c00eb0886bcd3
ORCID 0000-0002-0802-9313
PQID 2549910152
PQPubID 1016437
PageCount 13
ParticipantIDs proquest_journals_2549910152
crossref_primary_10_1002_qre_2856
wiley_primary_10_1002_qre_2856_QRE2856
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Quality and reliability engineering international
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 82
2010; 54
2012; 142
2014; 92
2006; 51
2006; 55
2017; 49
2019; 13
2006; 39
2017; 46
2004; 46
1995
2020; 36
2010; 140
2012; 39
2004
1988; 30
2003
2018; 60
2014; 41
2003; 115
2005; 49
1992; 34
1983; 11
1956
1999
2019; 82
2017; 59
1958; 29
1977; 19
2019; 68
1978; 40
2020; 193
2016; 65
2019
2008; 138
2020; 22
2018; 50
1992; 20
1957; 28
2018; 53
2006; 101
2014; 56
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Weerahandi S (e_1_2_9_45_1) 2004
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
Folks JL (e_1_2_9_19_1) 1978; 40
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 46
  start-page: 339
  issue: 3
  year: 2004
  end-page: 347
  article-title: Moment‐based goodness‐of‐fit tests for the inverse Gaussian distribution
  publication-title: Technometrics
– volume: 39
  start-page: 309
  issue: 2
  year: 2012
  end-page: 322
  article-title: Estimation of for Burr XII distribution based on the progressively first failure‐censored samples
  publication-title: J Appl Stat
– volume: 46
  start-page: 5410
  issue: 7
  year: 2017
  end-page: 5422
  article-title: An extensive power evaluation of some tests for the inverse Gaussian distribution
  publication-title: Commun Stat‐Simul Comput
– volume: 20
  start-page: 387
  issue: 4
  year: 1992
  end-page: 397
  article-title: Goodness of fit for the inverse Gaussian distribution
  publication-title: Can J Stat
– volume: 82
  start-page: 1055
  issue: 7
  year: 2012
  end-page: 1072
  article-title: Estimation for the three‐parameter inverse Gaussian distribution under progressive type‐II censoring
  publication-title: J Statist Comput Simul
– volume: 41
  start-page: 1471
  issue: 7
  year: 2014
  end-page: 1485
  article-title: Generalized confidence interval estimation for the mean of delta‐lognormal distribution: an application to New Zealand trawl survey data
  publication-title: J Appl Statist
– volume: 40
  start-page: 263
  issue: 3
  year: 1978
  end-page: 275
  article-title: The inverse Gaussian distribution and its statistical application: a review
  publication-title: J R Statist Soc Ser B Methodol
– volume: 138
  start-page: 2082
  issue: 7
  year: 2008
  end-page: 2089
  article-title: Inferences on the difference and ratio of the means of two inverse Gaussian distributions
  publication-title: J Stat Plan Inference
– volume: 28
  start-page: 362
  issue: 2
  year: 1957
  end-page: 377
  article-title: Statistical properties of inverse Gaussian distributions. I
  publication-title: Ann Math Stat
– volume: 51
  start-page: 1156
  issue: 2
  year: 2006
  end-page: 1162
  article-title: Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable
  publication-title: Comput Stat Data Anal
– volume: 60
  start-page: 235
  issue: 2
  year: 2018
  end-page: 244
  article-title: Inference on the gamma distribution
  publication-title: Technometrics
– volume: 92
  start-page: 125
  year: 2014
  end-page: 131
  article-title: Inferences on the common mean of several inverse Gaussian populations
  publication-title: Stat Probab Lett
– year: 2003
– volume: 22
  start-page: 1193
  year: 2020
  end-page: 1219
  article-title: Purely sequential and k‐stage procedures for estimating the mean of an inverse Gaussian distribution
  publication-title: Methodol Comput Appl Probab
– volume: 142
  start-page: 848
  issue: 4
  year: 2012
  end-page: 854
  article-title: Inference about reliability parameter with Gamma strength and stress
  publication-title: J Statal Plan Inference
– volume: 53
  start-page: 267
  year: 2018
  end-page: 275
  article-title: Inference for the generalized exponential stress‐strength model
  publication-title: Appl Math Model
– year: 2019
  article-title: A unified model for system reliability evaluation under dynamic operating conditions
  publication-title: IEEE Trans Reliab
– volume: 54
  start-page: 906
  issue: 4
  year: 2010
  end-page: 915
  article-title: Inferences on the common mean of several inverse Gaussian populations
  publication-title: Comput Stat Data Anal
– volume: 65
  start-page: 1737
  issue: 4
  year: 2016
  end-page: 1744
  article-title: Generalized fiducial inference for accelerated life tests with Weibull distribution and progressively type‐II censoring
  publication-title: IEEE Trans Reliab
– volume: 193
  year: 2020
  article-title: Accurate reliability inference based on Wiener process with random effects for degradation data
  publication-title: Rel Eng Syst Saf
– volume: 50
  start-page: 1043
  issue: 12
  year: 2018
  end-page: 1057
  article-title: Interval estimation for Wiener processes based on accelerated degradation test data
  publication-title: IISE Trans
– start-page: 13
  year: 1956
  end-page: 17
  article-title: On a use of the Mann‐Whitney statistics
– volume: 55
  start-page: 270
  issue: 2
  year: 2006
  end-page: 280
  article-title: Estimation of for Weibull distributions
  publication-title: IEEE Trans Reliab
– volume: 36
  start-page: 1969
  issue: 6
  year: 2020
  end-page: 1981
  article-title: Reliability analysis for accelerated degradation data based on the Wiener process with random effects
  publication-title: Qual Reliab Eng Int
– volume: 49
  start-page: 344
  issue: 3
  year: 2017
  end-page: 353
  article-title: Interval estimation for k‐out‐of‐n load‐sharing systems
  publication-title: IISE Trans
– volume: 140
  start-page: 1754
  issue: 7
  year: 2010
  end-page: 1764
  article-title: Confidence limits for stress strength reliability involving Weibull models
  publication-title: J Statal Plan Inference
– volume: 11
  start-page: 131
  issue: 2
  year: 1983
  end-page: 136
  article-title: The inverse Gaussian distribution: some properties and characterizations
  publication-title: Can J Stat
– volume: 49
  start-page: 1132
  issue: 4
  year: 2005
  end-page: 1147
  article-title: Estimation in the three‐parameter inverse Gaussian distribution
  publication-title: Comput Stat Data Anal
– volume: 29
  start-page: 558
  issue: 2
  year: 1958
  end-page: 562
  article-title: A Distribution‐free upper confidence bound for , based on independent samples of and
  publication-title: Ann Math Stat
– volume: 82
  start-page: 529
  issue: 5
  year: 2019
  end-page: 545
  article-title: Inference about the shape parameters of several inverse Gaussian distributions: testing equality and confidence interval for a common value
  publication-title: Metrika
– volume: 39
  start-page: 856
  issue: 9
  year: 2006
  end-page: 863
  article-title: A generalized confidence interval for a measurand in the presence of type‐A and type‐B uncertainties
  publication-title: Measurement
– volume: 56
  start-page: 302
  issue: 3
  year: 2014
  end-page: 311
  article-title: The inverse Gaussian process as a degradation model
  publication-title: Technometrics
– volume: 59
  start-page: 115
  issue: 1
  year: 2017
  end-page: 125
  article-title: Estimation of field reliability based on aggregate lifetime data
  publication-title: Technometrics
– volume: 34
  start-page: 83
  issue: 1
  year: 1992
  end-page: 91
  article-title: Testing reliability in a stress‐strength model when and are normally distributed
  publication-title: Technometrics
– volume: 28
  start-page: 696
  issue: 3
  year: 1957
  end-page: 705
  article-title: Statistical properties of inverse Gaussian distributions. II
  publication-title: Ann Math Stat
– volume: 13
  start-page: 175
  issue: 2
  year: 2019
  end-page: 191
  article-title: Estimation of stress‐strength reliability in the inverse Gaussian distribution under progressively type II censored data
  publication-title: Math Sci
– year: 2004
– volume: 68
  start-page: 398
  issue: 2
  year: 2019
  end-page: 409
  article-title: Exponential dispersion process for degradation analysis
  publication-title: IEEE Trans Reliab
– year: 1995
– volume: 19
  start-page: 461
  issue: 4
  year: 1977
  end-page: 468
  article-title: The inverse Gaussian distribution as a lifetime model
  publication-title: Technometrics
– volume: 101
  start-page: 254
  issue: 473
  year: 2006
  end-page: 269
  article-title: Fiducial generalized confidence intervals
  publication-title: J Am Stat Assoc
– volume: 82
  start-page: 96
  issue: 1
  year: 2012
  end-page: 102
  article-title: A new generalized p‐value for testing equality of inverse Gaussian means under heterogeneity
  publication-title: Stat Probab Lett
– volume: 50
  start-page: 207
  issue: 2
  year: 2018
  end-page: 219
  article-title: Uncertainty quantification for monotone stochastic degradation models
  publication-title: J Qual Technol
– volume: 30
  start-page: 161
  issue: 2
  year: 1988
  end-page: 168
  article-title: Confidence limits for stress‐strength models with explanatory variables
  publication-title: Technometrics
– volume: 115
  start-page: 103
  issue: 1
  year: 2003
  end-page: 121
  article-title: Inferences on the means of lognormal distributions using generalized p‐values and generalized confidence intervals
  publication-title: J Stat Plan Inference
– year: 1999
– ident: e_1_2_9_33_1
  doi: 10.1142/5015
– ident: e_1_2_9_23_1
  doi: 10.1080/00401706.1988.10488363
– ident: e_1_2_9_2_1
  doi: 10.1080/00401706.1977.10489586
– ident: e_1_2_9_30_1
  doi: 10.1016/j.apm.2017.09.012
– ident: e_1_2_9_22_1
  doi: 10.1214/aoms/1177706631
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jspi.2009.12.028
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jspi.2007.09.005
– ident: e_1_2_9_10_1
  doi: 10.1080/03610918.2016.1157185
– ident: e_1_2_9_47_1
  doi: 10.1080/00401706.2013.830074
– ident: e_1_2_9_7_1
  doi: 10.1007/s11009-019-09765-x
– ident: e_1_2_9_20_1
  doi: 10.1007/978-1-4612-1456-4
– ident: e_1_2_9_44_1
  doi: 10.1080/02664763.2014.881780
– ident: e_1_2_9_15_1
  doi: 10.1016/j.spl.2014.05.013
– ident: e_1_2_9_25_1
  doi: 10.1109/TR.2006.874918
– ident: e_1_2_9_41_1
  doi: 10.1002/qre.2668
– ident: e_1_2_9_9_1
  doi: 10.1198/004017004000000365
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jspi.2011.10.005
– ident: e_1_2_9_18_1
  doi: 10.1007/s00184-018-0693-9
– ident: e_1_2_9_27_1
  doi: 10.1109/TR.2016.2604298
– ident: e_1_2_9_32_1
  doi: 10.1007/s40096-019-0289-1
– ident: e_1_2_9_42_1
  doi: 10.1080/0740817X.2016.1217102
– volume-title: Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models
  year: 2004
  ident: e_1_2_9_45_1
  contributor:
    fullname: Weerahandi S
– ident: e_1_2_9_39_1
  doi: 10.1080/24725854.2018.1468121
– ident: e_1_2_9_17_1
  doi: 10.1016/j.csda.2005.11.012
– ident: e_1_2_9_31_1
  doi: 10.1109/TR.2019.2895352
– ident: e_1_2_9_3_1
  doi: 10.1016/j.csda.2009.09.039
– ident: e_1_2_9_8_1
  doi: 10.2307/3315609
– ident: e_1_2_9_21_1
– ident: e_1_2_9_40_1
  doi: 10.1080/00224065.2018.1436839
– ident: e_1_2_9_5_1
  doi: 10.1214/aoms/1177706881
– ident: e_1_2_9_28_1
  doi: 10.1080/02664763.2011.586684
– ident: e_1_2_9_4_1
  doi: 10.1214/aoms/1177706964
– ident: e_1_2_9_14_1
  doi: 10.1016/j.spl.2011.08.022
– ident: e_1_2_9_12_1
  doi: 10.1080/00949655.2011.567986
– ident: e_1_2_9_35_1
  doi: 10.1198/016214505000000736
– ident: e_1_2_9_11_1
  doi: 10.1016/j.csda.2004.07.005
– ident: e_1_2_9_34_1
  doi: 10.1007/978-1-4612-0825-9
– ident: e_1_2_9_36_1
  doi: 10.1016/j.measurement.2006.04.011
– ident: e_1_2_9_24_1
  doi: 10.2307/1269555
– ident: e_1_2_9_16_1
  doi: 10.1080/00401706.2015.1096827
– volume: 40
  start-page: 263
  issue: 3
  year: 1978
  ident: e_1_2_9_19_1
  article-title: The inverse Gaussian distribution and its statistical application: a review
  publication-title: J R Statist Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1978.tb01039.x
  contributor:
    fullname: Folks JL
– ident: e_1_2_9_37_1
  doi: 10.1080/00401706.2017.1328377
– ident: e_1_2_9_43_1
  doi: 10.1016/j.ress.2019.106631
– ident: e_1_2_9_46_1
  doi: 10.1016/S0378-3758(02)00153-2
– ident: e_1_2_9_6_1
  doi: 10.2307/3314980
– ident: e_1_2_9_38_1
  doi: 10.1109/TR.2019.2948173
SSID ssj0010098
Score 2.3315933
Snippet In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the generalized...
Abstract In this paper, we consider interval estimation for the inverse Gaussian (IG) distribution. Using generalized pivotal quantity method, we derive the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 2263
SubjectTerms confidence interval
Confidence intervals
Failure rates
Failure times
generalized confidence interval
generalized pivotal quantity
inverse Gaussian distribution
Inverse Gaussian probability distribution
Mathematical models
Parameters
Reliability
Statistical analysis
stress–strength
Title Interval estimation for inverse Gaussian distribution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqre.2856
https://www.proquest.com/docview/2549910152
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfspMe_C1Op1QQb9na_Op6FN0cHgSHg4GHkLQpiFB13S7-9eY17TYFQTz10kD6mvfeN-G9TwAuuWROBuQp6dOcEc7CkCRWCxLbRDPn6Cz3tM8HOZrw-6mY1lWV2Avj-RDLAzf0jCpeo4NrU_ZW0NCPme3SvkDadsRirOa6HS_JURFyMj2Bs49BOG64syHtNQO_Z6KVvFwXqVWWGe7AczM_X1zy2l3MTTf9_IFu_N8H7MJ2LT6Da79a9mDDFvuwtYYkPABRHRG65RcgfsP3NQZO2AYvBRZw2OBOL0psvAwyRO7Wt2UdwmQ4eLoZkfpqBZK6_C5JIkxkRB4Zt9uKLZNMJzziNuMCtxDutzndoiOK4FqpbRKz1LA0DK1xQUmaNGNH0CreCnsMgcZGLhbyPDMJz60xlgmZaJf1ciTp2DZcNGZW756goTwrmSpnAoUmaEOnsb-qfahU1dbVRQxB23BVGfLX8epxPMDnyV9fPIVNisUpVd1tB1rz2cKeOXUxN-fVOvoC3i7LTw
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeHWg_qwbdYrRpBvKVNso80eBKtVq0FSws9CMtusgERqvZx8dO7k03aKgjiKZcsJLM7M_9dZn4LcEY5MTIgjd1GkBKXEs9zIy2ZG-pIEuPoJLW0zw5v9en9gA1KcFH0wlg-xOzADT0ji9fo4HggXZ9TQz9GuhY0GF-CZePtBO9tuO7O2FE-kjItg7OBYTgsyLNeUC9Gfs9Fc4G5KFOzPHOzAc_FF9ryktfadKJq8ecPeOM_f2ET1nP96VzaBbMFJT3chrUFKuEOsOyU0KxABwkctrXRMdrWeRliDYd2buV0jL2XToLU3fzCrF3o3zR7Vy03v13BjU2K527ElK9Y6iuz4Qo14URG1Kc6oQx3EWbmjHSRfoDsWi51FJJYkdjztDJxias4IXtQHr4N9T44Enu5iEfTREU01UppwngkTeJLEaajK3Ba2Fm8W4iGsLjkQBgTCDRBBarFBIjcjcYi272aoMGCCpxnlvx1vHjqNvF58NcXT2Cl1Xtsi_Zd5-EQVgOsVcnKcKtQnoym-siIjYk6zhbVF5gcz2c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcHrSB68C1Wq0YQb2mT7CPNUbS1PihaLBQ8LLvJLogQax8XP737SNoqCOIplyxJJjsz_01mfgtwjinSMkClfjNSyMcoCPxEcuLHMuFIOzpSjvbZpZ0-vhuQQVFVaXphHB9i9sHNeIaN18bBh5lqzKGhHyNZj5qELsOKvmBgf9H2Zuio0IAyHYKzaaJwXIJng6hRjvyeiub6clGl2jTT3oSX8gZddclbfToR9fTzB7vxf0-wBRuF-vQu3XTZhiWZ78D6ApNwF4j9Rqjnn2f4G66x0dPK1nvNTQWH9G74dGw6L73MMHeL7bL2oN9uPV91_GJvBT_VCZ76CRGhICoUerkVS0QRT3CIZYaJWUPo96aFCw8jQ66lXCYxSgVKg0AKHZWoSDO0D5X8PZcH4HHTyYUCrDKRYCWFkIjQhOu0pwxKR1bhrDQzGzqEBnOw5IhpEzBjgirUSvuzwonGzK5ddcggURUurCF_Hc-eei1zPPzriaew-njdZg-33fsjWItMoYqtwa1BZTKaymOtNCbixE6pL1lVzhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval+estimation+for+inverse+Gaussian+distribution&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Wang%2C+Xiaofei&rft.au=Wang%2C+Bing+Xing&rft.au=Pan%2C+Xin&rft.au=Hu%2C+Yunkai&rft.date=2021-07-01&rft.issn=0748-8017&rft.eissn=1099-1638&rft.volume=37&rft.issue=5&rft.spage=2263&rft.epage=2275&rft_id=info:doi/10.1002%2Fqre.2856&rft.externalDBID=10.1002%252Fqre.2856&rft.externalDocID=QRE2856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon