An experimental comparison of the widely used pre‐trained deep neural networks for image classification tasks towards revealing the promise of transfer‐learning

Summary The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep learning platforms provide various pre‐trained deep neural networks that can be easily applied for image classification tasks. So, “Which pre‐trai...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 34; no. 24
Main Authors Kabakus, Abdullah Talha, Erdogmus, Pakize
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep learning platforms provide various pre‐trained deep neural networks that can be easily applied for image classification tasks. So, “Which pre‐trained model provides the best performance for image classification tasks?” is a question that instinctively comes to mind and should be shed light on by the research community. To this end, we propose an experimental comparison of the six popular pre‐trained deep neural networks, namely, (i) VGG19, (ii) ResNet50, (iii) DenseNet201, (iv) MobileNetV2, (v) InceptionV3, and (vi) Xception by employing them through the transfer‐learning technique. Then, the proposed benchmark models were both trained and evaluated under the same configurations on two gold‐standard datasets, namely, (i) CIFAR‐10 and (ii) Stanford Dogs to benchmark them. Three evaluation metrics were employed to measure performance differences between the employed pre‐trained models as follows: (i) Accuracy, (ii) training duration, and (iii) inference time. The key findings that were obtained through the conducted a wide variety of experiments were discussed.
AbstractList Summary The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep learning platforms provide various pre‐trained deep neural networks that can be easily applied for image classification tasks. So, “ Which pre‐trained model provides the best performance for image classification tasks? ” is a question that instinctively comes to mind and should be shed light on by the research community. To this end, we propose an experimental comparison of the six popular pre‐trained deep neural networks, namely, (i) VGG19 , (ii) ResNet50 , (iii) DenseNet201 , (iv) MobileNetV2 , (v) InceptionV3 , and (vi) Xception by employing them through the transfer‐learning technique. Then, the proposed benchmark models were both trained and evaluated under the same configurations on two gold‐standard datasets, namely, (i) CIFAR‐10 and (ii) Stanford Dogs to benchmark them. Three evaluation metrics were employed to measure performance differences between the employed pre‐trained models as follows: (i) Accuracy , (ii) training duration , and (iii) inference time . The key findings that were obtained through the conducted a wide variety of experiments were discussed.
Summary The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep learning platforms provide various pre‐trained deep neural networks that can be easily applied for image classification tasks. So, “Which pre‐trained model provides the best performance for image classification tasks?” is a question that instinctively comes to mind and should be shed light on by the research community. To this end, we propose an experimental comparison of the six popular pre‐trained deep neural networks, namely, (i) VGG19, (ii) ResNet50, (iii) DenseNet201, (iv) MobileNetV2, (v) InceptionV3, and (vi) Xception by employing them through the transfer‐learning technique. Then, the proposed benchmark models were both trained and evaluated under the same configurations on two gold‐standard datasets, namely, (i) CIFAR‐10 and (ii) Stanford Dogs to benchmark them. Three evaluation metrics were employed to measure performance differences between the employed pre‐trained models as follows: (i) Accuracy, (ii) training duration, and (iii) inference time. The key findings that were obtained through the conducted a wide variety of experiments were discussed.
The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep learning platforms provide various pre‐trained deep neural networks that can be easily applied for image classification tasks. So, “Which pre‐trained model provides the best performance for image classification tasks?” is a question that instinctively comes to mind and should be shed light on by the research community. To this end, we propose an experimental comparison of the six popular pre‐trained deep neural networks, namely, (i) VGG19, (ii) ResNet50, (iii) DenseNet201, (iv) MobileNetV2, (v) InceptionV3, and (vi) Xception by employing them through the transfer‐learning technique. Then, the proposed benchmark models were both trained and evaluated under the same configurations on two gold‐standard datasets, namely, (i) CIFAR‐10 and (ii) Stanford Dogs to benchmark them. Three evaluation metrics were employed to measure performance differences between the employed pre‐trained models as follows: (i) Accuracy, (ii) training duration, and (iii) inference time. The key findings that were obtained through the conducted a wide variety of experiments were discussed.
Author Kabakus, Abdullah Talha
Erdogmus, Pakize
Author_xml – sequence: 1
  givenname: Abdullah Talha
  orcidid: 0000-0003-2181-4292
  surname: Kabakus
  fullname: Kabakus, Abdullah Talha
  email: talhakabakus@gmail.com
  organization: Duzce University
– sequence: 2
  givenname: Pakize
  surname: Erdogmus
  fullname: Erdogmus, Pakize
  organization: Duzce University
BookMark eNp1kUtuGzEMhoUiAZoX0CMIyKabSfSYGWWWgZG0BQI0i2Q9oCUqlTOWptS4rnc9Qg-Rk-Ukke2iu6xIgh_5E_yP2UFMERn7JMWFFEJd2hEvjJLtB3YkG60q0er64H-u2o_sOOeFEFIKLY_Yy3Xk-HtECkuMEwzcpuUIFHKKPHk-_UC-Dg6HDV9ldHwkfP3zdyIIsVQOceQRV1TmIk7rRM-Z-0Q8LOEJuR0g5-CDhSmUdRPk0p7SGshlTvgLYQjxaacxUlqGjDtJgpg9UtEZECgW5JQdehgynv2LJ-zx9uZh9rW6-_7l2-z6rrKq0211VV91VkBtWt1I26Gx3mgjXCN0PXeg5kZD55VycyPQg8Wudhp8bSSgdGj1CTvf7y3n_FxhnvpFWlEskr0ySrSNbBpdqM97ylLKmdD3Y_ke0KaXot960BcP-q0HBa326DoMuHmX62f3Nzv-Dd-2kF4
CitedBy_id crossref_primary_10_1016_j_wneu_2024_04_168
crossref_primary_10_1186_s13677_022_00386_3
crossref_primary_10_1038_s41598_024_52823_9
Cites_doi 10.1142/S1793351X16500045
10.35377/saucis.03.03.776573
10.1109/CCBD.2016.029
10.1016/j.conbuildmat.2017.09.110
10.1109/CVPR.2016.90
10.1109/IIPHDW.2018.8388337
10.1109/CVPR.2016.308
10.1109/PDP.2010.43
10.1109/IJCNN.2012.6252544
10.22260/ISARC2018/0094
10.11591/IJECE.V10I5.PP5479‐5486
10.1109/IACS.2018.8355444
10.1109/CVPR.2017.243
10.1145/2647868.2654889
10.1109/CVPR.2018.00474
10.1038/s41586‐020‐2649‐2
10.1214/aoms/1177729586
10.1109/ACCESS.2018.2830661
10.26650/acin.880918
10.1109/CVPR.2017.195
10.1109/CVPR.2009.5206848
10.1109/ICDCS.2018.00125
10.1109/ColComCon.2017.8088219
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.7216
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_7216
CPE7216
Genre article
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
.Y3
31~
AASGY
AAYXX
ACBWZ
AFZJQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2936-8489c0a476351c9e7cf7370d5034bda2b73a9f22db70eface94d3af471ae1dec3
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Thu Oct 10 18:53:30 EDT 2024
Fri Aug 23 01:52:53 EDT 2024
Sat Aug 24 01:02:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-8489c0a476351c9e7cf7370d5034bda2b73a9f22db70eface94d3af471ae1dec3
ORCID 0000-0003-2181-4292
PQID 2720651553
PQPubID 2045170
PageCount 15
ParticipantIDs proquest_journals_2720651553
crossref_primary_10_1002_cpe_7216
wiley_primary_10_1002_cpe_7216_CPE7216
PublicationCentury 2000
PublicationDate 1 November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 1 November 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 6
2021; 5
2020; 3
2012
2011
2021
2010
2009
2016; 10
2019
2018
1951; 22
2017
2016
2020; 585
2015
2014
2020; 10
2013
2017; 157
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Chollet F (e_1_2_9_29_1) 2017
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – year: 2011
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  article-title: Array programming with NumPy
  publication-title: Nature
– year: 2009
– volume: 10
  start-page: 417
  issue: 3
  year: 2016
  end-page: 439
  article-title: Deep learning
  publication-title: Int J Semant Comput
– start-page: 1097
  year: 2012
  end-page: 1105
– volume: 3
  start-page: 169
  issue: 3
  year: 2020
  end-page: 182
  article-title: A comparison of the state‐of‐the‐art deep learning platforms: an experimental study
  publication-title: Sakarya Univ J Comput Inform Sci
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  end-page: 407
  article-title: A stochastic approximation method
  publication-title: Ann Math Stat
– volume: 6
  start-page: 24411
  year: 2018
  end-page: 24432
  article-title: A survey of deep learning: platforms, applications and emerging research trends
  publication-title: IEEE Access
– year: 2021
– volume: 157
  start-page: 322
  year: 2017
  end-page: 330
  article-title: Deep convolutional neural networks with transfer learning for computer vision‐based data‐driven pavement distress detection
  publication-title: Construc Build Mater
– volume: 10
  start-page: 5479
  issue: 5
  year: 2020
  end-page: 5486
  article-title: Benchmarking open source deep learning frameworks
  publication-title: Int J Electric Comput Eng
– year: 2017
– year: 2016
– year: 2018
– volume: 5
  start-page: 141
  issue: 1
  year: 2021
  end-page: 154
  article-title: Performance comparison of different pre‐trained deep learning models in classifying brain MRI images
  publication-title: Acta Infol
– year: 2019
– year: 2014
– year: 2015
– year: 2010
– year: 2012
– year: 2013
– ident: e_1_2_9_42_1
  doi: 10.1142/S1793351X16500045
– ident: e_1_2_9_23_1
  doi: 10.35377/saucis.03.03.776573
– ident: e_1_2_9_3_1
– ident: e_1_2_9_6_1
– ident: e_1_2_9_24_1
  doi: 10.1109/CCBD.2016.029
– ident: e_1_2_9_18_1
  doi: 10.1016/j.conbuildmat.2017.09.110
– ident: e_1_2_9_20_1
– ident: e_1_2_9_7_1
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_36_1
– ident: e_1_2_9_22_1
  doi: 10.1109/IIPHDW.2018.8388337
– ident: e_1_2_9_43_1
– ident: e_1_2_9_39_1
– volume-title: Deep Learning with Python
  year: 2017
  ident: e_1_2_9_29_1
  contributor:
    fullname: Chollet F
– ident: e_1_2_9_14_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_9_16_1
– ident: e_1_2_9_4_1
– ident: e_1_2_9_32_1
– ident: e_1_2_9_31_1
  doi: 10.1109/PDP.2010.43
– ident: e_1_2_9_34_1
  doi: 10.1109/IJCNN.2012.6252544
– ident: e_1_2_9_17_1
  doi: 10.22260/ISARC2018/0094
– ident: e_1_2_9_27_1
  doi: 10.11591/IJECE.V10I5.PP5479‐5486
– ident: e_1_2_9_21_1
– ident: e_1_2_9_25_1
  doi: 10.1109/IACS.2018.8355444
– ident: e_1_2_9_37_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_9_5_1
– ident: e_1_2_9_10_1
  doi: 10.1145/2647868.2654889
– ident: e_1_2_9_15_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_9_44_1
– ident: e_1_2_9_8_1
– ident: e_1_2_9_30_1
  doi: 10.1038/s41586‐020‐2649‐2
– ident: e_1_2_9_41_1
– ident: e_1_2_9_12_1
– ident: e_1_2_9_33_1
– ident: e_1_2_9_40_1
  doi: 10.1214/aoms/1177729586
– ident: e_1_2_9_2_1
  doi: 10.1109/ACCESS.2018.2830661
– ident: e_1_2_9_28_1
  doi: 10.26650/acin.880918
– ident: e_1_2_9_38_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_9_9_1
– ident: e_1_2_9_11_1
– ident: e_1_2_9_35_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_9_26_1
  doi: 10.1109/ICDCS.2018.00125
– ident: e_1_2_9_19_1
  doi: 10.1109/ColComCon.2017.8088219
SSID ssj0011031
Score 2.3897836
Snippet Summary The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep...
The easiest way to propose a solution based on deep neural networks is using the pre‐trained models through the transfer‐learning technique. Deep learning...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Artificial neural networks
Benchmarks
convolutional neural network
Deep learning
deep neural network
Image classification
Keras
Machine learning
Neural networks
TensorFlow
transfer‐learning
Title An experimental comparison of the widely used pre‐trained deep neural networks for image classification tasks towards revealing the promise of transfer‐learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.7216
https://www.proquest.com/docview/2720651553
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsQwEA6yJy_-i-sfEcRb17Tpttuj6C4iKCIKgoeSn6mIWJdtF9GTj-BD-GQ-iTNpu6uCIJ5KaSdpk5nko535PsZ2bQY6TDCQjO8bL4RAeQq3PS8C1RMQayMyKnA-PYuOr8KT6-51nVVJtTAVP8TkgxtFhluvKcCVLvanpKFmCB1insHl15cxZXMdXUyYo3xSL6ioUgNPIGhveGdFsN8Yft-JpvDyK0h1u8xgnt00z1cll9x3xqXumJcf1I3_e4EFNleDT35Qecsim4F8ic03wg68jvNl9n6Q86_U_9xM1Ar5Y8YRM_Inosd65uMCLB-O4OP1zYlN4JkFGHKiyUS7vEoyLzhCY373gGsXNwTXKT_JuQQvVYGXS5e8W3Dik1JUIO_6wFFALwTXpcPXMMJ-ap2L2xV2NehfHh57tZyDZxBTRF4v7CVGqJAo8HyTABEiyVjYrpChtirQsVRJFgRWxwIyZSAJrVQZ7p4KfAtGrrJW_pjDGuPCaIUmElvKSL49kUkU29iIBBuJIGyznWZq02HF2pFW_MxBisOe0rC32WYz52kdt0VKf6VJHL4r22zPTd6v9unheZ-O63-9cYPNBlQ74QoZN1mrHI1hCxFNqbed734Cb-P6Fg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dStxAFD5YvbA3_tSK6087hdK7rJNMNtnQK7HK2qqUouCFECYzJyJidtlkEb3yEXyIPlmfpOdMktUKBfEqhOTMJDPnZD4m53wfwGebYxYmFEjG940XYqA9TcueF6HuS4wzI3MucD46jgan4fez3tkMfG1rYWp-iOmGG0eG-15zgPOG9PYja6gZYZepZ97AHEW7Yt2Gb7-m3FE-6xfUZKmBJwm2t8yzMthuLf9dix4B5lOY6taZ_UU4b5-wTi-56k6qrGvunpE3vvIVlmChwZ9ip3aYZZjB4h0sttoOogn1Ffi9U4in7P_CTAULxTAXBBvFDTNk3YpJiVaMxvjn_sHpTdCZRRwJZsoku6LOMy8FoWNxeU2fL2EYsXOKkvMKUemSLlcuf7cUTCmluUbe9UHDQI6IrksHsXFM_TRSFxfv4XR_72R34DWKDp4hWBF5_bCfGKlDZsHzTYLMiaRiaXtShZnVQRYrneRBYLNYYq4NJqFVOqcFVKNv0ahVmC2GBa6BkCbTZKKopZwV3BOVRLGNjUyokQjDDnxq5zYd1cQdaU3RHKQ07CkPewc220lPm9AtU_4xzfrwPdWBL272_muf7v7c4-P6S2_8CPODk6PD9PDg-McGvA24lMLVNW7CbDWe4BYBnCr74Bz5L-bM_i4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB_0hOJL7T_x2mu7hdK3nJtkL7k8ivWwag8RBaEPYbM7ESmN4ZKjtE9-BD-En8xP0plNcmcLBfEphGR2k92Z3R_JzO8H8NHmmKmEAsn4vvEUBtrTtO15EeqxxDgzMucC56_TaP9MHZyPztusSq6FafghFh_cODLces0BXtp8e0kaakocMvPMKqypiIAvA6KTBXWUz_IFDVdq4ElC7R3xrAy2O8u_t6IlvryPUt02M9mAb90DNtkl34fzOhua3_9wNz7uDZ7B0xZ9ip3GXZ7DChYvYKNTdhBtoL-E251C3Of-F2YhVyiuckGgUfxkfqxfYl6hFeUM765vnNoEnVnEUjBPJtkVTZZ5JQgbi8sftHgJw3idE5ScT4haV3S5dtm7lWBCKc0V8q4PGgVyQ3RdOoCNM-qnFbq4eAVnk73T3X2v1XPwDIGKyBurcWKkVsyB55sEmREpjKUdyVBlVgdZHOokDwKbxRJzbTBRNtQ5bZ8afYsm3IRecVXgFghpMk0mIbWUs357EiZRbGMjE2okQtWHD93UpmVD25E2BM1BSsOe8rD3YdDNedoGbpXyb2lWhx-FffjkJu-_9unu8R4fXz_0xvfw5PjzJD36Mj18A-sB11G4osYB9OrZHN8Suqmzd86N_wAIkvzd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+experimental+comparison+of+the+widely+used+pre%E2%80%90trained+deep+neural+networks+for+image+classification+tasks+towards+revealing+the+promise+of+transfer%E2%80%90learning&rft.jtitle=Concurrency+and+computation&rft.au=Kabakus%2C+Abdullah+Talha&rft.au=Erdogmus%2C+Pakize&rft.date=2022-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=34&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcpe.7216&rft.externalDBID=10.1002%252Fcpe.7216&rft.externalDocID=CPE7216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon