Infinite programming and theorems of the alternative

In this paper, we obtain optimal versions of the Karush–Kuhn–Tucker, Lagrange multiplier, and Fritz John theorems for a nonlinear infinite programming problem where both the number of equality and inequality constraints is arbitrary. To this end, we make use of a theorem of the alternative for a fam...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 42; no. 17; pp. 5769 - 5778
Main Authors Montiel López, Pablo, Ruiz Galán, Manuel
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 30.11.2019
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.5566

Cover

Abstract In this paper, we obtain optimal versions of the Karush–Kuhn–Tucker, Lagrange multiplier, and Fritz John theorems for a nonlinear infinite programming problem where both the number of equality and inequality constraints is arbitrary. To this end, we make use of a theorem of the alternative for a family of functions satisfying a certain type of weak convexity, the so‐called infsup‐convexity.
AbstractList In this paper, we obtain optimal versions of the Karush–Kuhn–Tucker, Lagrange multiplier, and Fritz John theorems for a nonlinear infinite programming problem where both the number of equality and inequality constraints is arbitrary. To this end, we make use of a theorem of the alternative for a family of functions satisfying a certain type of weak convexity, the so‐called infsup‐convexity.
Author Montiel López, Pablo
Ruiz Galán, Manuel
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0003-3281-7181
  surname: Montiel López
  fullname: Montiel López, Pablo
  organization: Universidad de Granada
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0001-7640-179X
  surname: Ruiz Galán
  fullname: Ruiz Galán, Manuel
  email: mruizg@ugr.es
  organization: University of Granada, E.T.S. Ingeniería de Edificación
BookMark eNp1kE9LAzEQxYNUsK2CH2HBi5etmWySbY6l-KfQ4kXPIc0mNWU3qclW6bc3tZ5ETzMDv_d480Zo4IM3CF0DngDG5K7r1IQxzs_QELAQJdCaD9AQQ41LSoBeoFFKW4zxFIAMEV1467zrTbGLYRNV1zm_KZRviv7NhGi6VAR73AvV9iZ61bsPc4nOrWqTufqZY_T6cP8yfyqXz4-L-WxZaiIqXnIGa9torrFmoBvBqpppQfNJGLPVmlOjcwouSLPmluiaKwNTYKqZNpW2rBqjm5Nvzva-N6mX27DPGdokSQWU8lrUIlO3J0rHkFI0Vu6i61Q8SMDy2InMnchjJxmd_EK16_NLwfdRufYvQXkSfLrWHP41lqvV7Jv_AvpNc2U
CitedBy_id crossref_primary_10_1016_j_cnsns_2020_105339
Cites_doi 10.2140/pjm.1958.8.171
10.1007/s10898-017-0525-x
10.1137/100817061
10.1080/02331930903552473
10.1023/A:1021781308794
10.1007/978-1-4684-9369-6
10.1007/s10479-014-1539-0
10.1007/BF02190126
10.1515/9781400873173
10.1007/978-3-642-21114-0_2
10.1007/s10957-013-0456-8
10.1007/s10898-015-0379-z
10.1155/2014/453912
10.1007/BF00934081
10.1007/s10957-016-0959-1
10.1016/j.na.2010.09.066
10.1016/j.hm.2003.07.001
10.1007/978-0-387-74759-0_371
10.4153/CMB-2012-028-5
10.1525/9780520411586-036
10.1007/BF01448847
10.1016/0022-247X(88)90054-6
10.1016/j.jmaa.2017.06.007
10.2307/1911819
10.1080/0233193021000031615
10.1073/pnas.39.1.42
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.5566
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 5778
ExternalDocumentID 10_1002_mma_5566
MMA5566
Genre article
GrantInformation_xml – fundername: AEI/FEDER, UE
  funderid: Project MTM2016-80676-P
– fundername: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
  funderid: FQM359
– fundername: Centro de Estudios Superiores La Inmaculada (University of Granada, Spain)
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2936-651bfdc6c0c51cd95375c94c0c255f3b64ec811692db6f2c76ae1815ad8d3cf53
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:20:10 EDT 2025
Tue Jul 01 00:19:07 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Wed Jan 22 16:39:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2936-651bfdc6c0c51cd95375c94c0c255f3b64ec811692db6f2c76ae1815ad8d3cf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3281-7181
0000-0001-7640-179X
PQID 2314467979
PQPubID 1016386
PageCount 10
ParticipantIDs proquest_journals_2314467979
crossref_primary_10_1002_mma_5566
crossref_citationtrail_10_1002_mma_5566
wiley_primary_10_1002_mma_5566_MMA5566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 November 2019
PublicationDateYYYYMMDD 2019-11-30
PublicationDate_xml – month: 11
  year: 2019
  text: 30 November 2019
  day: 30
PublicationDecade 2010
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 217
1982; 38
1953; 39
2012
2017; 69
2002; 51
2011; 60
1928; 100
2009
1953
2011; 74
1975
1951
2014; 2014
2004; 2
1970
1999; 101
1996; 91
2016; 17
1939
2017; 455
1958
1957
2014; 21
2004; 31
2016; 1
2016; 65
1958; 8
2014; 57
1988; 132
2014; 161
2016; 170
2011; 49
1948
1961; 29
e_1_2_6_32_1
Fenchel W (e_1_2_6_2_1) 1953
e_1_2_6_10_1
e_1_2_6_30_1
Stefanescu A (e_1_2_6_22_1) 2004; 2
Ruiz Galán M (e_1_2_6_26_1) 2014; 21
e_1_2_6_19_1
Ruiz Galán M (e_1_2_6_24_1) 2016; 17
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
Flores‐Bazán F (e_1_2_6_21_1) 2012
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_20_1
Uzawa H (e_1_2_6_31_1) 1958
e_1_2_6_9_1
e_1_2_6_8_1
Ruiz Galán M (e_1_2_6_16_1) 2016; 1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
John F (e_1_2_6_36_1) 1948
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – year: 1939
– volume: 161
  start-page: 807
  year: 2014
  end-page: 818
  article-title: Fritz John necessary optimality conditions of the alternative‐type
  publication-title: J Optim Theory Appl
– start-page: 187
  year: 1948
  end-page: 204
– volume: 8
  start-page: 171
  year: 1958
  end-page: 176
  article-title: On general minimax theorems
  publication-title: Pac J Math
– start-page: 32
  year: 1958
  end-page: 37
– volume: 100
  start-page: 295
  year: 1928
  end-page: 320
  article-title: Zur theorie der gesellschaftsspiele
  publication-title: Math Ann
– volume: 38
  start-page: 179
  year: 1982
  end-page: 189
  article-title: Perfect duality for convexlike programs
  publication-title: J Optim Theory Appl
– year: 1975
– volume: 1
  start-page: 111
  year: 2016
  end-page: 124
  article-title: A concave‐convex Ky Fan minimax inequality
  publication-title: Minimax Theory Appl
– volume: 2
  start-page: 167
  issue: 2004
  year: 2004
  end-page: 177
  article-title: A theorem of the alternative and a two‐function minimax theorem
  publication-title: J Appl Math
– volume: 21
  start-page: 1105
  year: 2014
  end-page: 1139
  article-title: An intrisic notion of convexity for minimax
  publication-title: J Convex Anal
– volume: 74
  start-page: 1279
  year: 2011
  end-page: 1285
  article-title: Optimality conditions and the basic constraint qualification for quasiconvex programming
  publication-title: Nonlinear Anal
– volume: 132
  start-page: 213
  year: 1988
  end-page: 225
  article-title: Diagonal convexity conditions for problems in convex analysis and quasi‐variational inequalities
  publication-title: J Math Anal Appl
– volume: 101
  start-page: 243
  year: 1999
  end-page: 257
  article-title: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming
  publication-title: J Optim Theory Appl
– volume: 217
  start-page: 591
  year: 2014
  end-page: 598
  article-title: General two‐function topological minimax theorems
  publication-title: Ann Oper Res
– volume: 60
  start-page: 613
  year: 2011
  end-page: 618
  article-title: An elementary proof of the Karush–Kuhn–Tucker theorem in normed linear spaces for problems with a finite number of inequality constraints
  publication-title: Optimization
– volume: 17
  start-page: 2385
  year: 2016
  end-page: 2405
  article-title: The Gordan theorem and its implications for minimax theory
  publication-title: J Nonlinear Convex Anal
– volume: 29
  start-page: 779
  year: 1961
  end-page: 800
  article-title: Quasi‐concave programming
  publication-title: Econometrica
– volume: 2014
  start-page: 453912
  year: 2014
  article-title: Strong and total Lagrange dualities for quasiconvex programming
  publication-title: J Appl Math
– start-page: 2087
  year: 2009
  end-page: 2093
– volume: 170
  start-page: 838
  year: 2016
  end-page: 852
  article-title: Nonlinear programming via könig's maximum theorem
  publication-title: J Optim Theory Appl
– year: 1957
– volume: 455
  start-page: 1037
  year: 2017
  end-page: 1050
  article-title: Revisiting the Hahn–Banach theorem and nonlinear infinite programming
  publication-title: J Math Anal Appl
– volume: 91
  start-page: 651
  year: 1996
  end-page: 670
  article-title: On a generalized sup‐inf problem
  publication-title: J Optim Theory Appl
– volume: 65
  start-page: 513
  year: 2016
  end-page: 530
  article-title: A sharp Lagrange multiplier theorem for nonlinear programs
  publication-title: J Glob Optim
– start-page: 29
  year: 2012
  end-page: 59
– volume: 57
  start-page: 178
  year: 2014
  end-page: 187
  article-title: Quasiconvexity and density topology
  publication-title: Can Math Bull
– volume: 49
  start-page: 2133
  year: 2011
  end-page: 2154
  article-title: Karush–Kuhn–Tucker conditions for nonsmooth mathematical programming problems in function spaces
  publication-title: SIAM J Control Optim
– volume: 31
  start-page: 62
  year: 2004
  end-page: 75
  article-title: The origins of quasi‐concavity: a development between mathematics and economics
  publication-title: Hist Math
– year: 1970
– year: 1953
– volume: 51
  start-page: 709
  year: 2002
  end-page: 717
  article-title: A general Gordan alternative theorem with weakened convexity and its application
  publication-title: Optimization
– volume: 39
  start-page: 42
  year: 1953
  end-page: 47
  article-title: Minimax theorems
  publication-title: Proc Natl Acad Sci USA
– start-page: 481
  year: 1951
  end-page: 492
– volume: 69
  start-page: 427
  year: 2017
  end-page: 442
  article-title: A theorem of the alternative with an arbitrary number of inequalities and quadratic programming
  publication-title: J Glob Optim
– ident: e_1_2_6_18_1
  doi: 10.2140/pjm.1958.8.171
– volume: 17
  start-page: 2385
  year: 2016
  ident: e_1_2_6_24_1
  article-title: The Gordan theorem and its implications for minimax theory
  publication-title: J Nonlinear Convex Anal
– ident: e_1_2_6_25_1
  doi: 10.1007/s10898-017-0525-x
– ident: e_1_2_6_35_1
  doi: 10.1137/100817061
– start-page: 32
  volume-title: Studies in Linear and Nonlinear Programming
  year: 1958
  ident: e_1_2_6_31_1
– ident: e_1_2_6_30_1
  doi: 10.1080/02331930903552473
– ident: e_1_2_6_10_1
  doi: 10.1023/A:1021781308794
– ident: e_1_2_6_33_1
  doi: 10.1007/978-1-4684-9369-6
– ident: e_1_2_6_19_1
  doi: 10.1007/s10479-014-1539-0
– ident: e_1_2_6_15_1
  doi: 10.1007/BF02190126
– ident: e_1_2_6_28_1
– ident: e_1_2_6_32_1
  doi: 10.1515/9781400873173
– volume: 21
  start-page: 1105
  year: 2014
  ident: e_1_2_6_26_1
  article-title: An intrisic notion of convexity for minimax
  publication-title: J Convex Anal
– start-page: 29
  volume-title: Recent Developments in Vector Optimization
  year: 2012
  ident: e_1_2_6_21_1
  doi: 10.1007/978-3-642-21114-0_2
– ident: e_1_2_6_34_1
  doi: 10.1007/s10957-013-0456-8
– start-page: 187
  volume-title: Studies and Essays Presented to R. Courant on His 60Th Birthday
  year: 1948
  ident: e_1_2_6_36_1
– ident: e_1_2_6_13_1
  doi: 10.1007/s10898-015-0379-z
– volume-title: Convex Cones, Sets and Functions
  year: 1953
  ident: e_1_2_6_2_1
– ident: e_1_2_6_8_1
  doi: 10.1155/2014/453912
– ident: e_1_2_6_9_1
  doi: 10.1007/BF00934081
– ident: e_1_2_6_27_1
– ident: e_1_2_6_11_1
  doi: 10.1007/s10957-016-0959-1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.na.2010.09.066
– ident: e_1_2_6_3_1
  doi: 10.1016/j.hm.2003.07.001
– ident: e_1_2_6_17_1
  doi: 10.1007/978-0-387-74759-0_371
– ident: e_1_2_6_4_1
  doi: 10.4153/CMB-2012-028-5
– ident: e_1_2_6_29_1
  doi: 10.1525/9780520411586-036
– ident: e_1_2_6_5_1
  doi: 10.1007/BF01448847
– ident: e_1_2_6_20_1
  doi: 10.1016/0022-247X(88)90054-6
– volume: 2
  start-page: 167
  issue: 2004
  year: 2004
  ident: e_1_2_6_22_1
  article-title: A theorem of the alternative and a two‐function minimax theorem
  publication-title: J Appl Math
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jmaa.2017.06.007
– ident: e_1_2_6_7_1
  doi: 10.2307/1911819
– volume: 1
  start-page: 111
  year: 2016
  ident: e_1_2_6_16_1
  article-title: A concave‐convex Ky Fan minimax inequality
  publication-title: Minimax Theory Appl
– ident: e_1_2_6_23_1
  doi: 10.1080/0233193021000031615
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.39.1.42
SSID ssj0008112
Score 2.189499
Snippet In this paper, we obtain optimal versions of the Karush–Kuhn–Tucker, Lagrange multiplier, and Fritz John theorems for a nonlinear infinite programming problem...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5769
SubjectTerms Convexity
infsup‐convexity
Lagrange multiplier
Nonlinear programming
Theorems
theorems of the alternative
Title Infinite programming and theorems of the alternative
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.5566
https://www.proquest.com/docview/2314467979
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD7KQHdVNxOiWC-OPQrT-StD0OfzCFehAHAw8lPxoQbSd2u_jX-9Kmm4qCeGoLCbQveXnfNHmfIHQcwajIOdVOpCR3CFfmmJdAOTBvUyBgZRwqk--c3LHRmNxO6MTuqjS5MDUfYvHDzXhGNV4bB-eiHCyhoXnO-xTECAy_XsAMNv_yfkmOirxqodPQYRzie6Thzrr-oKn4NRIt5eVnkVpFmesN9Ni8X7255Lk_n4m-fP-GbvzfB2yidSs-8bDuLW20khUdtJYsyK1lB7Wts5f4zBKpz7cQuSn0kxGn2G7nyiHgYV4oXOdB5iWeanOPq8X3ooKJb6Px9dXDxcixxy04EmI-cxj1hFaSSVdST6qYBiGVMYFHmHboQDCSSTAri32TuufLkPEM9AHlKlKB1DTYQa1iWmS7CEMbe5oxIqkQxFURN-v7VLqEUO2JLOii08b0qbQscnMkxktaU5T9FIyTGuN00dGi5GvN3_ihTK9pvdR6YJmCboWZbhiHcRedVM3wa_00SYbmuvfXgvtoFXRTXBMge6g1e5tnB6BNZuKw6oUfZCfgIw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP6qbidGoF8eOhWz-StMWnoY5N1z3IBnsQSpq0ILpO3PbiX--lH5uKgvjUFBJoL7nc73K53wGcurgrck5j3ZWC64RLVebFljr6bRIBrPAcqfKd_R5rD8jdkA6X4KrIhcn4IeYHbkoz0v1aKbg6kG4sWENHI16niEaWYYUgzlCe183DgjvKNdNQp-KH0YllkoJ51rAaxcivtmgBMD_D1NTOtDbhsfjC7HrJc302Devi_Rt54z9_YQs2cvypNbMFU4alKKnAuj8nb51UoJzr-0S7yEmpL7eBdJL4SeFTLb_RNUKbp_FEalkq5GiijWPV1tL4e5Lyie_AoHXbv27recUFXaDZZzqjZhhLwYQhqCmkR22HCo_gK3oesR0yEgmUK_Mslb1nCYfxCCEC5dKVtoipvQulZJxEe6DhNJsxY0TQMCSGdLkK8VNhEEJjM4zsKpwXsg9ETkeuqmK8BBmRshWgcAIlnCqczHu-ZhQcP_SpFdMX5Eo4CRC6orPreI5XhbN0Hn4dH_h-Uz33_9rxGFbbfb8bdDu9-wNYQxjlZYSQNShN32bRIUKVaXiULskPdcPkQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMcPOkH0wctUnE6tIF4euq1tkraPQx2buiHiYOBDSZMGRNcNu7346T3pZVNREJ_aQgLtSU7OP03OLwAnHo6KnFNlelJwk3Cpj3lxpInzNokCVviu1PnO3R5r98nNgA7yXZU6FybjQ8x-uGnPSMdr7eBjqepzaOhwyGsUxcgiLBGGQkILooc5Osqz0pVOjYcxiW2RAjzbsOtFza-haK4vP6vUNMy01uGpeMFsd8lLbToJa-L9G7vxf1-wAWu5-jSaWXfZhIUoLsNqd4ZuTcqwmXt7YpznSOqLLSCdWD1rdWrk-7mGGPEMHksjS4QcJsZI6XsjXX2PU5r4NvRb14-XbTM_b8EUGPSZyagVKimYaAhqCelTx6XCJ_iI8w7lhIxEAs3KfFvn7tnCZTxCgUC59KQjFHV2oBSP4mgXDGxkSzFGBA1D0pAe1wv8VDQIocoKI6cCZ4XpA5HDyPWZGK9BhlG2AzROoI1TgeNZyXEG4PihTLVovSB3wSRA4YpTXdd3_Qqcps3wa_2g223q695fCx7B8v1VK7jr9G73YQU1lJ_RIKtQmrxNowPUKZPwMO2QH-UZ4vE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinite+programming+and+theorems+of+the+alternative&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Pablo+Montiel+L%C3%B3pez&rft.au=Manuel+Ruiz+Gal%C3%A1n&rft.date=2019-11-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=42&rft.issue=17&rft.spage=5769&rft.epage=5778&rft_id=info:doi/10.1002%2Fmma.5566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon