Multilevel joint modeling of hospitalization and survival in patients on dialysis

More than 720,000 patients with end‐stage renal disease in the United States require life‐sustaining dialysis treatment. In this population of typically older patients with a high morbidity burden, hospitalization is frequent at a rate of about twice per patient‐year. Aside from frequent hospitaliza...

Full description

Saved in:
Bibliographic Details
Published inStat (International Statistical Institute) Vol. 10; no. 1
Main Authors Kürüm, Esra, Nguyen, Danh V., Li, Yihao, Rhee, Connie M., Kalantar‐Zadeh, Kamyar, Şentürk, Damla
Format Journal Article
LanguageEnglish
Published The Hague Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract More than 720,000 patients with end‐stage renal disease in the United States require life‐sustaining dialysis treatment. In this population of typically older patients with a high morbidity burden, hospitalization is frequent at a rate of about twice per patient‐year. Aside from frequent hospitalizations, which is a major source of death risk, overall mortality in dialysis patients is higher than other comparable populations, including Medicare patients with cancer. Thus, understanding patient‐ and facility‐level risk factors that jointly contribute to longitudinal hospitalizations and mortality is of interest. Towards this objective, we propose a novel methodology to jointly model hospitalization, a binary longitudinal outcome, and survival, based on multilevel data from the United States Renal Data System (USRDS), with repeated observations over time nested in patients and patients nested in dialysis facilities. In our approach, the outcomes are modeled through a common set of multilevel random effects. In order to accommodate the USRDS data structure, we depart from the literature on joint modeling of longitudinal and survival data by including multilevel random effects and multilevel covariates, at both the patient and facility levels. An approximate Expectation‐Maximization algorithm is developed for estimation and inference where fully exponential Laplace approximations are utilized to address computational challenges.
AbstractList More than 720,000 patients with end‐stage renal disease in the United States require life‐sustaining dialysis treatment. In this population of typically older patients with a high morbidity burden, hospitalization is frequent at a rate of about twice per patient‐year. Aside from frequent hospitalizations, which is a major source of death risk, overall mortality in dialysis patients is higher than other comparable populations, including Medicare patients with cancer. Thus, understanding patient‐ and facility‐level risk factors that jointly contribute to longitudinal hospitalizations and mortality is of interest. Towards this objective, we propose a novel methodology to jointly model hospitalization, a binary longitudinal outcome, and survival, based on multilevel data from the United States Renal Data System (USRDS), with repeated observations over time nested in patients and patients nested in dialysis facilities. In our approach, the outcomes are modeled through a common set of multilevel random effects. In order to accommodate the USRDS data structure, we depart from the literature on joint modeling of longitudinal and survival data by including multilevel random effects and multilevel covariates, at both the patient and facility levels. An approximate Expectation‐Maximization algorithm is developed for estimation and inference where fully exponential Laplace approximations are utilized to address computational challenges.
Author Kalantar‐Zadeh, Kamyar
Nguyen, Danh V.
Li, Yihao
Şentürk, Damla
Rhee, Connie M.
Kürüm, Esra
Author_xml – sequence: 1
  givenname: Esra
  surname: Kürüm
  fullname: Kürüm, Esra
  email: esra.kurum@ucr.edu
  organization: University of California
– sequence: 2
  givenname: Danh V.
  surname: Nguyen
  fullname: Nguyen, Danh V.
  organization: University of California Irvine
– sequence: 3
  givenname: Yihao
  surname: Li
  fullname: Li, Yihao
  organization: University of California
– sequence: 4
  givenname: Connie M.
  surname: Rhee
  fullname: Rhee, Connie M.
  organization: University of California Irvine School of Medicine
– sequence: 5
  givenname: Kamyar
  surname: Kalantar‐Zadeh
  fullname: Kalantar‐Zadeh, Kamyar
  organization: University of California Irvine School of Medicine
– sequence: 6
  givenname: Damla
  surname: Şentürk
  fullname: Şentürk, Damla
  organization: University of California
BookMark eNp1kE9LAzEQxYNUsNaCHyHgxcvWJLub3T2W4j-oiFjPS7qZ1ZQ0WZNspX56s9SDiJ5mmPm9N8w7RSNjDSB0TsmMEsKufBDZLM35ERozklUJzYt09KM_QVPvN4QQmrMq5ekYPT30OigNO9B4Y5UJeGslaGVesW3xm_WdCkKrTxGUNVgYiX3vdmonNFYGd3EMJngcd1IJvffKn6HjVmgP0-86QS8316vFXbJ8vL1fzJdJM5xO8jUlvGIlBQaQsaJi60akLUsbVkrelE1FSMEhF5JLABmnKREAUIiUyDJaTNDFwbdz9r0HH-qN7Z2JJ2vGaVbxgnMaqdmBapz13kFbN_Gh4ZnghNI1JfWQXD0kV8fkouDyl6Bzaivc_i80OaAfMcD9v1z9vJpnA_8FKGp_pA
CitedBy_id crossref_primary_10_1007_s10985_024_09635_w
crossref_primary_10_6000_1929_6029_2023_12_24
crossref_primary_10_1007_s12561_024_09429_6
crossref_primary_10_1002_sim_9582
Cites_doi 10.1002/sim.6836
10.1111/j.0006-341X.2002.00742.x
10.1002/sim.2059
10.1093/biomet/asm087
10.1093/biomet/88.2.447
10.1080/01621459.1989.10478825
10.1002/bimj.201600238
10.1002/wics.125
10.1177/1471082X13478880
10.2215/CJN.10151110
10.1002/sim.7950
10.1002/sim.3392
10.1080/01621459.1989.10478824
10.1159/000496147
10.1214/ss/1038425655
10.1111/j.1541-0420.2006.00570.x
10.1111/j.1467-9868.2008.00704.x
10.1111/j.2517-6161.1977.tb01600.x
10.1093/biostatistics/kxv031
10.1093/biostatistics/1.4.465
10.1111/j.2517-6161.1972.tb00899.x
10.2307/2533118
10.1080/01621459.2012.695648
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/sta4.356
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2049-1573
EndPage n/a
ExternalDocumentID 10_1002_sta4_356
STA4356
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: R01 DK092232
GroupedDBID 05W
0R~
1OC
31~
33P
50Y
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ACCZN
ACGFS
ACPOU
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMVHM
AMYDB
ASPBG
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-B
DCZOG
EBS
EJD
G-S
GODZA
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2936-5b1069281e2ee42792bca3f23c28d6c8c90076e5ad6deedc2830aeee7a30d8293
ISSN 2049-1573
IngestDate Sun Jul 20 00:43:34 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 03:07:35 EDT 2025
Sun Jul 06 04:45:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2936-5b1069281e2ee42792bca3f23c28d6c8c90076e5ad6deedc2830aeee7a30d8293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2614967661
PQPubID 2034131
PageCount 13
ParticipantIDs proquest_journals_2614967661
crossref_citationtrail_10_1002_sta4_356
crossref_primary_10_1002_sta4_356
wiley_primary_10_1002_sta4_356_STA4356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace The Hague
PublicationPlace_xml – name: The Hague
PublicationTitle Stat (International Statistical Institute)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 84
2002; 58
2015; 39
2015; 17
2019; 5
2000; 1
2001; 88
2008; 95
2011; 6
2012; 107
2016; 35
2005; 24
1996; 11
2006; 62
2017; 59
1977; 39
2013; 13
1997; 53
2009; 71
2004; 14
2008; 27
2018
2014
2010; 2
1972; 34
2018; 37
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Tsiatis A. A. (e_1_2_8_25_1) 2004; 14
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Eilers P. H. (e_1_2_8_9_1) 2015; 39
Dempster A. P. (e_1_2_8_6_1) 1977; 39
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 24
  start-page: 1713
  issue: 11
  year: 2005
  end-page: 1723
  article-title: Generating survival times to simulate Cox proportional hazards models
  publication-title: Statistics in Medicine
– volume: 71
  start-page: 637
  issue: 3
  year: 2009
  end-page: 654
  article-title: Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 107
  start-page: 1310
  issue: 500
  year: 2012
  end-page: 1323
  article-title: Measurement error case series models with application to infection‐cardiovascular risk in older patients on dialysis
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 1037
  issue: 4
  year: 2006
  end-page: 1043
  article-title: Joint modeling of survival and longitudinal data: Likelihood approach revisited
  publication-title: Biometrics
– volume: 35
  start-page: 1834
  issue: 11
  year: 2016
  end-page: 1847
  article-title: Time‐varying effect modeling with longitudinal data truncated by death: Conditional models, interpretations and inference
  publication-title: Statistics in Medicine
– volume: 84
  start-page: 710
  issue: 407
  year: 1989
  end-page: 716
  article-title: Fully exponential Laplace approximations to expectations and variances of nonpositive functions
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 809
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Statistica Sinica
– year: 2018
– year: 2014
– volume: 17
  start-page: 149
  issue: 1
  year: 2015
  end-page: 164
  article-title: Personalized screening intervals for biomarkers using joint models for longitudinal and survival data
  publication-title: Biostatistics
– volume: 95
  start-page: 63
  issue: 1
  year: 2008
  end-page: 74
  article-title: Shared parameter models under random effects misspecification
  publication-title: Biometrika
– volume: 6
  start-page: 1708
  issue: 7
  year: 2011
  end-page: 1713
  article-title: The risk of cardiovascular‐related events following infection‐related hospitalizations in older patients on dialysis
  publication-title: Clinical Journal of the American Society of Nephrology
– volume: 88
  start-page: 447
  issue: 2
  year: 2001
  end-page: 458
  article-title: A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error
  publication-title: Biometrika
– volume: 13
  start-page: 179
  issue: 3
  year: 2013
  end-page: 198
  article-title: A joint survival‐longitudinal modelling approach for the dynamic prediction of rehospitalization in telemonitored chronic heart failure patients
  publication-title: Statistical Modelling
– volume: 58
  start-page: 742
  issue: 4
  year: 2002
  end-page: 753
  article-title: A semiparametric likelihood approach to joint modeling of longitudinal and time‐to‐event data
  publication-title: Biometrics
– volume: 84
  start-page: 717
  issue: 407
  year: 1989
  end-page: 726
  article-title: Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models)
  publication-title: Journal of the American Statistical Association
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  end-page: 220
  article-title: Regression models and life‐tables
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 39
  start-page: 149
  issue: 2
  year: 2015
  end-page: 186
  article-title: Twenty years of P‐splines
  publication-title: SORT: Statistics and Operations Research Transactions
– volume: 2
  start-page: 637
  issue: 6
  year: 2010
  end-page: 653
  article-title: Splines, knots, and penalties
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
– volume: 59
  start-page: 1261
  issue: 6
  year: 2017
  end-page: 1276
  article-title: Dynamic predictions with time‐dependent covariates in survival analysis using joint modeling and landmarking
  publication-title: Biometrical Journal
– volume: 11
  start-page: 89
  year: 1996
  end-page: 102
  article-title: Flexible smoothing with B‐splines and penalties
  publication-title: Statistical Science
– volume: 1
  start-page: 465
  issue: 4
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
– volume: 37
  start-page: 4707
  issue: 30
  year: 2018
  end-page: 4720
  article-title: Modeling time‐varying effects of multilevel risk factors of hospitalizations in patients on dialysis
  publication-title: Statistics in Medicine
– volume: 53
  start-page: 330
  year: 1997
  end-page: 339
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– volume: 5
  start-page: 153
  issue: 3
  year: 2019
  end-page: 162
  article-title: Association of U.S. dialysis facility staffing with profiling of hospital‐wide 30‐day unplanned readmission
  publication-title: Kidney Diseases
– volume: 27
  start-page: 5679
  issue: 27
  year: 2008
  end-page: 5691
  article-title: Joint analysis of multi‐level repeated measures data and survival: An application to the end stage renal disease (ESRD) data
  publication-title: Statistics in Medicine
– ident: e_1_2_8_10_1
  doi: 10.1002/sim.6836
– ident: e_1_2_8_22_1
  doi: 10.1111/j.0006-341X.2002.00742.x
– ident: e_1_2_8_2_1
  doi: 10.1002/sim.2059
– ident: e_1_2_8_21_1
  doi: 10.1093/biomet/asm087
– ident: e_1_2_8_24_1
  doi: 10.1093/biomet/88.2.447
– ident: e_1_2_8_13_1
  doi: 10.1080/01621459.1989.10478825
– ident: e_1_2_8_18_1
  doi: 10.1002/bimj.201600238
– ident: e_1_2_8_8_1
  doi: 10.1002/wics.125
– ident: e_1_2_8_17_1
  doi: 10.1177/1471082X13478880
– ident: e_1_2_8_5_1
  doi: 10.2215/CJN.10151110
– ident: e_1_2_8_14_1
  doi: 10.1002/sim.7950
– ident: e_1_2_8_15_1
  doi: 10.1002/sim.3392
– ident: e_1_2_8_23_1
  doi: 10.1080/01621459.1989.10478824
– ident: e_1_2_8_3_1
  doi: 10.1159/000496147
– ident: e_1_2_8_27_1
– ident: e_1_2_8_7_1
  doi: 10.1214/ss/1038425655
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1541-0420.2006.00570.x
– volume: 14
  start-page: 809
  year: 2004
  ident: e_1_2_8_25_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Statistica Sinica
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1467-9868.2008.00704.x
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: e_1_2_8_6_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_19_1
  doi: 10.1093/biostatistics/kxv031
– ident: e_1_2_8_11_1
  doi: 10.1093/biostatistics/1.4.465
– ident: e_1_2_8_4_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_2_8_28_1
  doi: 10.2307/2533118
– volume: 39
  start-page: 149
  issue: 2
  year: 2015
  ident: e_1_2_8_9_1
  article-title: Twenty years of P‐splines
  publication-title: SORT: Statistics and Operations Research Transactions
– ident: e_1_2_8_16_1
  doi: 10.1080/01621459.2012.695648
– ident: e_1_2_8_26_1
SSID ssj0001529363
Score 2.2117574
Snippet More than 720,000 patients with end‐stage renal disease in the United States require life‐sustaining dialysis treatment. In this population of typically older...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
biostatistics
Data structures
Dialysis
Hemodialysis
Hospitalization
longitudinal data
Mortality
Multilevel
Patients
Risk analysis
SUBJECT AREAS
Survival
survival analysis
TOPICS
Title Multilevel joint modeling of hospitalization and survival in patients on dialysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsta4.356
https://www.proquest.com/docview/2614967661
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVK98ILAgGiMJCREDxMCY5ju8ljOzZNICYhOjSeIttx16IpRf1Agh_A7-b6K81YJw1e0sp1o9T39Ppc-_pchF5lcipqkWdJznWeMEZUoogRScaUUFplkjj54o-n4uSMvT_n573e707W0matUv1r57mS_7EqtIFd7SnZf7Bse1NogPdgX7iCheF6Kxu707OXNu3n4Nti3qx9XZuQxzwLFUHCQUu3S7DagGf44XQ2oqKq2y6wp0esNEmXqloa6vjnlTVD2-q0nZ1GR0g06CwnfLA77-PDpX9xYDtaLVvff3qx-RkcnWxmB1_SNiHIZRV8nc_kot0DmvkkIZuLMwfvk3ZXKGjWyfZwjoxCFJJk3JcsSc2OtuiJyTXE-Tm5nbGuOXwvIAtEmqU536Gp3fbhN_Vyc_nnyQh4o7iD9iiEG7SP9kbjd-Pj7WodB1rkyvK1Dx6VjAl9G298ldtsA5Zu2ON4y-Q-uhcCDjzy6HmAeqZ5iD5tkYMdcnBEDl5M8V_IwYAcHJGD5w2OyMHwWUTOI3R2fDQ5PElCcY1E25-ScJURUdIiM9QYZmUklZb5lOaaFrXQhS7tJq3hshY18ChtheKkMWYoc1IXcIvHqN8sGvMEYcNKkg9JPSWFYpwJWdRlzQoJwWqttSkH6E0clkoH5XlbAOWy8prZtLIDWMEADtDLtud3r7ayo89-HNkq_BdXFQWWWYohkM0Beu1G-8bvV8HWT2_b8Rm6u0X1PuqvlxvzHJjoWr0IMPkD2vqInQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+joint+modeling+of+hospitalization+and+survival+in+patients+on+dialysis&rft.jtitle=Stat+%28International+Statistical+Institute%29&rft.au=K%C3%BCr%C3%BCm%2C+Esra&rft.au=Nguyen%2C+Danh+V.&rft.au=Li%2C+Yihao&rft.au=Rhee%2C+Connie+M.&rft.date=2021-12-01&rft.issn=2049-1573&rft.eissn=2049-1573&rft.volume=10&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsta4.356&rft.externalDBID=10.1002%252Fsta4.356&rft.externalDocID=STA4356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1573&client=summon