Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag–Leffler kernel differential operator

In this research study, fuzzy fractional differential equations in presence of the Atangana–Baleanu–Caputo differential operators are analytically and numerically treated using extended reproducing kernel Hilbert space technique. With the utilization of a fuzzy strongly generalized differentiability...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 46; no. 7; pp. 7965 - 7986
Main Authors Abu Arqub, Omar, Singh, Jagdev, Maayah, Banan, Alhodaly, Mohammed
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 15.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research study, fuzzy fractional differential equations in presence of the Atangana–Baleanu–Caputo differential operators are analytically and numerically treated using extended reproducing kernel Hilbert space technique. With the utilization of a fuzzy strongly generalized differentiability form, a new fuzzy characterization theorem beside two fuzzy fractional solutions is constructed and computed. To besetment the attitude of fuzzy fractional numerical solutions, analysis of convergence and conduct of error beyond the reproducing kernel theory are explored and debated. In this tendency, three computational algorithms and modern trends in terms of analytic and numerical solutions are propagated. Meanwhile, the dynamical characteristics and mechanical features of these fuzzy fractional solutions are demonstrated and studied during two applications via three‐dimensional graphs and tabulated numerical values. In the end, highlights and future suggested research work are eluded.
AbstractList In this research study, fuzzy fractional differential equations in presence of the Atangana–Baleanu–Caputo differential operators are analytically and numerically treated using extended reproducing kernel Hilbert space technique. With the utilization of a fuzzy strongly generalized differentiability form, a new fuzzy characterization theorem beside two fuzzy fractional solutions is constructed and computed. To besetment the attitude of fuzzy fractional numerical solutions, analysis of convergence and conduct of error beyond the reproducing kernel theory are explored and debated. In this tendency, three computational algorithms and modern trends in terms of analytic and numerical solutions are propagated. Meanwhile, the dynamical characteristics and mechanical features of these fuzzy fractional solutions are demonstrated and studied during two applications via three‐dimensional graphs and tabulated numerical values. In the end, highlights and future suggested research work are eluded.
Author Maayah, Banan
Alhodaly, Mohammed
Abu Arqub, Omar
Singh, Jagdev
Author_xml – sequence: 1
  givenname: Omar
  orcidid: 0000-0001-9526-6095
  surname: Abu Arqub
  fullname: Abu Arqub, Omar
  email: o.abuarqub@bau.edu.jo
  organization: Al‐Balqa Applied University
– sequence: 2
  givenname: Jagdev
  orcidid: 0000-0001-6853-4138
  surname: Singh
  fullname: Singh, Jagdev
  organization: JECRC University
– sequence: 3
  givenname: Banan
  surname: Maayah
  fullname: Maayah, Banan
  organization: The University of Jordan
– sequence: 4
  givenname: Mohammed
  surname: Alhodaly
  fullname: Alhodaly, Mohammed
  organization: King Abdulaziz University
BookMark eNp1kMtqHDEQRUWwIeMH5BME2WTTE0n9ml4ak4dhhkCI101ZqrLlqKWJpE4Yr_IPgXygvyQaj1chWRXcOrce94Qd-eCRsVdSLKUQ6u00wbKvRfuCLaQYhko2fXfEFkL2omqUbF6yk5TuhRArKdWC_f6M2xjMrK2_5V8xenQctkUCfccpRO7nCaPV4HgKbs42-MQDcZofHnacIui9VLrW22xL_Q5uRl4G3DicEp-9wcjzHfKNzRluH3_-WiORK-LzNmOJMKJ_coctRsghnrFjApfw_Lmesuv3775cfqzWnz5cXV6sK62Guq3M0NTKGNGiATUowlZJLQapVx2axshWmo4ICHQH1PVmhdRSJxvd3LQ99lCfsteHueXgbzOmPN6HOZZ_0qj6YVj1bS1VoZYHSseQUkQatc2wfzxHsG6UYtxnP5bsx332xfDmL8M22gni7l9odUB_WIe7_3LjZnPxxP8BaRKa6g
CitedBy_id crossref_primary_10_1016_j_asej_2025_103316
crossref_primary_10_1007_s43994_024_00173_7
crossref_primary_10_1155_2022_7192231
crossref_primary_10_1007_s00500_023_07985_5
crossref_primary_10_1007_s44196_023_00332_4
crossref_primary_10_1007_s40819_022_01397_z
crossref_primary_10_1016_j_asoc_2022_109968
crossref_primary_10_1007_s44196_023_00270_1
crossref_primary_10_1016_j_asoc_2024_111251
crossref_primary_10_1007_s44196_023_00354_y
crossref_primary_10_1109_TCE_2023_3339729
crossref_primary_10_47836_mjms_18_3_11
crossref_primary_10_1016_j_aej_2024_12_035
crossref_primary_10_1088_1402_4896_acbf89
crossref_primary_10_1007_s40435_023_01149_x
crossref_primary_10_1016_j_comcom_2023_11_021
crossref_primary_10_1007_s00500_023_08529_7
crossref_primary_10_1155_2023_2726735
crossref_primary_10_1088_1402_4896_ace137
crossref_primary_10_1016_j_aml_2021_107525
crossref_primary_10_1016_j_rico_2025_100545
crossref_primary_10_1016_j_rico_2024_100387
crossref_primary_10_1007_s13198_023_02130_9
crossref_primary_10_1007_s43994_024_00187_1
crossref_primary_10_1007_s00500_022_07307_1
crossref_primary_10_1007_s12190_024_02364_1
crossref_primary_10_1016_j_aej_2023_11_025
crossref_primary_10_1007_s40435_024_01435_2
crossref_primary_10_1002_mma_8492
crossref_primary_10_1155_2023_9053616
crossref_primary_10_1002_mma_10542
crossref_primary_10_1007_s44196_024_00579_5
crossref_primary_10_1016_j_future_2023_09_003
crossref_primary_10_1007_s44196_023_00300_y
crossref_primary_10_1007_s13042_022_01642_3
crossref_primary_10_1007_s00500_024_09741_9
crossref_primary_10_1007_s00500_023_08001_6
crossref_primary_10_1007_s13198_024_02641_z
crossref_primary_10_11121_ijocta_2021_1123
crossref_primary_10_1016_j_rico_2023_100312
crossref_primary_10_1007_s00500_023_09203_8
crossref_primary_10_1007_s00500_023_09182_w
crossref_primary_10_3934_math_20241031
crossref_primary_10_1007_s44196_022_00165_7
crossref_primary_10_1109_ACCESS_2025_3539664
crossref_primary_10_1007_s00500_023_09183_9
crossref_primary_10_1007_s13042_023_01939_x
crossref_primary_10_1007_s00500_023_08387_3
crossref_primary_10_1142_S0129183124501869
crossref_primary_10_1007_s44196_023_00349_9
crossref_primary_10_1007_s44196_022_00106_4
crossref_primary_10_1007_s00500_023_09563_1
crossref_primary_10_1007_s00500_023_08015_0
crossref_primary_10_1016_j_asej_2024_102921
crossref_primary_10_1016_j_sasc_2025_200202
crossref_primary_10_1016_j_aml_2022_108318
crossref_primary_10_3389_fphy_2024_1456236
crossref_primary_10_1016_j_heliyon_2024_e33730
crossref_primary_10_1016_j_ins_2024_120625
crossref_primary_10_1007_s42979_024_03190_9
crossref_primary_10_1007_s00500_023_09191_9
crossref_primary_10_1007_s44196_022_00131_3
crossref_primary_10_1155_2022_6890517
crossref_primary_10_1016_j_ins_2023_119796
crossref_primary_10_1016_j_aej_2024_07_061
crossref_primary_10_1088_1402_4896_ad4689
crossref_primary_10_1007_s44196_022_00156_8
crossref_primary_10_1007_s44196_024_00591_9
crossref_primary_10_1007_s00500_023_08331_5
crossref_primary_10_1007_s13042_024_02103_9
crossref_primary_10_1007_s00500_023_08233_6
crossref_primary_10_1016_j_chaos_2024_114670
crossref_primary_10_1007_s00500_023_09607_6
crossref_primary_10_1007_s40435_022_01080_7
crossref_primary_10_1007_s44196_023_00263_0
crossref_primary_10_1007_s13198_023_02226_2
crossref_primary_10_1007_s40995_022_01344_z
crossref_primary_10_1007_s44196_023_00242_5
crossref_primary_10_1007_s13198_024_02683_3
crossref_primary_10_1016_j_aej_2024_03_092
crossref_primary_10_1142_S0218126624502797
crossref_primary_10_1007_s13042_022_01663_y
crossref_primary_10_1007_s13198_023_02202_w
crossref_primary_10_1007_s40435_024_01530_4
crossref_primary_10_1007_s00500_023_08294_7
crossref_primary_10_1007_s00500_023_08636_5
crossref_primary_10_1007_s11277_024_11102_6
crossref_primary_10_1007_s44196_023_00286_7
crossref_primary_10_1007_s44196_023_00205_w
Cites_doi 10.1007/s12190-018-1176-x
10.1002/num.22236
10.1016/j.aml.2005.10.010
10.1016/j.ijleo.2016.09.103
10.1007/s40840-014-0018-8
10.1186/1029-242X-2013-50
10.1007/s40314-019-0796-6
10.1016/0165-0114(86)90026-6
10.1016/j.physa.2019.121126
10.1016/j.chaos.2018.10.007
10.1016/j.cam.2013.04.040
10.1051/mmnp/2018070
10.1016/j.amc.2015.10.021
10.1016/j.cam.2009.01.012
10.1007/s00500-016-2262-3
10.1016/0165-0114(87)90029-7
10.1002/num.22645
10.1007/s00500-011-0743-y
10.22436/jnsa.009.05.46
10.1007/s00521-015-2110-x
10.3390/math5040077
10.1007/s00500-015-1707-4
10.3934/dcdss.2015.8.1055
10.1007/s00500-020-04687-0
10.1186/1687-1847-2013-104
10.1140/epjp/i2018-12021-3
10.1186/s13662-020-02828-1
10.1007/978-1-4419-9096-9
10.1016/j.camwa.2016.11.032
10.1007/s11071-018-4459-8
10.3233/FI-2019-1796
10.1108/HFF-07-2016-0278
10.3934/dcdss.2020058
10.1016/j.chaos.2018.10.013
10.1186/1687-1812-2013-13
10.1016/j.chaos.2019.06.012
10.1615/JPorMedia.2019028970
10.1016/j.cnsns.2011.07.005
10.1142/S0218348X20400101
10.1016/j.chaos.2019.07.023
10.1155/2014/745287
10.1016/j.chaos.2019.05.025
10.1016/j.physa.2019.123257
10.1016/j.chaos.2018.07.033
10.1007/s11071-017-3414-4
10.1002/mma.3884
10.1002/mma.5530
10.1016/0165-0114(87)90030-3
10.3390/e17020885
10.1016/j.fss.2004.08.001
10.1002/num.21809
10.1186/1687-2770-2014-18
10.2298/TSCI160111018A
10.3233/FI-2016-1384
10.1002/num.22209
10.1016/j.chaos.2018.07.032
10.3390/fractalfract2010003
10.1142/S0218348X20400071
10.1016/j.chaos.2006.10.043
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7305
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 7986
ExternalDocumentID 10_1002_mma_7305
MMA7305
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2935-d9432dd05eda292fe521c091c86ed4d151d6ffafac6af67d8ef5f614c4b57e7a3
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:08:31 EDT 2025
Tue Jul 01 00:19:14 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Wed Jan 22 16:20:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-d9432dd05eda292fe521c091c86ed4d151d6ffafac6af67d8ef5f614c4b57e7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9526-6095
0000-0001-6853-4138
PQID 2799875312
PQPubID 1016386
PageCount 22
ParticipantIDs proquest_journals_2799875312
crossref_citationtrail_10_1002_mma_7305
crossref_primary_10_1002_mma_7305
wiley_primary_10_1002_mma_7305_MMA7305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 May 2023
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 15 May 2023
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 2019
2015; 38
2017; 88
2019; 59
2008; 38
2019; 14
2019; 126
2016; 146
2019; 125
2020; 13
2012; 17
2019; 527
2012; 16
2009; 230
2016; 39
2019; 166
2014; 255
2017; 73
2018; 133
2018; 2
2013; 2013
2019; 22
2018; 34
2016; 273
2017; 128
2018; 28
2015; 17
2005; 151
2017; 28
2017; 21
2009
2019; 38
1986; 18
2006; 19
2004
2020; 540
2014; 2014
2003
2015; 8
2015; 7
1987; 24
2020; 2020
2018; 117
2020
2018; 114
2020; 28
2016; 20
2020; 24
2018; 94
2014; 30
2018; 55
2016; 9
Abu Arqub O (e_1_2_15_37_1) 2018; 55
Atangana A (e_1_2_15_13_1) 2015; 7
e_1_2_15_21_1
e_1_2_15_42_1
e_1_2_15_40_1
e_1_2_15_3_1
e_1_2_15_27_1
e_1_2_15_48_1
e_1_2_15_61_1
e_1_2_15_25_1
e_1_2_15_46_1
e_1_2_15_63_1
e_1_2_15_23_1
e_1_2_15_44_1
e_1_2_15_9_1
e_1_2_15_7_1
e_1_2_15_5_1
e_1_2_15_10_1
e_1_2_15_56_1
e_1_2_15_58_1
e_1_2_15_18_1
e_1_2_15_39_1
e_1_2_15_16_1
e_1_2_15_50_1
Daniel A (e_1_2_15_31_1) 2003
e_1_2_15_14_1
e_1_2_15_35_1
e_1_2_15_52_1
e_1_2_15_12_1
e_1_2_15_33_1
e_1_2_15_54_1
Cui M (e_1_2_15_29_1) 2009
e_1_2_15_19_1
e_1_2_15_20_1
e_1_2_15_43_1
e_1_2_15_41_1
e_1_2_15_28_1
e_1_2_15_2_1
e_1_2_15_26_1
e_1_2_15_49_1
e_1_2_15_60_1
e_1_2_15_24_1
e_1_2_15_47_1
e_1_2_15_62_1
e_1_2_15_22_1
e_1_2_15_45_1
e_1_2_15_64_1
e_1_2_15_8_1
e_1_2_15_6_1
e_1_2_15_4_1
e_1_2_15_32_1
e_1_2_15_55_1
e_1_2_15_30_1
e_1_2_15_57_1
e_1_2_15_59_1
e_1_2_15_17_1
e_1_2_15_15_1
e_1_2_15_38_1
e_1_2_15_36_1
e_1_2_15_51_1
e_1_2_15_11_1
e_1_2_15_34_1
e_1_2_15_53_1
References_xml – volume: 20
  start-page: 3283
  issue: 8
  year: 2016
  end-page: 3302
  article-title: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method
  publication-title: Soft Computing
– volume: 117
  start-page: 161
  year: 2018
  end-page: 167
  article-title: Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space
  publication-title: Chaos, Solitons Fractals
– year: 2009
– volume: 17
  start-page: 1372
  issue: 3
  year: 2012
  end-page: 1381
  article-title: Solving fuzzy fractional differential equations by fuzzy Laplace transforms
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 28
  issue: 8
  year: 2020
  article-title: Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana‐Baleanu‐Caputo model of the Lienard's equation
  publication-title: Fractals
– year: 2020
  article-title: European option pricing models described by fractional operators with classical and generalized Mittag‐Leffler kernels
  publication-title: Numer Methods Partial Differ Equ
– volume: 38
  start-page: 271
  issue: 1
  year: 2015
  end-page: 287
  article-title: Reproducing kernel Hilbert space method for solving Bratu's problem
  publication-title: Bull Malaysian Math Sci Soc
– volume: 128
  start-page: 218
  year: 2017
  end-page: 223
  article-title: On soliton structures of generalized resonance equation with time dependent coefficients
  publication-title: Optik
– volume: 20
  start-page: 763
  issue: 2
  year: 2016
  end-page: 769
  article-title: New fractional derivatives with non‐local and non‐singular kernel: theory and application to heat transfer model
  publication-title: Therm Sci
– volume: 126
  start-page: 315
  year: 2019
  end-page: 324
  article-title: Fractional difference operators with discrete generalized Mittag‐Leffler kernels
  publication-title: Chaos, Solitons Fractals
– volume: 30
  start-page: 289
  issue: 1
  year: 2014
  end-page: 300
  article-title: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation
  publication-title: Numer Methods Partial Differ Equ
– volume: 151
  start-page: 581
  issue: 3
  year: 2005
  end-page: 599
  article-title: Generalizations of the differentiability of fuzzy number value functions with applications to fuzzy differential equations
  publication-title: Fuzzy Set Syst
– volume: 14
  start-page: 302
  issue: 3
  year: 2019
  article-title: Characterizations of two different fractional operators without singular kernel
  publication-title: Math Model Nat Phenom
– volume: 21
  start-page: 7191
  issue: 23
  year: 2017
  end-page: 7206
  article-title: Application of reproducing kernel algorithm for solving second‐order, two‐point fuzzy boundary value problems
  publication-title: Soft Computing
– volume: 7
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
  publication-title: Adv Mech Eng
– volume: 22
  start-page: 411
  issue: 4
  year: 2019
  end-page: 434
  article-title: Application of reproducing kernel algorithm for solving Dirichlet time‐fractional diffusion‐Gordon types equations in porous media
  publication-title: J Porous Media
– volume: 55
  start-page: 1
  year: 2018
  end-page: 28
  article-title: Numerical solutions of systems of first‐order, two‐point BVPs based on the reproducing kernel algorithm
  publication-title: Cal
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 18
  article-title: Solving optimal control problems of Fredholm constraint optimality via the reproducing kernel Hilbert space method with error estimates and convergence analysis
  publication-title: Math Methods Appl Sci
– volume: 16
  start-page: 297
  issue: 2
  year: 2012
  end-page: 302
  article-title: Explicit solutions of fractional differential equations with uncertainty
  publication-title: Soft Comput
– volume: 114
  start-page: 478
  year: 2018
  end-page: 482
  article-title: A novel method for a fractional derivative with non‐local and non‐singular kernel
  publication-title: Chaos, Solitons Fractals
– volume: 9
  start-page: 2467
  issue: 5
  year: 2016
  end-page: 2480
  article-title: On the new fractional derivative and application to nonlinear Baggs and Freedman model
  publication-title: J Nonlinear Sci Appl
– volume: 34
  start-page: 1759
  issue: 5
  year: 2018
  end-page: 1780
  article-title: Solutions of time‐fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space
  publication-title: Numer Methods Partial Differ Equ
– volume: 24
  start-page: 301
  issue: 3
  year: 1987
  end-page: 317
  article-title: Fuzzy differential equations
  publication-title: Fuzzy Set Syst
– year: 2004
– volume: 125
  start-page: 163
  year: 2019
  end-page: 170
  article-title: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana‐Baleanu fractional sense
  publication-title: Chaos, Solitons Fractals
– volume: 59
  start-page: 227
  issue: 1‐2
  year: 2019
  end-page: 243
  article-title: Computational algorithm for solving singular Fredholm time‐fractional partial integrodifferential equations with error estimates
  publication-title: J Appl Math Comput
– volume: 114
  start-page: 516
  year: 2018
  end-page: 535
  article-title: Fractional derivatives with no‐index law property: application to chaos and statistics
  publication-title: Chaos, Solitons Fractals
– volume: 17
  start-page: 885
  issue: 2
  year: 2015
  end-page: 902
  article-title: On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem
  publication-title: Entropy
– volume: 146
  start-page: 231
  issue: 3
  year: 2016
  end-page: 254
  article-title: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm
  publication-title: Fund Inform
– volume: 28
  start-page: 828
  issue: 4
  year: 2018
  end-page: 856
  article-title: Numerical solutions for the Robin time‐fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 19
  start-page: 808
  issue: 8
  year: 2006
  end-page: 813
  article-title: Representation of the exact solution for a kind of nonlinear partial differential equations
  publication-title: Appl Math Lett
– volume: 24
  start-page: 12501
  issue: 16
  year: 2020
  end-page: 12522
  article-title: Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions
  publication-title: Soft Computing
– volume: 117
  start-page: 117
  year: 2018
  end-page: 124
  article-title: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator
  publication-title: Chaos, Solitons Fractals
– volume: 2013
  start-page: 13
  issue: 1
  year: 2013
  article-title: The variational iteration method for fuzzy fractional differential equations with uncertainty
  publication-title: Fixed Point Theory Appl
– volume: 2014
  start-page: 18
  issue: 1
  year: 2014
  article-title: Approximate solutions for MHD squeezing fluid flow by a novel method
  publication-title: Boundary Value Probl
– volume: 5
  start-page: 77
  issue: 4
  year: 2017
  article-title: Solving the Lane–Emden equation within a reproducing kernel method and group preserving scheme
  publication-title: Mathematics
– volume: 2
  start-page: 3
  issue: 1
  year: 2018
  article-title: European vanilla option pricing model of fractional order without singular kernel
  publication-title: Fract Fract
– volume: 88
  start-page: 2817
  issue: 4
  year: 2017
  end-page: 2829
  article-title: Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices
  publication-title: Nonlinear Dyn
– volume: 34
  start-page: 1577
  issue: 5
  year: 2018
  end-page: 1597
  article-title: Numerical algorithm for solving time‐fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions
  publication-title: Numer Methods Partial Differ Equ
– volume: 540
  year: 2020
  article-title: An adaptive numerical approach for the solutions of fractional advection‐diffusion and dispersion equations in singular case under Riesz's derivative operator
  publication-title: Physica a
– year: 2003
– volume: 527
  year: 2019
  article-title: Investigation of the fractional coupled viscous Burgers' equation involving Mittag‐Leffler kernel
  publication-title: Physica a
– volume: 8
  start-page: 1055
  issue: 6
  year: 2015
  end-page: 1064
  article-title: Reproducing kernel functions for difference equations
  publication-title: Discrete Contin Dynam Syst
– volume: 230
  start-page: 770
  issue: 2
  year: 2009
  end-page: 780
  article-title: Numerical algorithm for parabolic problems with non‐classical conditions
  publication-title: J Comput Appl Math
– volume: 255
  start-page: 97
  year: 2014
  end-page: 105
  article-title: A numerical method for singularly perturbed turning point problems with an interior layer
  publication-title: J Comput Appl Math
– volume: 39
  start-page: 4549
  issue: 15
  year: 2016
  end-page: 4562
  article-title: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations
  publication-title: Math Methods Appl Sci
– volume: 94
  start-page: 1819
  issue: 3
  year: 2018
  end-page: 1834
  article-title: Numerical solutions of time‐fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates
  publication-title: Nonlinear Dyn
– volume: 273
  start-page: 948
  year: 2016
  end-page: 956
  article-title: On the new fractional derivative and application to nonlinear Fisher's reaction‐diffusion equation
  publication-title: Appl Math Comput
– volume: 73
  start-page: 1243
  issue: 6
  year: 2017
  end-page: 1261
  article-title: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time‐fractional partial differential equations subject to initial and Neumann boundary conditions
  publication-title: Comput Math Appl
– volume: 38
  start-page: 112
  issue: 1
  year: 2008
  end-page: 119
  article-title: On new solutions of fuzzy differential equations
  publication-title: Chaos, Solitons Fractals
– volume: 18
  start-page: 31
  issue: 1
  year: 1986
  end-page: 43
  article-title: Elementary fuzzy calculus
  publication-title: Fuzzy Set Syst
– volume: 126
  start-page: 394
  year: 2019
  end-page: 402
  article-title: Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC–fractional Volterra integro‐differential equations
  publication-title: Chaos, Solitons Fractals
– volume: 166
  start-page: 111
  issue: 2
  year: 2019
  end-page: 137
  article-title: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis
  publication-title: Fund Inform
– volume: 13
  start-page: 995
  issue: 3
  year: 2020
  end-page: 1006
  article-title: Comparing the new fractional derivative operators involving exponential and Mittag‐Leffler kernel
  publication-title: Discrete Contin Dynam Syst
– volume: 2013
  start-page: 50
  issue: 1
  year: 2013
  article-title: Fuzzy fractional Ostrowski inequality with Caputo differentiability
  publication-title: J Inequal Appl
– volume: 2013
  start-page: 104
  issue: 1
  year: 2013
  article-title: A Jacobi operational matrix for solving a fuzzy linear fractional differential equation
  publication-title: Adv Difference Equ
– volume: 133
  start-page: 1
  year: 2018
  end-page: 22
  article-title: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena
  publication-title: Eur Phys J Plus
– volume: 2020
  start-page: 367
  issue: 1
  year: 2020
  article-title: Nonlinear regularized long‐wave models with a new integral transformation applied to the fractional derivative with power and Mittag‐Leffler kernel
  publication-title: Adv Difference Equ
– volume: 24
  start-page: 319
  issue: 3
  year: 1987
  end-page: 330
  article-title: On the fuzzy initial value problem
  publication-title: Fuzzy Set Syst
– volume: 28
  issue: 8
  year: 2020
  article-title: The reproducing kernel algorithm for numerical solution of Van der Pol damping model in view of the Atangana‐Baleanu fractional approach
  publication-title: Fractals
– volume: 2014
  year: 2014
  article-title: Numerical solution of seventh‐order boundary value problems by a novel method
  publication-title: Abstr Appl Anal
– volume: 28
  start-page: 1591
  issue: 7
  year: 2017
  end-page: 1610
  article-title: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm‐Volterra integrodifferential equations
  publication-title: Neural Comput Applic
– volume: 38
  start-page: 18
  issue: 1
  year: 2019
  article-title: Approximate solution of time‐fractional fuzzy partial differential equations
  publication-title: Comput Appl Math
– ident: e_1_2_15_58_1
  doi: 10.1007/s12190-018-1176-x
– ident: e_1_2_15_36_1
  doi: 10.1002/num.22236
– ident: e_1_2_15_46_1
  doi: 10.1016/j.aml.2005.10.010
– ident: e_1_2_15_51_1
  doi: 10.1016/j.ijleo.2016.09.103
– ident: e_1_2_15_49_1
  doi: 10.1007/s40840-014-0018-8
– ident: e_1_2_15_3_1
  doi: 10.1186/1029-242X-2013-50
– ident: e_1_2_15_64_1
  doi: 10.1007/s40314-019-0796-6
– ident: e_1_2_15_60_1
  doi: 10.1016/0165-0114(86)90026-6
– ident: e_1_2_15_27_1
  doi: 10.1016/j.physa.2019.121126
– ident: e_1_2_15_17_1
  doi: 10.1016/j.chaos.2018.10.007
– volume: 55
  start-page: 1
  year: 2018
  ident: e_1_2_15_37_1
  article-title: Numerical solutions of systems of first‐order, two‐point BVPs based on the reproducing kernel algorithm
  publication-title: Cal
– ident: e_1_2_15_45_1
  doi: 10.1016/j.cam.2013.04.040
– ident: e_1_2_15_26_1
  doi: 10.1051/mmnp/2018070
– ident: e_1_2_15_20_1
  doi: 10.1016/j.amc.2015.10.021
– ident: e_1_2_15_47_1
  doi: 10.1016/j.cam.2009.01.012
– ident: e_1_2_15_10_1
  doi: 10.1007/s00500-016-2262-3
– ident: e_1_2_15_59_1
  doi: 10.1016/0165-0114(87)90029-7
– ident: e_1_2_15_24_1
  doi: 10.1002/num.22645
– volume-title: Reproducing Kernel Spaces and Applications
  year: 2003
  ident: e_1_2_15_31_1
– volume-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space
  year: 2009
  ident: e_1_2_15_29_1
– ident: e_1_2_15_2_1
  doi: 10.1007/s00500-011-0743-y
– ident: e_1_2_15_21_1
  doi: 10.22436/jnsa.009.05.46
– ident: e_1_2_15_11_1
  doi: 10.1007/s00521-015-2110-x
– ident: e_1_2_15_53_1
  doi: 10.3390/math5040077
– ident: e_1_2_15_9_1
  doi: 10.1007/s00500-015-1707-4
– ident: e_1_2_15_50_1
  doi: 10.3934/dcdss.2015.8.1055
– ident: e_1_2_15_7_1
  doi: 10.1007/s00500-020-04687-0
– ident: e_1_2_15_5_1
  doi: 10.1186/1687-1847-2013-104
– ident: e_1_2_15_14_1
  doi: 10.1140/epjp/i2018-12021-3
– ident: e_1_2_15_23_1
  doi: 10.1186/s13662-020-02828-1
– ident: e_1_2_15_30_1
  doi: 10.1007/978-1-4419-9096-9
– ident: e_1_2_15_32_1
  doi: 10.1016/j.camwa.2016.11.032
– ident: e_1_2_15_38_1
  doi: 10.1007/s11071-018-4459-8
– ident: e_1_2_15_39_1
  doi: 10.3233/FI-2019-1796
– ident: e_1_2_15_33_1
  doi: 10.1108/HFF-07-2016-0278
– ident: e_1_2_15_28_1
  doi: 10.3934/dcdss.2020058
– ident: e_1_2_15_16_1
  doi: 10.1016/j.chaos.2018.10.013
– ident: e_1_2_15_6_1
  doi: 10.1186/1687-1812-2013-13
– ident: e_1_2_15_22_1
  doi: 10.1016/j.chaos.2019.06.012
– ident: e_1_2_15_41_1
  doi: 10.1615/JPorMedia.2019028970
– ident: e_1_2_15_8_1
  doi: 10.1016/j.cnsns.2011.07.005
– ident: e_1_2_15_57_1
  doi: 10.1142/S0218348X20400101
– ident: e_1_2_15_18_1
  doi: 10.1016/j.chaos.2019.07.023
– ident: e_1_2_15_55_1
  doi: 10.1155/2014/745287
– ident: e_1_2_15_19_1
  doi: 10.1016/j.chaos.2019.05.025
– ident: e_1_2_15_40_1
  doi: 10.1016/j.physa.2019.123257
– ident: e_1_2_15_15_1
  doi: 10.1016/j.chaos.2018.07.033
– ident: e_1_2_15_52_1
  doi: 10.1007/s11071-017-3414-4
– ident: e_1_2_15_34_1
  doi: 10.1002/mma.3884
– ident: e_1_2_15_43_1
  doi: 10.1002/mma.5530
– ident: e_1_2_15_63_1
  doi: 10.1016/0165-0114(87)90030-3
– ident: e_1_2_15_4_1
  doi: 10.3390/e17020885
– ident: e_1_2_15_61_1
  doi: 10.1016/j.fss.2004.08.001
– ident: e_1_2_15_44_1
  doi: 10.1002/num.21809
– ident: e_1_2_15_54_1
  doi: 10.1186/1687-2770-2014-18
– ident: e_1_2_15_12_1
  doi: 10.2298/TSCI160111018A
– ident: e_1_2_15_35_1
  doi: 10.3233/FI-2016-1384
– ident: e_1_2_15_42_1
  doi: 10.1002/num.22209
– ident: e_1_2_15_48_1
  doi: 10.1016/j.chaos.2018.07.032
– ident: e_1_2_15_25_1
  doi: 10.3390/fractalfract2010003
– volume: 7
  start-page: 1
  year: 2015
  ident: e_1_2_15_13_1
  article-title: Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel
  publication-title: Adv Mech Eng
– ident: e_1_2_15_56_1
  doi: 10.1142/S0218348X20400071
– ident: e_1_2_15_62_1
  doi: 10.1016/j.chaos.2006.10.043
SSID ssj0008112
Score 2.6123996
Snippet In this research study, fuzzy fractional differential equations in presence of the Atangana–Baleanu–Caputo differential operators are analytically and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7965
SubjectTerms Algorithms
Boundary value problems
characterization theorem
Differential equations
Fractional calculus
fuzzy ABC FFIVP
fuzzy ABC fractional derivative
fuzzy ABC solution
Hilbert space
Kernels
numerical analytical RKHSM
Operators (mathematics)
Title Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag–Leffler kernel differential operator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7305
https://www.proquest.com/docview/2799875312
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xfVFBPFx6LpNk7Z7FFFErAdREDyU5iXiuivb7sE9-R8Ef6C_xJk23VVREC8NtEmTJpPMl2bmG0K2UYvHMmh5ETfc4zLUsA7GgSeU1cg6aeIIHYWTi_D0mp_diBtnVYm-MBU_xOiHG86Mcr3GCZ7J_GBMGvr4mDVBPNG_HE21EA9djpmjYr886ER2GI8zn9e8sy12UBf8qonG8PIzSC21zMksua3bVxmXPDQHhWyq4Tfqxv99wByZceCTHlbSMk8mTHeBTCcj5tZ8gcy7yZ7TPcdIvb9I3gCml8ywoOfog-lDzbQmI6eAeml3UB38dOhIlGnPUjsYDp-p7VfOE_D0Hk2VIEWKcUNdMJucoiNbn0IraHJfFNnd-8vrubG2AzddbXUcl7J078mUxgFL5Prk-Oro1HMBHTwFqEJ4us0DpnVLGJ2xNrMGsIMCwKLi0GiuAXzo0NrMZirMbBjp2FhhAT8oLkVkoixYJpPdXtesEAqVhoJJvALiC4yUfthW8F7dAukStkF268FNlWM7x6AbnbTiaWYpdH-K3d8gW6OcTxXDxw951mv5SN0cz1MWwVYVdns-a5CdcqB_LZ8mySGmq3_NuEamMK49min4Yp1MFv2B2QD0U8jNUs4_AA8uB1s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9gAcgBYQgRa2Er8Hp_F613YOHKqWKqVxD6iVejP2_qCqaVLFjlBz4h2QeAlehafokzBje5O2AolLD1xsyd4fe3dmvxl79huAl4TicR50vEgY4Yk81LgOxoEnldXEOmniiDYKJ_th71B8PJJHC_DT7YWp-SFmH9xIM6r1mhScPkhvzFlDT0-zNsqni6jcM-df0V8r3u9u4-S-4nznw8FWz2tSCngKcU16uisCrnVHGp3xLrcG0UshZKo4NFpohD8dWpvZTIWZDSMdGystIpgSuYxMlAXY7i1YogTiRNS__WnOVRX71a9V4qPxBPeFY7rt8A33pFexb27QXjaLK1zbuQ-_3IjU4Swn7UmZt9X0GlnkfzJkD-BeY1-zzVohlmHBDFfgbjIjpy1WYLlZzwr2tiHdfvcQfqAnUpHfIpSzEzPGV2WOb52hYc-Gk_rf1oDNtJWNLLOT6fSc2XG9PwTvHlM0Fp6JRd2wJl9PwWiv3pjhU7DkuCyzLxffvveNtQO82PTmUtVUtUdnpop_eASHNzJaj2FxOBqaJ8Cw01DynI5o1AYmz_2wq7Bd3UEFkrYFb5w0paohdKe8IoO0pqLmKU53StPdgvVZybOaxOQPZVadQKbNMlakPEJvHB1an7fgdSVZf62fJskmnZ_-a8EXcLt3kPTT_u7-3jO4w9F4pKgMX67CYjmemDU09sr8eaVkDD7ftIj-Bo7FaBk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE4FFpAbClgpELhkG3i2E72wKFiWfUvVVW1Um8h8Q-qut1dbbJC3RPvgMRD8Cq8BU_COIl3oaISlx64xFJix449428cj78BWLcoHueh70VMM4_lQuE8GIcel0ZZ1kkdR_agcHIgtk_Y7ik_XYDv7ixMzQ8x--FmNaOar62Cj5TZnJOGXlxkbRRP51C5py8_43KteLfTxbF9RWnvw_H7ba-JKOBJhDXuqQ4LqVI-1yqjHWo0gpdExJSx0IopRD8ljMlMJkVmRKRibbhBAJMs55GOshDfewtuM-F3bJiI7tGcqioOqp1VS0fjMRowR3Tr003X0j-hb27P_m4VV7DWuw8_XIfU3izn7UmZt-X0Clfk_9FjD2Cpsa7JVq0Oy7CgBytwL5lR0xYrsNzMZgV501Buv30I33AdUlHfIpCTcz3GLyWObZ2gWU8Gk3pnq09mukqGhpjJdHpJzLg-HYJPz6wvFqaWQ12TJlpPQexJvTHBVpDkrCyzTz-_fN3XxvTxZlObC1RTlR6OdOX98AhObqS3HsPiYDjQT4BgpYLT3F7RpA11ngeiI_G9ykf14aYFG06YUtnQuduoIv20JqKmKQ53aoe7BS9nOUc1hclf8qw5eUybSaxIaYRrcVzOBrQFryvBurZ8miRbNl3914wv4M5ht5fu7xzsPYW7FC1H65IR8DVYLMcT_QwtvTJ_XqkYgY83LaG_APT3Zsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducing+kernel+approach+for+numerical+solutions+of+fuzzy+fractional+initial+value+problems+under+the+Mittag%E2%80%93Leffler+kernel+differential+operator&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Omar+Abu+Arqub&rft.au=Singh%2C+Jagdev&rft.au=Banan+Maayah&rft.au=Alhodaly%2C+Mohammed&rft.date=2023-05-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=7&rft.spage=7965&rft.epage=7986&rft_id=info:doi/10.1002%2Fmma.7305&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon