Seismic performance of bridges with novel SMA cable‐restrained high damping rubber bearings against near‐fault ground motions

This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault (NF) regions where the pulsing effect potentially exists in the ground motions. The working mechanism of the bearing is first described, fol...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 51; no. 1; pp. 44 - 65
Main Authors Fang, Cheng, Liang, Dong, Zheng, Yue, Lu, Shiyuan
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text
ISSN0098-8847
1096-9845
DOI10.1002/eqe.3555

Cover

Loading…
Abstract This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault (NF) regions where the pulsing effect potentially exists in the ground motions. The working mechanism of the bearing is first described, followed by an experimental investigation on a full‐scale SMA‐HDR bearing specimen. The test results confirm the efficient restraining effect offered by the SMA cables, which contribute to 65% and 24.4% of the lateral load resistance and total energy dissipation, respectively, prior to the initial fracture of the SMA cables. The failure of the cables is initiated near the end grip where moderate stress concentration exists at this region. Following the experimental study, the numerical modeling strategy for the bearing is discussed, and a case study is then presented, demonstrating the application of the SMA‐HDR bearings in the Datianba #2 highway bridge, a real project that first adopts the proposed bearings in the world. A simplified design process is introduced for the bridge with novel SMA‐HDR bearings to mitigate the potential damage during strong earthquakes especially the NF ones. The system‐level analysis on the prototype bridge shows that the novel SMA‐HDR bearings equipped with ten 7×7×1.2 SMA cables in each bearing could reduce the average maximum bearing displacement (MBD) by nearly 30% compared with the conventional bridge with HDR bearings. The application of the novel SMA‐HDR bearing can significantly alleviate the pounding effect, especially under the NF earthquakes. The presence of the SMA cables tends to increase the maximum force response of the piers, but this effect is minor and under control.
AbstractList This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault (NF) regions where the pulsing effect potentially exists in the ground motions. The working mechanism of the bearing is first described, followed by an experimental investigation on a full‐scale SMA‐HDR bearing specimen. The test results confirm the efficient restraining effect offered by the SMA cables, which contribute to 65% and 24.4% of the lateral load resistance and total energy dissipation, respectively, prior to the initial fracture of the SMA cables. The failure of the cables is initiated near the end grip where moderate stress concentration exists at this region. Following the experimental study, the numerical modeling strategy for the bearing is discussed, and a case study is then presented, demonstrating the application of the SMA‐HDR bearings in the Datianba #2 highway bridge, a real project that first adopts the proposed bearings in the world. A simplified design process is introduced for the bridge with novel SMA‐HDR bearings to mitigate the potential damage during strong earthquakes especially the NF ones. The system‐level analysis on the prototype bridge shows that the novel SMA‐HDR bearings equipped with ten 7×7×1.2 SMA cables in each bearing could reduce the average maximum bearing displacement (MBD) by nearly 30% compared with the conventional bridge with HDR bearings. The application of the novel SMA‐HDR bearing can significantly alleviate the pounding effect, especially under the NF earthquakes. The presence of the SMA cables tends to increase the maximum force response of the piers, but this effect is minor and under control.
Author Fang, Cheng
Liang, Dong
Lu, Shiyuan
Zheng, Yue
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0001-9002-0379
  surname: Fang
  fullname: Fang, Cheng
  organization: Tongji University
– sequence: 2
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  organization: Tongji University
– sequence: 3
  givenname: Yue
  orcidid: 0000-0002-1126-4218
  surname: Zheng
  fullname: Zheng, Yue
  email: yzheng@tongji.edu.cn
  organization: Tongji University
– sequence: 4
  givenname: Shiyuan
  surname: Lu
  fullname: Lu, Shiyuan
  organization: Tongji University
BookMark eNp1kEtOwzAQhi0EEm1B4giW2LBJsZ04j2VVlYdUhFBhHdmJnbpK7NROqLqDG3BGToJDWSFYjTz6_hnPNwbH2mgBwAVGU4wQuRZbMQ0ppUdghFEWB1ka0WMwQihLgzSNklMwdm6DEApjlIzA-0oo16gCtsJKYxumCwGNhNyqshIO7lS3htq8ihquHmawYLwWn28fVrjOMqVFCdeqWsOSNa3SFbQ958JCLpj1TwdZ5SHXQe0bPiZZX3ewsqbXJWxMp4x2Z-BEstqJ8586AS83i-f5XbB8vL2fz5ZBQbKQBgUKI5RQiiRKpD8QZ0RmGBNSpIxTnES0lFFYhlFMU78eI4IpC3nGI56wkqfhBFwe5rbWbHv__3xjeqv9ypx4FSTFcUQ8dXWgCmucs0LmrVUNs_sco3wQnHvB-SDYo9NfaKE6Ntw0qKn_CgSHwE7VYv_v4HzxtPjmvwAvIpDf
CitedBy_id crossref_primary_10_1007_s11431_022_2217_0
crossref_primary_10_1002_eqe_3914
crossref_primary_10_1016_j_jobe_2023_106433
crossref_primary_10_1016_j_engstruct_2023_117411
crossref_primary_10_1080_13632469_2023_2166163
crossref_primary_10_3390_ma15196589
crossref_primary_10_1007_s42417_023_01163_5
crossref_primary_10_3390_ma14216500
crossref_primary_10_1177_1045389X221093322
crossref_primary_10_1155_2023_5497731
crossref_primary_10_1007_s11665_024_10395_9
crossref_primary_10_1016_j_engstruct_2024_119393
crossref_primary_10_1016_j_jobe_2023_106429
crossref_primary_10_1186_s43065_022_00070_5
crossref_primary_10_1016_j_engstruct_2023_116281
crossref_primary_10_1186_s43251_022_00070_1
crossref_primary_10_1016_j_engstruct_2024_118991
crossref_primary_10_1016_j_jobe_2023_108325
crossref_primary_10_1016_j_cscm_2023_e02782
crossref_primary_10_3390_polym14235268
crossref_primary_10_3389_fbuil_2022_953273
crossref_primary_10_1016_j_engstruct_2022_114799
crossref_primary_10_1186_s43251_022_00064_z
crossref_primary_10_1016_j_ijfatigue_2023_107684
crossref_primary_10_1016_j_engstruct_2022_115244
crossref_primary_10_1088_1361_665X_ad5f6b
crossref_primary_10_1177_13694332221148550
crossref_primary_10_1016_j_engstruct_2024_119578
crossref_primary_10_1002_eqe_3858
crossref_primary_10_3390_buildings13112760
crossref_primary_10_1016_j_istruc_2024_106508
crossref_primary_10_1007_s11071_024_10614_x
crossref_primary_10_1016_j_jobe_2023_108150
crossref_primary_10_1016_j_engstruct_2025_119809
crossref_primary_10_1088_1361_665X_ad3bf9
crossref_primary_10_1061_JSENDH_STENG_11594
crossref_primary_10_3390_met14040441
crossref_primary_10_1016_j_engstruct_2024_119172
crossref_primary_10_1016_j_engstruct_2022_114808
crossref_primary_10_1016_j_jobe_2023_107334
crossref_primary_10_1016_j_engstruct_2025_120111
crossref_primary_10_1016_j_jobe_2025_111852
crossref_primary_10_1088_1361_665X_ac6b6a
crossref_primary_10_1177_1045389X211072211
crossref_primary_10_1002_eqe_4154
crossref_primary_10_1155_2022_6797938
crossref_primary_10_1016_j_engstruct_2023_116172
crossref_primary_10_1016_j_engstruct_2023_116171
crossref_primary_10_1088_1361_665X_ac8efc
crossref_primary_10_1002_eqe_3953
crossref_primary_10_1016_j_jobe_2023_106075
crossref_primary_10_1016_j_jobe_2024_109224
crossref_primary_10_1016_j_engstruct_2023_117179
crossref_primary_10_1016_j_engstruct_2023_117215
crossref_primary_10_1088_1742_6596_2920_1_012007
crossref_primary_10_1016_j_istruc_2024_108027
crossref_primary_10_1061__ASCE_ST_1943_541X_0003459
crossref_primary_10_1007_s13369_024_09691_2
crossref_primary_10_1061_JSENDH_STENG_12988
crossref_primary_10_1016_j_soildyn_2022_107380
crossref_primary_10_1088_1361_665X_acb306
crossref_primary_10_1080_13632469_2025_2483517
crossref_primary_10_1177_1045389X221136296
crossref_primary_10_1016_j_jobe_2023_107671
crossref_primary_10_1002_eqe_3727
crossref_primary_10_1088_1361_665X_ac8849
crossref_primary_10_1007_s42107_024_01216_4
crossref_primary_10_1080_19475411_2022_2103598
crossref_primary_10_3390_lubricants12020032
crossref_primary_10_3390_ma15072349
crossref_primary_10_1016_j_engstruct_2022_114475
crossref_primary_10_1016_j_soildyn_2024_109055
crossref_primary_10_1016_j_jcsr_2024_108920
crossref_primary_10_1016_j_engstruct_2024_118288
crossref_primary_10_1016_j_istruc_2025_108453
crossref_primary_10_1016_j_istruc_2025_108331
crossref_primary_10_1142_S021945542250119X
crossref_primary_10_1061_JSENDH_STENG_12480
crossref_primary_10_1177_13694332221086696
crossref_primary_10_1016_j_soildyn_2023_108213
crossref_primary_10_1371_journal_pone_0286977
crossref_primary_10_1016_j_engstruct_2023_116545
crossref_primary_10_1088_1361_665X_ac4f20
crossref_primary_10_1016_j_jcsr_2024_108629
crossref_primary_10_1061_JBENF2_BEENG_7123
crossref_primary_10_1002_eqe_3821
crossref_primary_10_1016_j_jobe_2024_111233
crossref_primary_10_1088_1361_665X_ad223b
crossref_primary_10_1016_j_istruc_2023_105028
crossref_primary_10_1002_stc_3114
crossref_primary_10_1016_j_jcsr_2023_107918
crossref_primary_10_1016_j_istruc_2022_09_055
crossref_primary_10_1016_j_istruc_2023_105026
crossref_primary_10_1016_j_mtcomm_2023_105679
crossref_primary_10_1016_j_engstruct_2023_115960
crossref_primary_10_1016_j_jcsr_2025_109456
crossref_primary_10_1016_j_soildyn_2022_107291
crossref_primary_10_3390_ma15051723
Cites_doi 10.1061/(ASCE)ST.1943-541X.0002414
10.1016/j.engstruct.2004.07.016
10.1177/1045389X20963167
10.1061/(ASCE)1084-0702(2003)8:4(191)
10.1016/S0029-5493(00)00344-7
10.1088/1361-665X/ab8f68
10.1002/eqe.3174
10.1016/j.engstruct.2016.04.037
10.1016/j.probengmech.2015.04.004
10.1139/l05-049
10.1016/j.engstruct.2019.01.049
10.1016/j.jcsr.2013.11.008
10.1016/j.engstruct.2014.01.008
10.1016/j.engstruct.2018.03.006
10.1002/stc.4300040202
10.1016/j.engstruct.2004.09.013
10.1016/j.engstruct.2018.10.013
10.1061/(ASCE)BE.1943-5592.0000345
10.1016/j.engstruct.2020.110651
10.1193/1.1585564
10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6
10.1061/(ASCE)BE.1943-5592.0001231
10.1061/(ASCE)ST.1943-541X.0002649
10.1080/13632469.2016.1269692
10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
10.1002/eqe.31
10.1080/13632469.2010.551706
10.1002/eqe.557
10.1061/(ASCE)0733-9399(2000)126:2(123)
10.1061/(ASCE)ST.1943-541X.0002127
10.1002/eqe.1022
10.1016/S0031-9201(03)00015-3
10.1002/tal.1398
10.1002/stc.2337
10.1016/j.engstruct.2017.07.067
10.1088/0964-1726/22/4/045013
10.1061/(ASCE)BE.1943-5592.0001352
10.1061/(ASCE)ST.1943-541X.0001675
10.1016/j.conbuildmat.2017.10.031
10.1007/978-981-13-7040-3
10.1016/j.jsv.2008.01.014
10.1016/0267-7261(86)90006-0
10.1061/(ASCE)BE.1943-5592.0000837
10.1007/s10518-018-0510-x
10.1002/stc.1576
10.1007/s11803-012-0108-2
10.1016/j.engstruct.2021.112486
10.1016/j.engstruct.2017.10.039
10.1193/1.1585828
10.1016/j.engstruct.2019.109526
10.1007/s11803-009-8162-0
10.1080/13632469.2011.562406
10.1061/(ASCE)BE.1943-5592.0000962
10.1016/j.engstruct.2009.02.017
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.3555
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 65
ExternalDocumentID 10_1002_eqe_3555
EQE3555
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51978513; 51778456; 52078359
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c2935-c03407550f07f355192f91122c8ab51745df43d34658bea10215a3b9b4b7adb83
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Fri Jul 25 23:02:49 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Tue Jul 01 02:21:58 EDT 2025
Wed Jan 22 16:28:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-c03407550f07f355192f91122c8ab51745df43d34658bea10215a3b9b4b7adb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1126-4218
0000-0001-9002-0379
PQID 2607281642
PQPubID 866380
PageCount 22
ParticipantIDs proquest_journals_2607281642
crossref_primary_10_1002_eqe_3555
crossref_citationtrail_10_1002_eqe_3555
wiley_primary_10_1002_eqe_3555_EQE3555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 164
2013; 22
2006; 35
2004; 26
2019; 17
2017; 150
2021; 241
2017; 153
2011; 15
2005; 27
2014; 61
2012; 11
1997; 4
2014; 21
2013; 18
2018; 177
2021; 32
2000; 126
2019; 24
2015; 41
1986; 5
2003; 8
2019; 26
2008; 28
2020; 214
2005; 32
2008; 314
2014; 94
2019; 198
2018; 144
2000; 29
2017; 26
2012
2010
1997; 26
1995; 11
2011; 40
2008
2016; 122
1995
2006
1993
2020; 146
2018; 23
2003; 137
2018; 22
2019; 183
2001; 203
2019; 145
2009; 31
2020
2019; 48
2018; 158
2016; 21
2009; 8
2016
2017; 143
2013
1990; 6
2001; 30
2020; 29
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_68_1
California Department of Transportation (CLATRANS) (e_1_2_7_61_1) 2010
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
JTG/T B02‐01‐2008 (e_1_2_7_59_1) 2008
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Yamamoto M (e_1_2_7_56_1) 2016
e_1_2_7_6_1
JT/T 842–2012 (e_1_2_7_57_1) 2012
e_1_2_7_4_1
e_1_2_7_8_1
Liu H (e_1_2_7_45_1) 2008; 28
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Comartin C (e_1_2_7_15_1) 1995
Zheng Y (e_1_2_7_42_1) 2019; 24
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Mazzoni S (e_1_2_7_60_1) 2006
e_1_2_7_22_1
e_1_2_7_34_1
(e_1_2_7_63_1) 2013
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Moehle JP (e_1_2_7_16_1) 1995; 11
Mangalathu SPS (e_1_2_7_67_1)
Saiidi M (e_1_2_7_23_1) 1993
JT/T 850–2013 (e_1_2_7_58_1) 2013
References_xml – volume: 11
  issue: 4
  year: 1995
  article-title: Near‐source ground motion and its effects on flexible buildings
  publication-title: Earthq Spectra
– volume: 61
  start-page: 166
  year: 2014
  end-page: 183
  article-title: Performance‐based assessment and design of FRP‐based high damping rubber bearing incorporated with shape memory alloy wires
  publication-title: Eng Struct
– volume: 26
  start-page: 571
  issue: 5
  year: 1997
  end-page: 591
  article-title: Rigidity–plasticity–viscosity: can electrorheological dampers protect base‐isolated structures from near‐source ground motions?
  publication-title: Earthq Eng Struct Dyn
– volume: 94
  start-page: 122
  year: 2014
  end-page: 136
  article-title: Cyclic performance of extended end‐plate connections equipped with shape memory alloy bolts
  publication-title: J Constr Steel Res
– volume: 5
  start-page: 202
  issue: 4
  year: 1986
  end-page: 216
  article-title: Aseismic base isolation: review and bibliography
  publication-title: Soil Dyn Earthq Eng
– volume: 17
  start-page: 1667
  issue: 3
  year: 2019
  end-page: 1688
  article-title: Performance‑based assessment of bridges with steel‑SMA reinforced piers in a life‑cycle context by numerical approach
  publication-title: Bull Earthq Eng
– volume: 145
  issue: 10
  year: 2019
  article-title: Behavior and design of self‐centering energy dissipative devices equipped with superelastic SMA ring springs
  publication-title: J Struct Eng ASCE
– volume: 143
  year: 2017
  article-title: Self‐centering beam‐to‐column connections with combined superelastic SMA bolts and steel angles
  publication-title: J Struct Eng ASCE
– volume: 48
  start-page: 1045
  issue: 9
  year: 2019
  end-page: 1065
  article-title: Self‐centering friction spring dampers for seismic resilience
  publication-title: Earthq Eng Struct Dyn
– volume: 22
  start-page: 1042
  issue: 6
  year: 2018
  end-page: 1067
  article-title: Smart lead rubber bearings equipped with ferrous shape memory alloy wires for seismically isolating highway bridges
  publication-title: J Earthq Eng
– volume: 21
  issue: 12
  year: 2016
  article-title: Rigid‐body motion of horizontally curved bridges subjected to earthquake‐induced pounding
  publication-title: J Bridge Eng
– volume: 214
  year: 2020
  article-title: Rocking bridge piers equipped with shape memory alloy (SMA) washer springs
  publication-title: Eng Struct
– volume: 183
  start-page: 533
  year: 2019
  end-page: 549
  article-title: Superelastic NiTi SMA cables: thermal‐mechanical behavior, hysteretic modelling and seismic application
  publication-title: Eng Struct
– volume: 24
  start-page: 127
  issue: 1
  year: 2019
  end-page: 139
  article-title: Seismic damage mitigation of bridges with self‐adaptive SMA‐cable‐based bearings
  publication-title: Smart Struct Syst
– volume: 150
  start-page: 390
  year: 2017
  end-page: 408
  article-title: Self‐centring behaviour of steel and steel‐concrete composite connections equipped with NiTi SMA bolts
  publication-title: Eng Struct
– volume: 198
  year: 2019
  article-title: Experimental and numerical studies on self‐centring beam‐to‐column connections free from frame expansion
  publication-title: Eng Struct
– start-page: 1
  year: 2016
  end-page: 16
– year: 2008
– volume: 11
  start-page: 173
  issue: 2
  year: 2012
  end-page: 183
  article-title: Seismic performance of cable‐sliding friction bearing system for isolated bridges
  publication-title: Earthq Eng Eng Vib
– volume: 32
  start-page: 957
  issue: 5
  year: 2005
  end-page: 967
  article-title: A new concept of isolation bearings for highway steel bridges using shape memory alloys
  publication-title: Can J Civ Eng
– volume: 26
  issue: 5
  year: 2019
  article-title: Manufacturing and performance of a novel self‐centring damper with SMA ring springs for seismic resilience
  publication-title: Struct Control Health Monit
– volume: 18
  start-page: 220
  issue: 3
  year: 2013
  end-page: 231
  article-title: Nonlinear seismic response and parametric examination of horizontally curved steel bridges using 3D computational models
  publication-title: J Bridge Eng
– volume: 122
  year: 2016
  article-title: Geometric parameters affecting seismic fragilities of curved multi‐frame concrete box‐girder bridges with integral abutments
  publication-title: Eng Struct
– volume: 8
  start-page: 263
  issue: 2
  year: 2009
  end-page: 273
  article-title: Seismic damage of highway bridges during the 2008 Wenchuan earthquake
  publication-title: Earthq Eng Eng Vib
– volume: 23
  issue: 6
  year: 2018
  article-title: Displacement‐based seismic design of steel, FRP, and SMA cable restrainers for isolated simply supported bridges
  publication-title: J Bridge Eng
– year: 1993
– volume: 41
  start-page: 34
  year: 2015
  end-page: 45
  article-title: Shape‐memory‐alloy supplemented lead rubber bearing (SMA‐LRB) for seismic isolation
  publication-title: Probab Eng Mech
– volume: 203
  start-page: 259
  issue: 2–3
  year: 2001
  end-page: 272
  article-title: Performance of sliding systems under near‐fault motions
  publication-title: Nucl Eng Des
– volume: 22
  issue: 4
  year: 2013
  article-title: Shape memory alloy wire‐based smart natural rubber bearing
  publication-title: Smart Mater Struct
– volume: 29
  issue: 8
  year: 2020
  article-title: Shape memory alloy (SMA)‐cable‐controlled sliding bearings: development, testing, and system behavior
  publication-title: Smart Mater Struct
– volume: 35
  start-page: 811
  issue: 7
  year: 2006
  end-page: 828
  article-title: A Hertz contact model with non‐linear damping for pounding simulation
  publication-title: Earthq Eng Struct Dyn
– volume: 164
  start-page: 155
  year: 2018
  end-page: 168
  article-title: A study of hybrid self‐centring connections equipped with shape memory alloy washers and bolts
  publication-title: Eng Struct
– volume: 15
  start-page: 850
  issue: 6
  year: 2011
  end-page: 876
  article-title: Response sensitivity of highway bridges to randomly oriented multi‐component earthquake excitation
  publication-title: J Earthq Eng
– volume: 30
  start-page: 691
  issue: 5
  year: 2001
  end-page: 707
  article-title: Base isolation for near‐fault motions
  publication-title: Earthq Eng Struct Dyn
– volume: 26
  issue: 16
  year: 2017
  article-title: Case study of the seismic response of an extra‐dosed cable‐stayed bridge with cable‐sliding friction aseismic bearing using shake table tests
  publication-title: Struct Des Tall Special Build
– volume: 31
  start-page: 1648
  issue: 8
  year: 2009
  end-page: 1660
  article-title: Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method
  publication-title: Eng Struct
– volume: 314
  issue: 3–5
  year: 2008
  article-title: Recent advances in nonlinear passive vibration isolators
  publication-title: J Sound Vib
– volume: 126
  start-page: 123
  issue: 2
  year: 2000
  end-page: 131
  article-title: Response of damped oscillators to cycloidal pulses
  publication-title: J Eng Mech
– volume: 146
  issue: 6
  year: 2020
  article-title: SMA‐based low‐damage solution for self‐centering steel and composite beam‐to‐column connections
  publication-title: J Struct Eng ASCE
– volume: 26
  start-page: 2173
  issue: 14
  year: 2004
  end-page: 2183
  article-title: Comparison of dynamic response of isolated and non‐isolated continuous girder bridges subjected to near‐fault ground motions
  publication-title: Eng Struct
– volume: 27
  start-page: 349
  issue: 3
  year: 2005
  end-page: 359
  article-title: Optimum friction pendulum system for near‐fault motions
  publication-title: Eng Struct
– volume: 137
  start-page: 201
  issue: 1–4
  year: 2003
  end-page: 212
  article-title: Magnitude scaling of the near fault rupture directivity pulse
  publication-title: Phys Earth Planet Inter
– volume: 24
  issue: 3
  year: 2019
  article-title: Influence of multidirectional cable restrainer on seismic fragility of a curved bridge
  publication-title: J Bridge Eng
– volume: 153
  start-page: 503
  year: 2017
  end-page: 515
  article-title: Innovative use of a shape memory alloy ring spring system for self‐centering connections
  publication-title: Eng Struct
– volume: 32
  start-page: 549
  issue: 5
  year: 2021
  end-page: 567
  article-title: An innovative seismic‐resilient bridge with shape memory alloy (SMA)‐washer‐based footing rocking RC piers
  publication-title: J Intell Mater Syst Struct
– volume: 6
  start-page: 161
  issue: 2
  year: 1990
  end-page: 201
  article-title: Seismic isolation: history, application, and performance—a world view
  publication-title: Earthq Spectra
– year: 2010
– year: 2012
– volume: 158
  start-page: 389
  year: 2018
  end-page: 400
  article-title: Resilience and life‐cycle performance of smart bridges with shape memory alloy (SMA)‐cable‐based bearings
  publication-title: Constr Build Mater
– volume: 8
  start-page: 191
  issue: 4
  year: 2003
  end-page: 198
  article-title: Full‐scale tests of seismic cable restrainer retrofits for simply supported bridges
  publication-title: J Bridge Eng
– volume: 15
  start-page: 72
  issue: S1
  year: 2011
  end-page: 89
  article-title: Innovative superelastic isolation device
  publication-title: J Earthq Eng
– volume: 4
  start-page: 19
  issue: 2
  year: 1997
  end-page: 40
  article-title: High damping natural rubber seismic isolators
  publication-title: J Struct Control
– volume: 28
  start-page: 152
  issue: 3
  year: 2008
  end-page: 156
  article-title: The shaking table test of an SMA strands‐composite bearing
  publication-title: J Earthq Eng Eng Vib
– volume: 11
  start-page: 287
  issue: 3
  year: 1995
  end-page: 372
  article-title: Northridge earthquake of January 17, 1994: reconnaissance report, volume 1—highway bridges and traffic management
  publication-title: Earthq Spectra
– volume: 144
  issue: 8
  year: 2018
  article-title: Application of an innovative SMA ring spring system for self‐centering steel frames subject to seismic conditions
  publication-title: J Struct Eng ASCE
– volume: 21
  start-page: 449
  issue: 4
  year: 2014
  end-page: 465
  article-title: Performance assessment of buildings isolated by shape‐memory‐alloy rubber bearing: comparison with elastomeric bearing under near‐fault earthquakes
  publication-title: Struct Control Health Monit
– year: 2006
– year: 2020
– year: 1995
– volume: 40
  start-page: 273
  issue: 3
  year: 2011
  end-page: 291
  article-title: Optimal design of superelastic‐friction base isolators for seismic protection of highway bridges against near‐field earthquakes
  publication-title: Earthq Eng Struct Dyn
– volume: 21
  issue: 3
  year: 2016
  article-title: Response of bridges isolated by shape memory–alloy rubber bearing
  publication-title: J Bridge Eng
– volume: 29
  start-page: 945
  issue: 7
  year: 2000
  end-page: 968
  article-title: Implementation and testing of passive control devices based on shape memory alloys
  publication-title: Earthq Eng Struct Dyn
– volume: 241
  year: 2021
  article-title: Probabilistic economic seismic loss estimation of steel braced frames incorporating emerging self‐centering technologies
  publication-title: Eng Struct
– year: 2013
– volume: 177
  start-page: 579
  year: 2018
  end-page: 597
  article-title: Peak and residual responses of steel moment‐resisting and braced frames under pulse‐like near‐fault earthquakes
  publication-title: Eng Struct
– ident: e_1_2_7_37_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002414
– ident: e_1_2_7_13_1
  doi: 10.1016/j.engstruct.2004.07.016
– ident: e_1_2_7_41_1
  doi: 10.1177/1045389X20963167
– ident: e_1_2_7_21_1
  doi: 10.1061/(ASCE)1084-0702(2003)8:4(191)
– volume-title: Guidelines for Seismic Design for Highway Bridges
  year: 2008
  ident: e_1_2_7_59_1
– ident: e_1_2_7_5_1
  doi: 10.1016/S0029-5493(00)00344-7
– ident: e_1_2_7_27_1
  doi: 10.1088/1361-665X/ab8f68
– ident: e_1_2_7_3_1
  doi: 10.1002/eqe.3174
– ident: e_1_2_7_19_1
  doi: 10.1016/j.engstruct.2016.04.037
– ident: e_1_2_7_49_1
  doi: 10.1016/j.probengmech.2015.04.004
– ident: e_1_2_7_44_1
  doi: 10.1139/l05-049
– ident: e_1_2_7_28_1
  doi: 10.1016/j.engstruct.2019.01.049
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jcsr.2013.11.008
– ident: e_1_2_7_8_1
  doi: 10.1016/j.engstruct.2014.01.008
– ident: e_1_2_7_34_1
  doi: 10.1016/j.engstruct.2018.03.006
– ident: e_1_2_7_55_1
  doi: 10.1002/stc.4300040202
– volume-title: Standard for Strand Cable with Swaging Anchorage
  year: 2013
  ident: e_1_2_7_58_1
– start-page: 1
  volume-title: The Canterbury Rebuild Five Years on from the Christchurch Earthquake
  year: 2016
  ident: e_1_2_7_56_1
– volume-title: Seismic Design Criteria, Version 1.6
  year: 2010
  ident: e_1_2_7_61_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.engstruct.2004.09.013
– ident: e_1_2_7_65_1
  doi: 10.1016/j.engstruct.2018.10.013
– ident: e_1_2_7_18_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000345
– ident: e_1_2_7_54_1
  doi: 10.1016/j.engstruct.2020.110651
– ident: e_1_2_7_4_1
  doi: 10.1193/1.1585564
– volume-title: Response of Bridge Hinge Restrainers during Earthquakes: Field Performance, Analysis, and Design. Rep. No. CCEER93‐6
  year: 1993
  ident: e_1_2_7_23_1
– ident: e_1_2_7_10_1
  doi: 10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6
– volume: 28
  start-page: 152
  issue: 3
  year: 2008
  ident: e_1_2_7_45_1
  article-title: The shaking table test of an SMA strands‐composite bearing
  publication-title: J Earthq Eng Eng Vib
– ident: e_1_2_7_26_1
  doi: 10.1061/(ASCE)BE.1943-5592.0001231
– ident: e_1_2_7_39_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002649
– ident: e_1_2_7_48_1
  doi: 10.1080/13632469.2016.1269692
– ident: e_1_2_7_46_1
  doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
– ident: e_1_2_7_12_1
  doi: 10.1002/eqe.31
– ident: e_1_2_7_66_1
  doi: 10.1080/13632469.2010.551706
– ident: e_1_2_7_62_1
  doi: 10.1002/eqe.557
– ident: e_1_2_7_11_1
  doi: 10.1061/(ASCE)0733-9399(2000)126:2(123)
– volume-title: Performance based Grouping and Fragility Analysis of Box‐Girder Bridges in California [Doctoral dissertation]
  ident: e_1_2_7_67_1
– ident: e_1_2_7_35_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002127
– ident: e_1_2_7_51_1
  doi: 10.1002/eqe.1022
– ident: e_1_2_7_64_1
  doi: 10.1016/S0031-9201(03)00015-3
– ident: e_1_2_7_24_1
  doi: 10.1002/tal.1398
– ident: e_1_2_7_36_1
  doi: 10.1002/stc.2337
– volume-title: High Damping Seismic Isolation Rubber Bearings for Highway Bridges
  year: 2012
  ident: e_1_2_7_57_1
– volume-title: Open System for Earthquake Engineering Simulation (Opensees). User Command Language Manual
  year: 2006
  ident: e_1_2_7_60_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.engstruct.2017.07.067
– ident: e_1_2_7_43_1
  doi: 10.1088/0964-1726/22/4/045013
– ident: e_1_2_7_22_1
  doi: 10.1061/(ASCE)BE.1943-5592.0001352
– ident: e_1_2_7_31_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001675
– volume-title: The Hyogo‐Ken Nanbu Earthquake Preliminary Reconnaissance Report
  year: 1995
  ident: e_1_2_7_15_1
– ident: e_1_2_7_52_1
  doi: 10.1016/j.conbuildmat.2017.10.031
– ident: e_1_2_7_29_1
  doi: 10.1007/978-981-13-7040-3
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jsv.2008.01.014
– volume: 24
  start-page: 127
  issue: 1
  year: 2019
  ident: e_1_2_7_42_1
  article-title: Seismic damage mitigation of bridges with self‐adaptive SMA‐cable‐based bearings
  publication-title: Smart Struct Syst
– ident: e_1_2_7_7_1
  doi: 10.1016/0267-7261(86)90006-0
– ident: e_1_2_7_50_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000837
– ident: e_1_2_7_40_1
  doi: 10.1007/s10518-018-0510-x
– ident: e_1_2_7_47_1
  doi: 10.1002/stc.1576
– volume: 11
  start-page: 287
  issue: 3
  year: 1995
  ident: e_1_2_7_16_1
  article-title: Northridge earthquake of January 17, 1994: reconnaissance report, volume 1—highway bridges and traffic management
  publication-title: Earthq Spectra
– ident: e_1_2_7_25_1
  doi: 10.1007/s11803-012-0108-2
– ident: e_1_2_7_2_1
  doi: 10.1016/j.engstruct.2021.112486
– ident: e_1_2_7_33_1
  doi: 10.1016/j.engstruct.2017.10.039
– ident: e_1_2_7_9_1
  doi: 10.1193/1.1585828
– ident: e_1_2_7_38_1
  doi: 10.1016/j.engstruct.2019.109526
– volume-title: PEER (Pacific Earthquake Engineering Research Center)
  year: 2013
  ident: e_1_2_7_63_1
– ident: e_1_2_7_20_1
  doi: 10.1007/s11803-009-8162-0
– ident: e_1_2_7_53_1
  doi: 10.1080/13632469.2011.562406
– ident: e_1_2_7_17_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000962
– ident: e_1_2_7_68_1
  doi: 10.1016/j.engstruct.2009.02.017
SSID ssj0003607
Score 2.608968
Snippet This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms bearing displacement
Bearing strength
Bearings
bridge restrainer
Cables
Damping
Earthquake damage
Earthquake dampers
Earthquakes
Energy dissipation
Energy exchange
far‐field and near‐fault earthquakes
full‐scale test
Ground motion
high damping rubber bearing
Highway bridges
Lateral loads
Load resistance
Piers
pounding
Prototypes
Rubber
Seismic activity
Seismic response
Shape memory alloys
SMA cables
Stress concentration
Title Seismic performance of bridges with novel SMA cable‐restrained high damping rubber bearings against near‐fault ground motions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3555
https://www.proquest.com/docview/2607281642
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6CT-khbdKEOnHDFEpzki1r9coxFBtTcKFxDYYcxM7uqoQ6smPJPeSU_oP-xv6SzuhhO6WF0pNAzCLtY3a_Gfb7Roi3FEVE_SBGJ5RaOT5i6KDS0unLMPaMtJex5nzH-GM4mvofZsGsvlXJXJhKH2KTcGPPKPdrdnCFeW8rGmrvbZcOS-aX81UtxkPXW-UoGbobucyYduBGd9b1ek3DpyfRFl7ugtTylBk-FzfN_1WXS7521wV29cNv0o3_14EX4qAGn3BVrZZDsWezI_FsR5Lwpfg-sbf53a2G5ZZRAIsUajkI4LwtZItvdg6T8RVoZl79fPzBFT642IQ1wALIYNQdE7FgtUa0K0DyJ07Jg_pCRnkBGb2gZqlazwtgZklmoCoolB-L6XDw-f3Iqcs0OJqwQuBoV1JUSJFO6kYpdYgwY0pbqOfpWCELYQcm9aWRPoEd-hzXEg-UxEv0MVIGY3kiWtkis68EqMi1BKgCa6TxUUfK1z4hGoaZsTEutsVFM2WJrjXMuXfzpFJf9hIa1IQHtS3ebCyXlW7HH2w6zawntefmCcV3kRdTEOm1xbty-v7aPhl8GvDz9F8Nz8S-x-yJMoPTEa1itbavCdMUeF6u3l-UCfYy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7UHDSHvFSyiUlKCPE0u-P0PFpyElnZJK7gCzwIQ78mSNZZszubQ07JP_A3-kusmseuEQXJaWCoYqa7urq_Krq-AvhIUUSyGUntxcIoL9Q69rQywtsUsQyscFvScL6jvx_3TsKvp9HpHHxuamEqfohpwo09o9yv2cE5Id2ZsYa6n65Np2U0D0-4oXcZTx3OuKNE7E8JMyXtwQ3zrB90Gs1_z6IZwLwNU8tzZvc5nDV_WF0v-dGeFLptft8hb_zPIbyAZzX-xO1qwbyEOZe_gqe3WAmX4e-ROx9fnBu8nBUV4DDDmhECOXWL-fCXG-BRfxsNF19d_7niJh_cb8JZZA5ktOqCa7FwNNHajVCTS3FWHtV3EhoXmNMLUsvUZFAgF5fkFqueQuMVONntHu_0vLpTg2cILkSe8QUFhhTsZH6S0YAINma0iwaBkUozF3Zks1BYQXaS9DluJx4pobd0qBNltRSrsJAPc_caUCW-I0wVOStsqE2iQhMSqGGkKa31dQs2GpulpqYx59EN0oqAOUhpUlOe1BasTyUvK-qOe2TWGrOntfOOUwrxkkBSHBm04FNpvwf10-5Bl59vHiv4ARZ7x_29dO_L_re3sBRwMUWZ0FmDhWI0ce8I4hT6fbmUbwDkWPpN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVkL0AC0PNVBgkBCcnLretb09Vm2ilj4ElEqVOFj7MqqaOmnicOAE_4DfyC_pjB9JQSBVnCxZM7J3Z2f3m9HONwCvKYpIN2NlgkRYHUhjksBoK4JNkajICb-lLOc7jo6TvVP57iw-a25Vci1MzQ8xS7ixZ1T7NTv4yOUbc9JQf-W7dFjGd2BJJqHiFb37cU4dJZJwxpepaAtuiWfDaKPV_P0omuPLmyi1Omb6D-Bz-4P17ZKL7rQ0XfvtD-7G_xvBCtxv0Cdu18tlFRZ88RCWb3ASPoIfJ_58cnlucTQvKcBhjg0fBHLiFovhVz_Ak6NttFx69ev7T27xwd0mvENmQEanL7kSC8dTY_wYDTkU5-RRfyGhSYkFvSC1XE8HJXJpSeGw7ig0eQyn_d6nnb2g6dMQWAILcWBDQWEhhTp5mOY0IAKNOe2hUWSVNsyEHbtcCickoR36HDcTj7UwW0aaVDujxBNYLIaFXwPUaegJUcXeCSeNTbW0kiAN40zlXGg68LY1WWYbEnMe3SCr6ZejjCY140ntwKuZ5Kgm7viLzHpr9axx3UlGAV4aKYoiow68qcz3T_2s96HHz6e3FXwJd9_v9rPD_eODZ3Av4kqKKpuzDovleOqfE74pzYtqIV8DIzj5BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+performance+of+bridges+with+novel+SMA+cable%E2%80%90restrained+high+damping+rubber+bearings+against+near%E2%80%90fault+ground+motions&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Fang%2C+Cheng&rft.au=Liang%2C+Dong&rft.au=Zheng%2C+Yue&rft.au=Lu%2C+Shiyuan&rft.date=2022-01-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=51&rft.issue=1&rft.spage=44&rft.epage=65&rft_id=info:doi/10.1002%2Feqe.3555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon