Seismic performance of bridges with novel SMA cable‐restrained high damping rubber bearings against near‐fault ground motions
This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault (NF) regions where the pulsing effect potentially exists in the ground motions. The working mechanism of the bearing is first described, fol...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 51; no. 1; pp. 44 - 65 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0098-8847 1096-9845 |
DOI | 10.1002/eqe.3555 |
Cover
Loading…
Abstract | This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault (NF) regions where the pulsing effect potentially exists in the ground motions. The working mechanism of the bearing is first described, followed by an experimental investigation on a full‐scale SMA‐HDR bearing specimen. The test results confirm the efficient restraining effect offered by the SMA cables, which contribute to 65% and 24.4% of the lateral load resistance and total energy dissipation, respectively, prior to the initial fracture of the SMA cables. The failure of the cables is initiated near the end grip where moderate stress concentration exists at this region. Following the experimental study, the numerical modeling strategy for the bearing is discussed, and a case study is then presented, demonstrating the application of the SMA‐HDR bearings in the Datianba #2 highway bridge, a real project that first adopts the proposed bearings in the world. A simplified design process is introduced for the bridge with novel SMA‐HDR bearings to mitigate the potential damage during strong earthquakes especially the NF ones. The system‐level analysis on the prototype bridge shows that the novel SMA‐HDR bearings equipped with ten 7×7×1.2 SMA cables in each bearing could reduce the average maximum bearing displacement (MBD) by nearly 30% compared with the conventional bridge with HDR bearings. The application of the novel SMA‐HDR bearing can significantly alleviate the pounding effect, especially under the NF earthquakes. The presence of the SMA cables tends to increase the maximum force response of the piers, but this effect is minor and under control. |
---|---|
AbstractList | This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault (NF) regions where the pulsing effect potentially exists in the ground motions. The working mechanism of the bearing is first described, followed by an experimental investigation on a full‐scale SMA‐HDR bearing specimen. The test results confirm the efficient restraining effect offered by the SMA cables, which contribute to 65% and 24.4% of the lateral load resistance and total energy dissipation, respectively, prior to the initial fracture of the SMA cables. The failure of the cables is initiated near the end grip where moderate stress concentration exists at this region. Following the experimental study, the numerical modeling strategy for the bearing is discussed, and a case study is then presented, demonstrating the application of the SMA‐HDR bearings in the Datianba #2 highway bridge, a real project that first adopts the proposed bearings in the world. A simplified design process is introduced for the bridge with novel SMA‐HDR bearings to mitigate the potential damage during strong earthquakes especially the NF ones. The system‐level analysis on the prototype bridge shows that the novel SMA‐HDR bearings equipped with ten 7×7×1.2 SMA cables in each bearing could reduce the average maximum bearing displacement (MBD) by nearly 30% compared with the conventional bridge with HDR bearings. The application of the novel SMA‐HDR bearing can significantly alleviate the pounding effect, especially under the NF earthquakes. The presence of the SMA cables tends to increase the maximum force response of the piers, but this effect is minor and under control. |
Author | Fang, Cheng Liang, Dong Lu, Shiyuan Zheng, Yue |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0001-9002-0379 surname: Fang fullname: Fang, Cheng organization: Tongji University – sequence: 2 givenname: Dong surname: Liang fullname: Liang, Dong organization: Tongji University – sequence: 3 givenname: Yue orcidid: 0000-0002-1126-4218 surname: Zheng fullname: Zheng, Yue email: yzheng@tongji.edu.cn organization: Tongji University – sequence: 4 givenname: Shiyuan surname: Lu fullname: Lu, Shiyuan organization: Tongji University |
BookMark | eNp1kEtOwzAQhi0EEm1B4giW2LBJsZ04j2VVlYdUhFBhHdmJnbpK7NROqLqDG3BGToJDWSFYjTz6_hnPNwbH2mgBwAVGU4wQuRZbMQ0ppUdghFEWB1ka0WMwQihLgzSNklMwdm6DEApjlIzA-0oo16gCtsJKYxumCwGNhNyqshIO7lS3htq8ihquHmawYLwWn28fVrjOMqVFCdeqWsOSNa3SFbQ958JCLpj1TwdZ5SHXQe0bPiZZX3ewsqbXJWxMp4x2Z-BEstqJ8586AS83i-f5XbB8vL2fz5ZBQbKQBgUKI5RQiiRKpD8QZ0RmGBNSpIxTnES0lFFYhlFMU78eI4IpC3nGI56wkqfhBFwe5rbWbHv__3xjeqv9ypx4FSTFcUQ8dXWgCmucs0LmrVUNs_sco3wQnHvB-SDYo9NfaKE6Ntw0qKn_CgSHwE7VYv_v4HzxtPjmvwAvIpDf |
CitedBy_id | crossref_primary_10_1007_s11431_022_2217_0 crossref_primary_10_1002_eqe_3914 crossref_primary_10_1016_j_jobe_2023_106433 crossref_primary_10_1016_j_engstruct_2023_117411 crossref_primary_10_1080_13632469_2023_2166163 crossref_primary_10_3390_ma15196589 crossref_primary_10_1007_s42417_023_01163_5 crossref_primary_10_3390_ma14216500 crossref_primary_10_1177_1045389X221093322 crossref_primary_10_1155_2023_5497731 crossref_primary_10_1007_s11665_024_10395_9 crossref_primary_10_1016_j_engstruct_2024_119393 crossref_primary_10_1016_j_jobe_2023_106429 crossref_primary_10_1186_s43065_022_00070_5 crossref_primary_10_1016_j_engstruct_2023_116281 crossref_primary_10_1186_s43251_022_00070_1 crossref_primary_10_1016_j_engstruct_2024_118991 crossref_primary_10_1016_j_jobe_2023_108325 crossref_primary_10_1016_j_cscm_2023_e02782 crossref_primary_10_3390_polym14235268 crossref_primary_10_3389_fbuil_2022_953273 crossref_primary_10_1016_j_engstruct_2022_114799 crossref_primary_10_1186_s43251_022_00064_z crossref_primary_10_1016_j_ijfatigue_2023_107684 crossref_primary_10_1016_j_engstruct_2022_115244 crossref_primary_10_1088_1361_665X_ad5f6b crossref_primary_10_1177_13694332221148550 crossref_primary_10_1016_j_engstruct_2024_119578 crossref_primary_10_1002_eqe_3858 crossref_primary_10_3390_buildings13112760 crossref_primary_10_1016_j_istruc_2024_106508 crossref_primary_10_1007_s11071_024_10614_x crossref_primary_10_1016_j_jobe_2023_108150 crossref_primary_10_1016_j_engstruct_2025_119809 crossref_primary_10_1088_1361_665X_ad3bf9 crossref_primary_10_1061_JSENDH_STENG_11594 crossref_primary_10_3390_met14040441 crossref_primary_10_1016_j_engstruct_2024_119172 crossref_primary_10_1016_j_engstruct_2022_114808 crossref_primary_10_1016_j_jobe_2023_107334 crossref_primary_10_1016_j_engstruct_2025_120111 crossref_primary_10_1016_j_jobe_2025_111852 crossref_primary_10_1088_1361_665X_ac6b6a crossref_primary_10_1177_1045389X211072211 crossref_primary_10_1002_eqe_4154 crossref_primary_10_1155_2022_6797938 crossref_primary_10_1016_j_engstruct_2023_116172 crossref_primary_10_1016_j_engstruct_2023_116171 crossref_primary_10_1088_1361_665X_ac8efc crossref_primary_10_1002_eqe_3953 crossref_primary_10_1016_j_jobe_2023_106075 crossref_primary_10_1016_j_jobe_2024_109224 crossref_primary_10_1016_j_engstruct_2023_117179 crossref_primary_10_1016_j_engstruct_2023_117215 crossref_primary_10_1088_1742_6596_2920_1_012007 crossref_primary_10_1016_j_istruc_2024_108027 crossref_primary_10_1061__ASCE_ST_1943_541X_0003459 crossref_primary_10_1007_s13369_024_09691_2 crossref_primary_10_1061_JSENDH_STENG_12988 crossref_primary_10_1016_j_soildyn_2022_107380 crossref_primary_10_1088_1361_665X_acb306 crossref_primary_10_1080_13632469_2025_2483517 crossref_primary_10_1177_1045389X221136296 crossref_primary_10_1016_j_jobe_2023_107671 crossref_primary_10_1002_eqe_3727 crossref_primary_10_1088_1361_665X_ac8849 crossref_primary_10_1007_s42107_024_01216_4 crossref_primary_10_1080_19475411_2022_2103598 crossref_primary_10_3390_lubricants12020032 crossref_primary_10_3390_ma15072349 crossref_primary_10_1016_j_engstruct_2022_114475 crossref_primary_10_1016_j_soildyn_2024_109055 crossref_primary_10_1016_j_jcsr_2024_108920 crossref_primary_10_1016_j_engstruct_2024_118288 crossref_primary_10_1016_j_istruc_2025_108453 crossref_primary_10_1016_j_istruc_2025_108331 crossref_primary_10_1142_S021945542250119X crossref_primary_10_1061_JSENDH_STENG_12480 crossref_primary_10_1177_13694332221086696 crossref_primary_10_1016_j_soildyn_2023_108213 crossref_primary_10_1371_journal_pone_0286977 crossref_primary_10_1016_j_engstruct_2023_116545 crossref_primary_10_1088_1361_665X_ac4f20 crossref_primary_10_1016_j_jcsr_2024_108629 crossref_primary_10_1061_JBENF2_BEENG_7123 crossref_primary_10_1002_eqe_3821 crossref_primary_10_1016_j_jobe_2024_111233 crossref_primary_10_1088_1361_665X_ad223b crossref_primary_10_1016_j_istruc_2023_105028 crossref_primary_10_1002_stc_3114 crossref_primary_10_1016_j_jcsr_2023_107918 crossref_primary_10_1016_j_istruc_2022_09_055 crossref_primary_10_1016_j_istruc_2023_105026 crossref_primary_10_1016_j_mtcomm_2023_105679 crossref_primary_10_1016_j_engstruct_2023_115960 crossref_primary_10_1016_j_jcsr_2025_109456 crossref_primary_10_1016_j_soildyn_2022_107291 crossref_primary_10_3390_ma15051723 |
Cites_doi | 10.1061/(ASCE)ST.1943-541X.0002414 10.1016/j.engstruct.2004.07.016 10.1177/1045389X20963167 10.1061/(ASCE)1084-0702(2003)8:4(191) 10.1016/S0029-5493(00)00344-7 10.1088/1361-665X/ab8f68 10.1002/eqe.3174 10.1016/j.engstruct.2016.04.037 10.1016/j.probengmech.2015.04.004 10.1139/l05-049 10.1016/j.engstruct.2019.01.049 10.1016/j.jcsr.2013.11.008 10.1016/j.engstruct.2014.01.008 10.1016/j.engstruct.2018.03.006 10.1002/stc.4300040202 10.1016/j.engstruct.2004.09.013 10.1016/j.engstruct.2018.10.013 10.1061/(ASCE)BE.1943-5592.0000345 10.1016/j.engstruct.2020.110651 10.1193/1.1585564 10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6 10.1061/(ASCE)BE.1943-5592.0001231 10.1061/(ASCE)ST.1943-541X.0002649 10.1080/13632469.2016.1269692 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# 10.1002/eqe.31 10.1080/13632469.2010.551706 10.1002/eqe.557 10.1061/(ASCE)0733-9399(2000)126:2(123) 10.1061/(ASCE)ST.1943-541X.0002127 10.1002/eqe.1022 10.1016/S0031-9201(03)00015-3 10.1002/tal.1398 10.1002/stc.2337 10.1016/j.engstruct.2017.07.067 10.1088/0964-1726/22/4/045013 10.1061/(ASCE)BE.1943-5592.0001352 10.1061/(ASCE)ST.1943-541X.0001675 10.1016/j.conbuildmat.2017.10.031 10.1007/978-981-13-7040-3 10.1016/j.jsv.2008.01.014 10.1016/0267-7261(86)90006-0 10.1061/(ASCE)BE.1943-5592.0000837 10.1007/s10518-018-0510-x 10.1002/stc.1576 10.1007/s11803-012-0108-2 10.1016/j.engstruct.2021.112486 10.1016/j.engstruct.2017.10.039 10.1193/1.1585828 10.1016/j.engstruct.2019.109526 10.1007/s11803-009-8162-0 10.1080/13632469.2011.562406 10.1061/(ASCE)BE.1943-5592.0000962 10.1016/j.engstruct.2009.02.017 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3555 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 65 |
ExternalDocumentID | 10_1002_eqe_3555 EQE3555 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51978513; 51778456; 52078359 |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c2935-c03407550f07f355192f91122c8ab51745df43d34658bea10215a3b9b4b7adb83 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 23:02:49 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Tue Jul 01 02:21:58 EDT 2025 Wed Jan 22 16:28:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-c03407550f07f355192f91122c8ab51745df43d34658bea10215a3b9b4b7adb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1126-4218 0000-0001-9002-0379 |
PQID | 2607281642 |
PQPubID | 866380 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2607281642 crossref_primary_10_1002_eqe_3555 crossref_citationtrail_10_1002_eqe_3555 wiley_primary_10_1002_eqe_3555_EQE3555 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 164 2013; 22 2006; 35 2004; 26 2019; 17 2017; 150 2021; 241 2017; 153 2011; 15 2005; 27 2014; 61 2012; 11 1997; 4 2014; 21 2013; 18 2018; 177 2021; 32 2000; 126 2019; 24 2015; 41 1986; 5 2003; 8 2019; 26 2008; 28 2020; 214 2005; 32 2008; 314 2014; 94 2019; 198 2018; 144 2000; 29 2017; 26 2012 2010 1997; 26 1995; 11 2011; 40 2008 2016; 122 1995 2006 1993 2020; 146 2018; 23 2003; 137 2018; 22 2019; 183 2001; 203 2019; 145 2009; 31 2020 2019; 48 2018; 158 2016; 21 2009; 8 2016 2017; 143 2013 1990; 6 2001; 30 2020; 29 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_68_1 California Department of Transportation (CLATRANS) (e_1_2_7_61_1) 2010 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 JTG/T B02‐01‐2008 (e_1_2_7_59_1) 2008 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Yamamoto M (e_1_2_7_56_1) 2016 e_1_2_7_6_1 JT/T 842–2012 (e_1_2_7_57_1) 2012 e_1_2_7_4_1 e_1_2_7_8_1 Liu H (e_1_2_7_45_1) 2008; 28 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Comartin C (e_1_2_7_15_1) 1995 Zheng Y (e_1_2_7_42_1) 2019; 24 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Mazzoni S (e_1_2_7_60_1) 2006 e_1_2_7_22_1 e_1_2_7_34_1 (e_1_2_7_63_1) 2013 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Moehle JP (e_1_2_7_16_1) 1995; 11 Mangalathu SPS (e_1_2_7_67_1) Saiidi M (e_1_2_7_23_1) 1993 JT/T 850–2013 (e_1_2_7_58_1) 2013 |
References_xml | – volume: 11 issue: 4 year: 1995 article-title: Near‐source ground motion and its effects on flexible buildings publication-title: Earthq Spectra – volume: 61 start-page: 166 year: 2014 end-page: 183 article-title: Performance‐based assessment and design of FRP‐based high damping rubber bearing incorporated with shape memory alloy wires publication-title: Eng Struct – volume: 26 start-page: 571 issue: 5 year: 1997 end-page: 591 article-title: Rigidity–plasticity–viscosity: can electrorheological dampers protect base‐isolated structures from near‐source ground motions? publication-title: Earthq Eng Struct Dyn – volume: 94 start-page: 122 year: 2014 end-page: 136 article-title: Cyclic performance of extended end‐plate connections equipped with shape memory alloy bolts publication-title: J Constr Steel Res – volume: 5 start-page: 202 issue: 4 year: 1986 end-page: 216 article-title: Aseismic base isolation: review and bibliography publication-title: Soil Dyn Earthq Eng – volume: 17 start-page: 1667 issue: 3 year: 2019 end-page: 1688 article-title: Performance‑based assessment of bridges with steel‑SMA reinforced piers in a life‑cycle context by numerical approach publication-title: Bull Earthq Eng – volume: 145 issue: 10 year: 2019 article-title: Behavior and design of self‐centering energy dissipative devices equipped with superelastic SMA ring springs publication-title: J Struct Eng ASCE – volume: 143 year: 2017 article-title: Self‐centering beam‐to‐column connections with combined superelastic SMA bolts and steel angles publication-title: J Struct Eng ASCE – volume: 48 start-page: 1045 issue: 9 year: 2019 end-page: 1065 article-title: Self‐centering friction spring dampers for seismic resilience publication-title: Earthq Eng Struct Dyn – volume: 22 start-page: 1042 issue: 6 year: 2018 end-page: 1067 article-title: Smart lead rubber bearings equipped with ferrous shape memory alloy wires for seismically isolating highway bridges publication-title: J Earthq Eng – volume: 21 issue: 12 year: 2016 article-title: Rigid‐body motion of horizontally curved bridges subjected to earthquake‐induced pounding publication-title: J Bridge Eng – volume: 214 year: 2020 article-title: Rocking bridge piers equipped with shape memory alloy (SMA) washer springs publication-title: Eng Struct – volume: 183 start-page: 533 year: 2019 end-page: 549 article-title: Superelastic NiTi SMA cables: thermal‐mechanical behavior, hysteretic modelling and seismic application publication-title: Eng Struct – volume: 24 start-page: 127 issue: 1 year: 2019 end-page: 139 article-title: Seismic damage mitigation of bridges with self‐adaptive SMA‐cable‐based bearings publication-title: Smart Struct Syst – volume: 150 start-page: 390 year: 2017 end-page: 408 article-title: Self‐centring behaviour of steel and steel‐concrete composite connections equipped with NiTi SMA bolts publication-title: Eng Struct – volume: 198 year: 2019 article-title: Experimental and numerical studies on self‐centring beam‐to‐column connections free from frame expansion publication-title: Eng Struct – start-page: 1 year: 2016 end-page: 16 – year: 2008 – volume: 11 start-page: 173 issue: 2 year: 2012 end-page: 183 article-title: Seismic performance of cable‐sliding friction bearing system for isolated bridges publication-title: Earthq Eng Eng Vib – volume: 32 start-page: 957 issue: 5 year: 2005 end-page: 967 article-title: A new concept of isolation bearings for highway steel bridges using shape memory alloys publication-title: Can J Civ Eng – volume: 26 issue: 5 year: 2019 article-title: Manufacturing and performance of a novel self‐centring damper with SMA ring springs for seismic resilience publication-title: Struct Control Health Monit – volume: 18 start-page: 220 issue: 3 year: 2013 end-page: 231 article-title: Nonlinear seismic response and parametric examination of horizontally curved steel bridges using 3D computational models publication-title: J Bridge Eng – volume: 122 year: 2016 article-title: Geometric parameters affecting seismic fragilities of curved multi‐frame concrete box‐girder bridges with integral abutments publication-title: Eng Struct – volume: 8 start-page: 263 issue: 2 year: 2009 end-page: 273 article-title: Seismic damage of highway bridges during the 2008 Wenchuan earthquake publication-title: Earthq Eng Eng Vib – volume: 23 issue: 6 year: 2018 article-title: Displacement‐based seismic design of steel, FRP, and SMA cable restrainers for isolated simply supported bridges publication-title: J Bridge Eng – year: 1993 – volume: 41 start-page: 34 year: 2015 end-page: 45 article-title: Shape‐memory‐alloy supplemented lead rubber bearing (SMA‐LRB) for seismic isolation publication-title: Probab Eng Mech – volume: 203 start-page: 259 issue: 2–3 year: 2001 end-page: 272 article-title: Performance of sliding systems under near‐fault motions publication-title: Nucl Eng Des – volume: 22 issue: 4 year: 2013 article-title: Shape memory alloy wire‐based smart natural rubber bearing publication-title: Smart Mater Struct – volume: 29 issue: 8 year: 2020 article-title: Shape memory alloy (SMA)‐cable‐controlled sliding bearings: development, testing, and system behavior publication-title: Smart Mater Struct – volume: 35 start-page: 811 issue: 7 year: 2006 end-page: 828 article-title: A Hertz contact model with non‐linear damping for pounding simulation publication-title: Earthq Eng Struct Dyn – volume: 164 start-page: 155 year: 2018 end-page: 168 article-title: A study of hybrid self‐centring connections equipped with shape memory alloy washers and bolts publication-title: Eng Struct – volume: 15 start-page: 850 issue: 6 year: 2011 end-page: 876 article-title: Response sensitivity of highway bridges to randomly oriented multi‐component earthquake excitation publication-title: J Earthq Eng – volume: 30 start-page: 691 issue: 5 year: 2001 end-page: 707 article-title: Base isolation for near‐fault motions publication-title: Earthq Eng Struct Dyn – volume: 26 issue: 16 year: 2017 article-title: Case study of the seismic response of an extra‐dosed cable‐stayed bridge with cable‐sliding friction aseismic bearing using shake table tests publication-title: Struct Des Tall Special Build – volume: 31 start-page: 1648 issue: 8 year: 2009 end-page: 1660 article-title: Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method publication-title: Eng Struct – volume: 314 issue: 3–5 year: 2008 article-title: Recent advances in nonlinear passive vibration isolators publication-title: J Sound Vib – volume: 126 start-page: 123 issue: 2 year: 2000 end-page: 131 article-title: Response of damped oscillators to cycloidal pulses publication-title: J Eng Mech – volume: 146 issue: 6 year: 2020 article-title: SMA‐based low‐damage solution for self‐centering steel and composite beam‐to‐column connections publication-title: J Struct Eng ASCE – volume: 26 start-page: 2173 issue: 14 year: 2004 end-page: 2183 article-title: Comparison of dynamic response of isolated and non‐isolated continuous girder bridges subjected to near‐fault ground motions publication-title: Eng Struct – volume: 27 start-page: 349 issue: 3 year: 2005 end-page: 359 article-title: Optimum friction pendulum system for near‐fault motions publication-title: Eng Struct – volume: 137 start-page: 201 issue: 1–4 year: 2003 end-page: 212 article-title: Magnitude scaling of the near fault rupture directivity pulse publication-title: Phys Earth Planet Inter – volume: 24 issue: 3 year: 2019 article-title: Influence of multidirectional cable restrainer on seismic fragility of a curved bridge publication-title: J Bridge Eng – volume: 153 start-page: 503 year: 2017 end-page: 515 article-title: Innovative use of a shape memory alloy ring spring system for self‐centering connections publication-title: Eng Struct – volume: 32 start-page: 549 issue: 5 year: 2021 end-page: 567 article-title: An innovative seismic‐resilient bridge with shape memory alloy (SMA)‐washer‐based footing rocking RC piers publication-title: J Intell Mater Syst Struct – volume: 6 start-page: 161 issue: 2 year: 1990 end-page: 201 article-title: Seismic isolation: history, application, and performance—a world view publication-title: Earthq Spectra – year: 2010 – year: 2012 – volume: 158 start-page: 389 year: 2018 end-page: 400 article-title: Resilience and life‐cycle performance of smart bridges with shape memory alloy (SMA)‐cable‐based bearings publication-title: Constr Build Mater – volume: 8 start-page: 191 issue: 4 year: 2003 end-page: 198 article-title: Full‐scale tests of seismic cable restrainer retrofits for simply supported bridges publication-title: J Bridge Eng – volume: 15 start-page: 72 issue: S1 year: 2011 end-page: 89 article-title: Innovative superelastic isolation device publication-title: J Earthq Eng – volume: 4 start-page: 19 issue: 2 year: 1997 end-page: 40 article-title: High damping natural rubber seismic isolators publication-title: J Struct Control – volume: 28 start-page: 152 issue: 3 year: 2008 end-page: 156 article-title: The shaking table test of an SMA strands‐composite bearing publication-title: J Earthq Eng Eng Vib – volume: 11 start-page: 287 issue: 3 year: 1995 end-page: 372 article-title: Northridge earthquake of January 17, 1994: reconnaissance report, volume 1—highway bridges and traffic management publication-title: Earthq Spectra – volume: 144 issue: 8 year: 2018 article-title: Application of an innovative SMA ring spring system for self‐centering steel frames subject to seismic conditions publication-title: J Struct Eng ASCE – volume: 21 start-page: 449 issue: 4 year: 2014 end-page: 465 article-title: Performance assessment of buildings isolated by shape‐memory‐alloy rubber bearing: comparison with elastomeric bearing under near‐fault earthquakes publication-title: Struct Control Health Monit – year: 2006 – year: 2020 – year: 1995 – volume: 40 start-page: 273 issue: 3 year: 2011 end-page: 291 article-title: Optimal design of superelastic‐friction base isolators for seismic protection of highway bridges against near‐field earthquakes publication-title: Earthq Eng Struct Dyn – volume: 21 issue: 3 year: 2016 article-title: Response of bridges isolated by shape memory–alloy rubber bearing publication-title: J Bridge Eng – volume: 29 start-page: 945 issue: 7 year: 2000 end-page: 968 article-title: Implementation and testing of passive control devices based on shape memory alloys publication-title: Earthq Eng Struct Dyn – volume: 241 year: 2021 article-title: Probabilistic economic seismic loss estimation of steel braced frames incorporating emerging self‐centering technologies publication-title: Eng Struct – year: 2013 – volume: 177 start-page: 579 year: 2018 end-page: 597 article-title: Peak and residual responses of steel moment‐resisting and braced frames under pulse‐like near‐fault earthquakes publication-title: Eng Struct – ident: e_1_2_7_37_1 doi: 10.1061/(ASCE)ST.1943-541X.0002414 – ident: e_1_2_7_13_1 doi: 10.1016/j.engstruct.2004.07.016 – ident: e_1_2_7_41_1 doi: 10.1177/1045389X20963167 – ident: e_1_2_7_21_1 doi: 10.1061/(ASCE)1084-0702(2003)8:4(191) – volume-title: Guidelines for Seismic Design for Highway Bridges year: 2008 ident: e_1_2_7_59_1 – ident: e_1_2_7_5_1 doi: 10.1016/S0029-5493(00)00344-7 – ident: e_1_2_7_27_1 doi: 10.1088/1361-665X/ab8f68 – ident: e_1_2_7_3_1 doi: 10.1002/eqe.3174 – ident: e_1_2_7_19_1 doi: 10.1016/j.engstruct.2016.04.037 – ident: e_1_2_7_49_1 doi: 10.1016/j.probengmech.2015.04.004 – ident: e_1_2_7_44_1 doi: 10.1139/l05-049 – ident: e_1_2_7_28_1 doi: 10.1016/j.engstruct.2019.01.049 – ident: e_1_2_7_30_1 doi: 10.1016/j.jcsr.2013.11.008 – ident: e_1_2_7_8_1 doi: 10.1016/j.engstruct.2014.01.008 – ident: e_1_2_7_34_1 doi: 10.1016/j.engstruct.2018.03.006 – ident: e_1_2_7_55_1 doi: 10.1002/stc.4300040202 – volume-title: Standard for Strand Cable with Swaging Anchorage year: 2013 ident: e_1_2_7_58_1 – start-page: 1 volume-title: The Canterbury Rebuild Five Years on from the Christchurch Earthquake year: 2016 ident: e_1_2_7_56_1 – volume-title: Seismic Design Criteria, Version 1.6 year: 2010 ident: e_1_2_7_61_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.engstruct.2004.09.013 – ident: e_1_2_7_65_1 doi: 10.1016/j.engstruct.2018.10.013 – ident: e_1_2_7_18_1 doi: 10.1061/(ASCE)BE.1943-5592.0000345 – ident: e_1_2_7_54_1 doi: 10.1016/j.engstruct.2020.110651 – ident: e_1_2_7_4_1 doi: 10.1193/1.1585564 – volume-title: Response of Bridge Hinge Restrainers during Earthquakes: Field Performance, Analysis, and Design. Rep. No. CCEER93‐6 year: 1993 ident: e_1_2_7_23_1 – ident: e_1_2_7_10_1 doi: 10.1002/(SICI)1096-9845(199705)26:5<571::AID-EQE658>3.0.CO;2-6 – volume: 28 start-page: 152 issue: 3 year: 2008 ident: e_1_2_7_45_1 article-title: The shaking table test of an SMA strands‐composite bearing publication-title: J Earthq Eng Eng Vib – ident: e_1_2_7_26_1 doi: 10.1061/(ASCE)BE.1943-5592.0001231 – ident: e_1_2_7_39_1 doi: 10.1061/(ASCE)ST.1943-541X.0002649 – ident: e_1_2_7_48_1 doi: 10.1080/13632469.2016.1269692 – ident: e_1_2_7_46_1 doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-# – ident: e_1_2_7_12_1 doi: 10.1002/eqe.31 – ident: e_1_2_7_66_1 doi: 10.1080/13632469.2010.551706 – ident: e_1_2_7_62_1 doi: 10.1002/eqe.557 – ident: e_1_2_7_11_1 doi: 10.1061/(ASCE)0733-9399(2000)126:2(123) – volume-title: Performance based Grouping and Fragility Analysis of Box‐Girder Bridges in California [Doctoral dissertation] ident: e_1_2_7_67_1 – ident: e_1_2_7_35_1 doi: 10.1061/(ASCE)ST.1943-541X.0002127 – ident: e_1_2_7_51_1 doi: 10.1002/eqe.1022 – ident: e_1_2_7_64_1 doi: 10.1016/S0031-9201(03)00015-3 – ident: e_1_2_7_24_1 doi: 10.1002/tal.1398 – ident: e_1_2_7_36_1 doi: 10.1002/stc.2337 – volume-title: High Damping Seismic Isolation Rubber Bearings for Highway Bridges year: 2012 ident: e_1_2_7_57_1 – volume-title: Open System for Earthquake Engineering Simulation (Opensees). User Command Language Manual year: 2006 ident: e_1_2_7_60_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.engstruct.2017.07.067 – ident: e_1_2_7_43_1 doi: 10.1088/0964-1726/22/4/045013 – ident: e_1_2_7_22_1 doi: 10.1061/(ASCE)BE.1943-5592.0001352 – ident: e_1_2_7_31_1 doi: 10.1061/(ASCE)ST.1943-541X.0001675 – volume-title: The Hyogo‐Ken Nanbu Earthquake Preliminary Reconnaissance Report year: 1995 ident: e_1_2_7_15_1 – ident: e_1_2_7_52_1 doi: 10.1016/j.conbuildmat.2017.10.031 – ident: e_1_2_7_29_1 doi: 10.1007/978-981-13-7040-3 – ident: e_1_2_7_6_1 doi: 10.1016/j.jsv.2008.01.014 – volume: 24 start-page: 127 issue: 1 year: 2019 ident: e_1_2_7_42_1 article-title: Seismic damage mitigation of bridges with self‐adaptive SMA‐cable‐based bearings publication-title: Smart Struct Syst – ident: e_1_2_7_7_1 doi: 10.1016/0267-7261(86)90006-0 – ident: e_1_2_7_50_1 doi: 10.1061/(ASCE)BE.1943-5592.0000837 – ident: e_1_2_7_40_1 doi: 10.1007/s10518-018-0510-x – ident: e_1_2_7_47_1 doi: 10.1002/stc.1576 – volume: 11 start-page: 287 issue: 3 year: 1995 ident: e_1_2_7_16_1 article-title: Northridge earthquake of January 17, 1994: reconnaissance report, volume 1—highway bridges and traffic management publication-title: Earthq Spectra – ident: e_1_2_7_25_1 doi: 10.1007/s11803-012-0108-2 – ident: e_1_2_7_2_1 doi: 10.1016/j.engstruct.2021.112486 – ident: e_1_2_7_33_1 doi: 10.1016/j.engstruct.2017.10.039 – ident: e_1_2_7_9_1 doi: 10.1193/1.1585828 – ident: e_1_2_7_38_1 doi: 10.1016/j.engstruct.2019.109526 – volume-title: PEER (Pacific Earthquake Engineering Research Center) year: 2013 ident: e_1_2_7_63_1 – ident: e_1_2_7_20_1 doi: 10.1007/s11803-009-8162-0 – ident: e_1_2_7_53_1 doi: 10.1080/13632469.2011.562406 – ident: e_1_2_7_17_1 doi: 10.1061/(ASCE)BE.1943-5592.0000962 – ident: e_1_2_7_68_1 doi: 10.1016/j.engstruct.2009.02.017 |
SSID | ssj0003607 |
Score | 2.608968 |
Snippet | This study presents a novel type of shape memory alloy (SMA) cable‐restrained high damping rubber (SMA‐HDR) bearing, which is particularly suited to near‐fault... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 44 |
SubjectTerms | bearing displacement Bearing strength Bearings bridge restrainer Cables Damping Earthquake damage Earthquake dampers Earthquakes Energy dissipation Energy exchange far‐field and near‐fault earthquakes full‐scale test Ground motion high damping rubber bearing Highway bridges Lateral loads Load resistance Piers pounding Prototypes Rubber Seismic activity Seismic response Shape memory alloys SMA cables Stress concentration |
Title | Seismic performance of bridges with novel SMA cable‐restrained high damping rubber bearings against near‐fault ground motions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3555 https://www.proquest.com/docview/2607281642 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6CT-khbdKEOnHDFEpzki1r9coxFBtTcKFxDYYcxM7uqoQ6smPJPeSU_oP-xv6SzuhhO6WF0pNAzCLtY3a_Gfb7Roi3FEVE_SBGJ5RaOT5i6KDS0unLMPaMtJex5nzH-GM4mvofZsGsvlXJXJhKH2KTcGPPKPdrdnCFeW8rGmrvbZcOS-aX81UtxkPXW-UoGbobucyYduBGd9b1ek3DpyfRFl7ugtTylBk-FzfN_1WXS7521wV29cNv0o3_14EX4qAGn3BVrZZDsWezI_FsR5Lwpfg-sbf53a2G5ZZRAIsUajkI4LwtZItvdg6T8RVoZl79fPzBFT642IQ1wALIYNQdE7FgtUa0K0DyJ07Jg_pCRnkBGb2gZqlazwtgZklmoCoolB-L6XDw-f3Iqcs0OJqwQuBoV1JUSJFO6kYpdYgwY0pbqOfpWCELYQcm9aWRPoEd-hzXEg-UxEv0MVIGY3kiWtkis68EqMi1BKgCa6TxUUfK1z4hGoaZsTEutsVFM2WJrjXMuXfzpFJf9hIa1IQHtS3ebCyXlW7HH2w6zawntefmCcV3kRdTEOm1xbty-v7aPhl8GvDz9F8Nz8S-x-yJMoPTEa1itbavCdMUeF6u3l-UCfYy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC7UHDSHvFSyiUlKCPE0u-P0PFpyElnZJK7gCzwIQ78mSNZZszubQ07JP_A3-kusmseuEQXJaWCoYqa7urq_Krq-AvhIUUSyGUntxcIoL9Q69rQywtsUsQyscFvScL6jvx_3TsKvp9HpHHxuamEqfohpwo09o9yv2cE5Id2ZsYa6n65Np2U0D0-4oXcZTx3OuKNE7E8JMyXtwQ3zrB90Gs1_z6IZwLwNU8tzZvc5nDV_WF0v-dGeFLptft8hb_zPIbyAZzX-xO1qwbyEOZe_gqe3WAmX4e-ROx9fnBu8nBUV4DDDmhECOXWL-fCXG-BRfxsNF19d_7niJh_cb8JZZA5ktOqCa7FwNNHajVCTS3FWHtV3EhoXmNMLUsvUZFAgF5fkFqueQuMVONntHu_0vLpTg2cILkSe8QUFhhTsZH6S0YAINma0iwaBkUozF3Zks1BYQXaS9DluJx4pobd0qBNltRSrsJAPc_caUCW-I0wVOStsqE2iQhMSqGGkKa31dQs2GpulpqYx59EN0oqAOUhpUlOe1BasTyUvK-qOe2TWGrOntfOOUwrxkkBSHBm04FNpvwf10-5Bl59vHiv4ARZ7x_29dO_L_re3sBRwMUWZ0FmDhWI0ce8I4hT6fbmUbwDkWPpN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVkL0AC0PNVBgkBCcnLretb09Vm2ilj4ElEqVOFj7MqqaOmnicOAE_4DfyC_pjB9JQSBVnCxZM7J3Z2f3m9HONwCvKYpIN2NlgkRYHUhjksBoK4JNkajICb-lLOc7jo6TvVP57iw-a25Vci1MzQ8xS7ixZ1T7NTv4yOUbc9JQf-W7dFjGd2BJJqHiFb37cU4dJZJwxpepaAtuiWfDaKPV_P0omuPLmyi1Omb6D-Bz-4P17ZKL7rQ0XfvtD-7G_xvBCtxv0Cdu18tlFRZ88RCWb3ASPoIfJ_58cnlucTQvKcBhjg0fBHLiFovhVz_Ak6NttFx69ev7T27xwd0mvENmQEanL7kSC8dTY_wYDTkU5-RRfyGhSYkFvSC1XE8HJXJpSeGw7ig0eQyn_d6nnb2g6dMQWAILcWBDQWEhhTp5mOY0IAKNOe2hUWSVNsyEHbtcCickoR36HDcTj7UwW0aaVDujxBNYLIaFXwPUaegJUcXeCSeNTbW0kiAN40zlXGg68LY1WWYbEnMe3SCr6ZejjCY140ntwKuZ5Kgm7viLzHpr9axx3UlGAV4aKYoiow68qcz3T_2s96HHz6e3FXwJd9_v9rPD_eODZ3Av4kqKKpuzDovleOqfE74pzYtqIV8DIzj5BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+performance+of+bridges+with+novel+SMA+cable%E2%80%90restrained+high+damping+rubber+bearings+against+near%E2%80%90fault+ground+motions&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Fang%2C+Cheng&rft.au=Liang%2C+Dong&rft.au=Zheng%2C+Yue&rft.au=Lu%2C+Shiyuan&rft.date=2022-01-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=51&rft.issue=1&rft.spage=44&rft.epage=65&rft_id=info:doi/10.1002%2Feqe.3555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |