Parameter‐uniform numerical method for singularly perturbed 2‐D parabolic convection–diffusion problem with interior layers

In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the disco...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 45; no. 5; pp. 3039 - 3057
Main Authors Majumdar, Anirban, Natesan, Srinivasan
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 30.03.2022
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.7975

Cover

Abstract In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the discontinuity of convection coefficients and source term. To capture the interior layers, the piecewise‐uniform mesh is used in the spatial directions and the uniform mesh is considered in temporal direction. To discretize the temporal and spatial derivatives, we apply an alternating direction method and upwind method, respectively. Theoretically, we prove that the proposed method is ε‐uniformly convergent. Numerical results are presented to demonstrate the theoretical estimates.
AbstractList In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the discontinuity of convection coefficients and source term. To capture the interior layers, the piecewise‐uniform mesh is used in the spatial directions and the uniform mesh is considered in temporal direction. To discretize the temporal and spatial derivatives, we apply an alternating direction method and upwind method, respectively. Theoretically, we prove that the proposed method is ε‐uniformly convergent. Numerical results are presented to demonstrate the theoretical estimates.
In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the discontinuity of convection coefficients and source term. To capture the interior layers, the piecewise‐uniform mesh is used in the spatial directions and the uniform mesh is considered in temporal direction. To discretize the temporal and spatial derivatives, we apply an alternating direction method and upwind method, respectively. Theoretically, we prove that the proposed method is ε ‐uniformly convergent. Numerical results are presented to demonstrate the theoretical estimates.
Author Majumdar, Anirban
Natesan, Srinivasan
Author_xml – sequence: 1
  givenname: Anirban
  orcidid: 0000-0002-8874-4930
  surname: Majumdar
  fullname: Majumdar, Anirban
  organization: Indian Institute of Information Technology, Design and Manufacturing
– sequence: 2
  givenname: Srinivasan
  orcidid: 0000-0001-7527-1989
  surname: Natesan
  fullname: Natesan, Srinivasan
  email: natesan@iitg.ac.in
  organization: Indian Institute of Technology Guwahati
BookMark eNp1kE1OwzAQhS1UJEpB4giW2LBJ8V-TZlmVX6kVLGAdObFNXTl2sROq7MoNkLhhT4JLWSFYeeT53puZdwx61lkJwBlGQ4wQuaxrPszybHQA-hjleYJZlvZAH-EMJYxgdgSOQ1gihMYYkz54f-Se17KRfrv5aK1WztfQtrX0uuIGxs7CCRh_YdD2pTXcmw6upG9aX0oBSVRdwVX0KJ3RFaycfZNVo53dbj6FVqoNsYYr70oja7jWzQJqG6fp6Gh4J304AYeKmyBPf94BeL65fpreJbOH2_vpZJZUJKejpFSU0DJFqRKMlmqEBRZMiIyoiqVjhShVjJUknpznvEQkJXRMFcJMCslQ7A_A-d43LvPaytAUS9d6G0cWJKUpztgo21EXe6ryLgQvVbHyuua-KzAqdgEXMeBiF3BEh7_QSjd8d3vjuTZ_CZK9YK2N7P41LubzyTf_BdX_k6A
CitedBy_id crossref_primary_10_1002_mma_10070
crossref_primary_10_3390_math10183310
crossref_primary_10_1007_s13226_024_00704_2
Cites_doi 10.1142/2933
10.1016/j.cam.2003.09.033
10.1016/0024-3795(75)90112-3
10.1080/00207160.2018.1485896
10.1016/j.amc.2017.06.010
10.1016/j.amc.2004.04.007
10.1201/9781482285727
10.1007/s11075-011-9449-6
10.3846/13926292.2015.1091041
10.1016/j.cam.2003.09.025
10.1016/j.camwa.2017.12.013
10.1023/B:SUPE.0000009322.23950.53
10.1007/s00607-003-0009-3
10.1093/imanum/20.2.263
10.1016/S0898-1221(03)80031-7
10.1007/BF02896460
10.1007/s00211-007-0083-0
10.1016/j.cam.2005.04.042
10.1016/j.mcm.2005.01.025
10.1504/IJMMNO.2020.104325
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7975
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 3057
ExternalDocumentID 10_1002_mma_7975
MMA7975
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c2935-bf323b606fd43bf51d1d4dd72fc468f033f44b209999ab0262383f014ede40f03
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 12:13:11 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Tue Jul 01 00:19:16 EDT 2025
Wed Jan 22 16:25:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-bf323b606fd43bf51d1d4dd72fc468f033f44b209999ab0262383f014ede40f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8874-4930
0000-0001-7527-1989
PQID 2636174570
PQPubID 1016386
PageCount 19
ParticipantIDs proquest_journals_2636174570
crossref_primary_10_1002_mma_7975
crossref_citationtrail_10_1002_mma_7975
wiley_primary_10_1002_mma_7975_MMA7975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2022
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 30 March 2022
  day: 30
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 166
2007; 107
2004; 40
2005; 163
2019; 96
2000
2004; 27
2006; 22
2005; 169
2015; 20
2000; 20
2009
2008
1996
2006; 192
1975; 11
2011; 58
2020; 10
2003; 71
2018; 75
2017; 313
2003; 45
e_1_2_10_23_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_24_1
e_1_2_10_10_1
e_1_2_10_21_1
e_1_2_10_11_1
e_1_2_10_22_1
e_1_2_10_20_1
Roos HG (e_1_2_10_6_1) 2008
Cen Z (e_1_2_10_12_1) 2005; 169
e_1_2_10_2_1
Shishkin G (e_1_2_10_7_1) 2009
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
References_xml – volume: 96
  start-page: 1313
  year: 2019
  end-page: 1334
  article-title: An ‐uniform hybrid scheme for a singularly perturbed degenerate convection‐diffusion problem
  publication-title: Int J Comput Math
– volume: 45
  start-page: 469
  year: 2003
  end-page: 479
  article-title: A numerical algorithm for singular perturbation problems exhibiting weak boundary layers
  publication-title: Comput Math Appl
– volume: 20
  start-page: 641
  year: 2015
  end-page: 657
  article-title: Schemes convergent ‐uniformly for parabolic singularly perturbed problems with a degenerating convective term and a discontinuous source
  publication-title: Math Model Anal
– year: 2009
– volume: 11
  start-page: 3
  year: 1975
  end-page: 5
  article-title: A lower bound for the smallest singular value of a matrix
  publication-title: Linear Algebra and Appl
– volume: 40
  start-page: 1375
  year: 2004
  end-page: 1392
  article-title: Global maximum norm parameter‐uniform numerical method for a singularly perturbed convection‐diffusion problem with discontinuous convection coefficient
  publication-title: Math Comput Modelling
– volume: 22
  start-page: 49
  year: 2006
  end-page: 65
  article-title: Fitted mesh method for singularly perturbed reaction‐convection‐diffusion problems with boundary and interior layers
  publication-title: J Appl Math Computing
– volume: 192
  start-page: 132
  year: 2006
  end-page: 141
  article-title: An efficient numerical method for singular perturbation problems
  publication-title: J Comput Appl Math
– volume: 313
  start-page: 453
  year: 2017
  end-page: 473
  article-title: Alternating direction numerical scheme for singularly perturbed 2d degenerate parabolic convection‐diffusion problems
  publication-title: Appl Math Comput
– volume: 71
  start-page: 153
  year: 2003
  end-page: 173
  article-title: Numerical solution of a reaction‐diffusion elliptic interface problem with strong anisotropy
  publication-title: Computing
– year: 2008
– volume: 166
  start-page: 233
  year: 2004
  end-page: 245
  article-title: Singularly perturbed parabolic problems with non‐smooth data
  publication-title: J Comput Appl Math
– volume: 27
  start-page: 195
  year: 2004
  end-page: 206
  article-title: A parallel boundary value technique for singularly perturbed two‐point boundary value problems
  publication-title: J Supercomputs
– volume: 169
  start-page: 689
  year: 2005
  end-page: 699
  article-title: A hybrid difference scheme for a singularly perturbed convection‐diffusion problem with discontinuous convection coefficient
  publication-title: Appl Math Comput
– volume: 58
  start-page: 103
  year: 2011
  end-page: 141
  article-title: ‐uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers
  publication-title: Numer Algorithms
– year: 1996
– volume: 20
  start-page: 263
  year: 2000
  end-page: 280
  article-title: An alternating direction scheme on a nonuniform mesh for reaction‐diffusion parabolic problems
  publication-title: IMA J Numer Anal
– year: 2000
– volume: 163
  start-page: 645
  year: 2005
  end-page: 665
  article-title: Uniformly convergent finite volume difference scheme for 2d convection‐dominated problem with discontinuous coefficients
  publication-title: Appl Math Comput
– volume: 107
  start-page: 1
  year: 2007
  end-page: 25
  article-title: A high order uniformly convergent alternating direction scheme for time dependent reaction‐diffusion singularly perturbed problems
  publication-title: Numer Math
– volume: 10
  start-page: 68
  year: 2020
  end-page: 101
  article-title: A higher‐order hybrid numerical scheme for singularly perturbed convection‐diffusion problem with boundary and weak interior layers
  publication-title: Int J Math Modell Numer Optimisation
– volume: 75
  start-page: 2387
  year: 2018
  end-page: 2403
  article-title: Higher‐order convergence with fractional‐step method for singularly perturbed 2d parabolic convection‐diffusion problems on shishkin mesh
  publication-title: Comput Math Appl
– volume: 166
  start-page: 133
  year: 2004
  end-page: 151
  article-title: Singularly perturbed convection‐diffusion problems with boundary and weak interior layers
  publication-title: Comput Appl Math
– ident: e_1_2_10_4_1
  doi: 10.1142/2933
– volume-title: Difference methods for singular perturbation problems
  year: 2009
  ident: e_1_2_10_7_1
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cam.2003.09.033
– ident: e_1_2_10_24_1
  doi: 10.1016/0024-3795(75)90112-3
– ident: e_1_2_10_3_1
  doi: 10.1080/00207160.2018.1485896
– ident: e_1_2_10_23_1
  doi: 10.1016/j.amc.2017.06.010
– ident: e_1_2_10_18_1
  doi: 10.1016/j.amc.2004.04.007
– ident: e_1_2_10_22_1
  doi: 10.1201/9781482285727
– ident: e_1_2_10_16_1
  doi: 10.1007/s11075-011-9449-6
– ident: e_1_2_10_15_1
  doi: 10.3846/13926292.2015.1091041
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cam.2003.09.025
– ident: e_1_2_10_2_1
  doi: 10.1016/j.camwa.2017.12.013
– ident: e_1_2_10_9_1
  doi: 10.1023/B:SUPE.0000009322.23950.53
– ident: e_1_2_10_19_1
  doi: 10.1007/s00607-003-0009-3
– ident: e_1_2_10_20_1
  doi: 10.1093/imanum/20.2.263
– ident: e_1_2_10_5_1
  doi: 10.1016/S0898-1221(03)80031-7
– volume-title: Robust numerical methods for singularly perturbed differential equations
  year: 2008
  ident: e_1_2_10_6_1
– ident: e_1_2_10_13_1
  doi: 10.1007/BF02896460
– ident: e_1_2_10_21_1
  doi: 10.1007/s00211-007-0083-0
– ident: e_1_2_10_8_1
  doi: 10.1016/j.cam.2005.04.042
– ident: e_1_2_10_11_1
  doi: 10.1016/j.mcm.2005.01.025
– volume: 169
  start-page: 689
  year: 2005
  ident: e_1_2_10_12_1
  article-title: A hybrid difference scheme for a singularly perturbed convection‐diffusion problem with discontinuous convection coefficient
  publication-title: Appl Math Comput
– ident: e_1_2_10_17_1
  doi: 10.1504/IJMMNO.2020.104325
SSID ssj0008112
Score 2.2943485
Snippet In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3039
SubjectTerms Convection
Convergence
Diffusion layers
finite difference scheme
interior layer
Numerical methods
piecewise‐uniform meshes
Singular perturbation methods
singularly perturbed 2‐D parabolic convection–diffusion problem
uniform convergence
Title Parameter‐uniform numerical method for singularly perturbed 2‐D parabolic convection–diffusion problem with interior layers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7975
https://www.proquest.com/docview/2636174570
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFICD7Ekf1E3FeSOCeHno1iZpuz4O5xjCRMTBwIeSNAmIW5VtfdCn-Q8E_-F-iTm9bCoKIhQKbVLaXJpzTs75DkJHAbWVolxYDtdGQZGub4nIlZZrO4JILqkfgb2je-V1euyy7_Zzr0qIhcn4EHODG8yM9H8NE5yLcX0BDR0Oec0PfIgvd6gH2PzWzYIc1XDSjU6gw1iMOKzgztqkXlT8uhItxMvPQmq6yrTX0F3xfplzyUMtmYha9PIN3fi_D1hHq7nwiZvZaCmjJRVX0Ep3Tm4dV1A5n-xjfJoTqc820Os1Bx8u0wWz6VsSQzDXEMdJttkzwFkWamyuYrA8gGPr4Bk_qZFZzoSSmJhaLQyQcQEUYpx6uqfxFLPpO2RoScBkh_PcNhhMwxgwFqN788QBB6VgE_XaF7fnHSvP3WBFRoBwLaEpocJoR1oyKrTrSEcyKX2iI-Y1tE2pZkxA3G4QcGEUQSM6UG30NSUVs839LVSKH2O1jbAm2taB09A-kIDMD8dTHocjaEilta6ik6IfwygHm0N-jUGYIZlJaFo6hJauosN5yacM5vFDmb1iKIT5dB6HxKNG0mOub1fRcdqnv9YPu90mnHf-WnAXLRMIqYA4R3sPlSajRO0bQWciDtIh_QFeqwDx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S5NDm0DzakG1eKpSmPXjXlmR7TU4hD7ZtHEpIIIeCsSwJQnadsLs-tKfkHwTyD_NLMuPHbhNaKAWDwZaMLGmkb0Yz3wB8iIRrjEiV46UWFRTth47KfO34rqe4TrUIM7J3xMdB70x-PffPZ2CniYWp-CEmBjeSjHK9JgEng3Rnyho6GKTtMAr9FzAnEWeQ5rV_MuWO6nrlUSfxwziSe7JhnnV5p6n5dC-aAszfYWq5zxwuwI-mhZV7yWW7GKt29usZeeN__sIivK7xJ9utJswSzJh8GebjCXnraBmWankfsU81KfXnN3D7PSU3LhyFh5u7Iqd4rgHLi-q8p8-qRNQMnzIyPpBva_8nuzZD3NGU0YxjrX1GPOOKiIhZ6exehlQ83NxTkpaCrHasTm_DyDrMiMlieIFf7KekF7yFs8OD072eU6dvcDLEEL6jrOBCoYJktRTK-p72tNQ65DaTQde6QlgpFYXuRlGqUBdE9CAsqmxGG-ni-xWYza9yswrMcuvayOvakMiAcM0JTJDSFXW1sda2YLsZyCSruc0pxUY_qViZeYI9nVBPt-D9pOR1xefxhzLrzVxIaokeJTwQCPakH7ot-FgO6l_rJ3G8S_d3_1pwC172TuOj5OjL8bc1eMUpwoLCHt11mB0PC7OBuGesNsv5_QhV2AUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB-sgtQH_1Y8tXYFse1DzmR3k1weRT209USkgtCHkM3ugngXj7vLgz7Zb1DwG_pJOpM_d1osFCEQSHbDZndn9zezM78B2ImEa4xIlOMlFhUU7YeOSn3t-K6nuE60CFOyd3TOguNL-e3Kv6q8KikWpuSHGBvcSDKK9ZoEvK_t3oQ0tNdLmmEU-u9gRgYIJAgQXUyoo1pecdJJ9DCO5J6siWddvlfXfLkVTfDlc5RabDPtBfhZN7D0Lrlp5iPVTO__4m582x8swnyFPtl-OV2WYMpkyzDXGVO3DpdhqZL2IftSUVJ_XYFf5wk5ceEYPD38zjOK5uqxLC9Pe7qsTEPN8Ckj0wN5tnbvWN8McD9TRjOOtQ4ZsYwroiFmhat7EVDx9PBIKVpystmxKrkNI9swIx6LwTV-sZuQVvABLttHPw6OnSp5g5MigvAdZQUXCtUjq6VQ1ve0p6XWIbepDFrWFcJKqShwN4oShZogYgdhUWEz2kgX36_CdHabmTVgllvXRl7LhkQFhCtOYIKErqiljbW2AZ_rcYzTitmcEmx045KTmcfY0zH1dAO2xyX7JZvHK2U266kQV_I8jHkgEOpJP3QbsFuM6T_rx53OPt3X_7fgJ5g9P2zHpydn3zfgPafwCop5dDdhejTIzUcEPSO1VczuP1stA78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter%E2%80%90uniform+numerical+method+for+singularly+perturbed+2%E2%80%90D+parabolic+convection%E2%80%93diffusion+problem+with+interior+layers&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Majumdar%2C+Anirban&rft.au=Natesan%2C+Srinivasan&rft.date=2022-03-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=45&rft.issue=5&rft.spage=3039&rft.epage=3057&rft_id=info:doi/10.1002%2Fmma.7975&rft.externalDBID=10.1002%252Fmma.7975&rft.externalDocID=MMA7975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon