Parameter‐uniform numerical method for singularly perturbed 2‐D parabolic convection–diffusion problem with interior layers
In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the disco...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 45; no. 5; pp. 3039 - 3057 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
30.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.7975 |
Cover
Abstract | In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the discontinuity of convection coefficients and source term. To capture the interior layers, the piecewise‐uniform mesh is used in the spatial directions and the uniform mesh is considered in temporal direction. To discretize the temporal and spatial derivatives, we apply an alternating direction method and upwind method, respectively. Theoretically, we prove that the proposed method is ε‐uniformly convergent. Numerical results are presented to demonstrate the theoretical estimates. |
---|---|
AbstractList | In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the discontinuity of convection coefficients and source term. To capture the interior layers, the piecewise‐uniform mesh is used in the spatial directions and the uniform mesh is considered in temporal direction. To discretize the temporal and spatial derivatives, we apply an alternating direction method and upwind method, respectively. Theoretically, we prove that the proposed method is ε‐uniformly convergent. Numerical results are presented to demonstrate the theoretical estimates. In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with non‐smooth convection coefficients and source term. The solution of this kind of problem typically exhibits interior layers due to the discontinuity of convection coefficients and source term. To capture the interior layers, the piecewise‐uniform mesh is used in the spatial directions and the uniform mesh is considered in temporal direction. To discretize the temporal and spatial derivatives, we apply an alternating direction method and upwind method, respectively. Theoretically, we prove that the proposed method is ε ‐uniformly convergent. Numerical results are presented to demonstrate the theoretical estimates. |
Author | Majumdar, Anirban Natesan, Srinivasan |
Author_xml | – sequence: 1 givenname: Anirban orcidid: 0000-0002-8874-4930 surname: Majumdar fullname: Majumdar, Anirban organization: Indian Institute of Information Technology, Design and Manufacturing – sequence: 2 givenname: Srinivasan orcidid: 0000-0001-7527-1989 surname: Natesan fullname: Natesan, Srinivasan email: natesan@iitg.ac.in organization: Indian Institute of Technology Guwahati |
BookMark | eNp1kE1OwzAQhS1UJEpB4giW2LBJ8V-TZlmVX6kVLGAdObFNXTl2sROq7MoNkLhhT4JLWSFYeeT53puZdwx61lkJwBlGQ4wQuaxrPszybHQA-hjleYJZlvZAH-EMJYxgdgSOQ1gihMYYkz54f-Se17KRfrv5aK1WztfQtrX0uuIGxs7CCRh_YdD2pTXcmw6upG9aX0oBSVRdwVX0KJ3RFaycfZNVo53dbj6FVqoNsYYr70oja7jWzQJqG6fp6Gh4J304AYeKmyBPf94BeL65fpreJbOH2_vpZJZUJKejpFSU0DJFqRKMlmqEBRZMiIyoiqVjhShVjJUknpznvEQkJXRMFcJMCslQ7A_A-d43LvPaytAUS9d6G0cWJKUpztgo21EXe6ryLgQvVbHyuua-KzAqdgEXMeBiF3BEh7_QSjd8d3vjuTZ_CZK9YK2N7P41LubzyTf_BdX_k6A |
CitedBy_id | crossref_primary_10_1002_mma_10070 crossref_primary_10_3390_math10183310 crossref_primary_10_1007_s13226_024_00704_2 |
Cites_doi | 10.1142/2933 10.1016/j.cam.2003.09.033 10.1016/0024-3795(75)90112-3 10.1080/00207160.2018.1485896 10.1016/j.amc.2017.06.010 10.1016/j.amc.2004.04.007 10.1201/9781482285727 10.1007/s11075-011-9449-6 10.3846/13926292.2015.1091041 10.1016/j.cam.2003.09.025 10.1016/j.camwa.2017.12.013 10.1023/B:SUPE.0000009322.23950.53 10.1007/s00607-003-0009-3 10.1093/imanum/20.2.263 10.1016/S0898-1221(03)80031-7 10.1007/BF02896460 10.1007/s00211-007-0083-0 10.1016/j.cam.2005.04.042 10.1016/j.mcm.2005.01.025 10.1504/IJMMNO.2020.104325 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.7975 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 3057 |
ExternalDocumentID | 10_1002_mma_7975 MMA7975 |
Genre | article |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c2935-bf323b606fd43bf51d1d4dd72fc468f033f44b209999ab0262383f014ede40f03 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Fri Jul 25 12:13:11 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Tue Jul 01 00:19:16 EDT 2025 Wed Jan 22 16:25:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-bf323b606fd43bf51d1d4dd72fc468f033f44b209999ab0262383f014ede40f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8874-4930 0000-0001-7527-1989 |
PQID | 2636174570 |
PQPubID | 1016386 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2636174570 crossref_primary_10_1002_mma_7975 crossref_citationtrail_10_1002_mma_7975 wiley_primary_10_1002_mma_7975_MMA7975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 March 2022 |
PublicationDateYYYYMMDD | 2022-03-30 |
PublicationDate_xml | – month: 03 year: 2022 text: 30 March 2022 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 166 2007; 107 2004; 40 2005; 163 2019; 96 2000 2004; 27 2006; 22 2005; 169 2015; 20 2000; 20 2009 2008 1996 2006; 192 1975; 11 2011; 58 2020; 10 2003; 71 2018; 75 2017; 313 2003; 45 e_1_2_10_23_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_24_1 e_1_2_10_10_1 e_1_2_10_21_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 Roos HG (e_1_2_10_6_1) 2008 Cen Z (e_1_2_10_12_1) 2005; 169 e_1_2_10_2_1 Shishkin G (e_1_2_10_7_1) 2009 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_15_1 |
References_xml | – volume: 96 start-page: 1313 year: 2019 end-page: 1334 article-title: An ‐uniform hybrid scheme for a singularly perturbed degenerate convection‐diffusion problem publication-title: Int J Comput Math – volume: 45 start-page: 469 year: 2003 end-page: 479 article-title: A numerical algorithm for singular perturbation problems exhibiting weak boundary layers publication-title: Comput Math Appl – volume: 20 start-page: 641 year: 2015 end-page: 657 article-title: Schemes convergent ‐uniformly for parabolic singularly perturbed problems with a degenerating convective term and a discontinuous source publication-title: Math Model Anal – year: 2009 – volume: 11 start-page: 3 year: 1975 end-page: 5 article-title: A lower bound for the smallest singular value of a matrix publication-title: Linear Algebra and Appl – volume: 40 start-page: 1375 year: 2004 end-page: 1392 article-title: Global maximum norm parameter‐uniform numerical method for a singularly perturbed convection‐diffusion problem with discontinuous convection coefficient publication-title: Math Comput Modelling – volume: 22 start-page: 49 year: 2006 end-page: 65 article-title: Fitted mesh method for singularly perturbed reaction‐convection‐diffusion problems with boundary and interior layers publication-title: J Appl Math Computing – volume: 192 start-page: 132 year: 2006 end-page: 141 article-title: An efficient numerical method for singular perturbation problems publication-title: J Comput Appl Math – volume: 313 start-page: 453 year: 2017 end-page: 473 article-title: Alternating direction numerical scheme for singularly perturbed 2d degenerate parabolic convection‐diffusion problems publication-title: Appl Math Comput – volume: 71 start-page: 153 year: 2003 end-page: 173 article-title: Numerical solution of a reaction‐diffusion elliptic interface problem with strong anisotropy publication-title: Computing – year: 2008 – volume: 166 start-page: 233 year: 2004 end-page: 245 article-title: Singularly perturbed parabolic problems with non‐smooth data publication-title: J Comput Appl Math – volume: 27 start-page: 195 year: 2004 end-page: 206 article-title: A parallel boundary value technique for singularly perturbed two‐point boundary value problems publication-title: J Supercomputs – volume: 169 start-page: 689 year: 2005 end-page: 699 article-title: A hybrid difference scheme for a singularly perturbed convection‐diffusion problem with discontinuous convection coefficient publication-title: Appl Math Comput – volume: 58 start-page: 103 year: 2011 end-page: 141 article-title: ‐uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers publication-title: Numer Algorithms – year: 1996 – volume: 20 start-page: 263 year: 2000 end-page: 280 article-title: An alternating direction scheme on a nonuniform mesh for reaction‐diffusion parabolic problems publication-title: IMA J Numer Anal – year: 2000 – volume: 163 start-page: 645 year: 2005 end-page: 665 article-title: Uniformly convergent finite volume difference scheme for 2d convection‐dominated problem with discontinuous coefficients publication-title: Appl Math Comput – volume: 107 start-page: 1 year: 2007 end-page: 25 article-title: A high order uniformly convergent alternating direction scheme for time dependent reaction‐diffusion singularly perturbed problems publication-title: Numer Math – volume: 10 start-page: 68 year: 2020 end-page: 101 article-title: A higher‐order hybrid numerical scheme for singularly perturbed convection‐diffusion problem with boundary and weak interior layers publication-title: Int J Math Modell Numer Optimisation – volume: 75 start-page: 2387 year: 2018 end-page: 2403 article-title: Higher‐order convergence with fractional‐step method for singularly perturbed 2d parabolic convection‐diffusion problems on shishkin mesh publication-title: Comput Math Appl – volume: 166 start-page: 133 year: 2004 end-page: 151 article-title: Singularly perturbed convection‐diffusion problems with boundary and weak interior layers publication-title: Comput Appl Math – ident: e_1_2_10_4_1 doi: 10.1142/2933 – volume-title: Difference methods for singular perturbation problems year: 2009 ident: e_1_2_10_7_1 – ident: e_1_2_10_10_1 doi: 10.1016/j.cam.2003.09.033 – ident: e_1_2_10_24_1 doi: 10.1016/0024-3795(75)90112-3 – ident: e_1_2_10_3_1 doi: 10.1080/00207160.2018.1485896 – ident: e_1_2_10_23_1 doi: 10.1016/j.amc.2017.06.010 – ident: e_1_2_10_18_1 doi: 10.1016/j.amc.2004.04.007 – ident: e_1_2_10_22_1 doi: 10.1201/9781482285727 – ident: e_1_2_10_16_1 doi: 10.1007/s11075-011-9449-6 – ident: e_1_2_10_15_1 doi: 10.3846/13926292.2015.1091041 – ident: e_1_2_10_14_1 doi: 10.1016/j.cam.2003.09.025 – ident: e_1_2_10_2_1 doi: 10.1016/j.camwa.2017.12.013 – ident: e_1_2_10_9_1 doi: 10.1023/B:SUPE.0000009322.23950.53 – ident: e_1_2_10_19_1 doi: 10.1007/s00607-003-0009-3 – ident: e_1_2_10_20_1 doi: 10.1093/imanum/20.2.263 – ident: e_1_2_10_5_1 doi: 10.1016/S0898-1221(03)80031-7 – volume-title: Robust numerical methods for singularly perturbed differential equations year: 2008 ident: e_1_2_10_6_1 – ident: e_1_2_10_13_1 doi: 10.1007/BF02896460 – ident: e_1_2_10_21_1 doi: 10.1007/s00211-007-0083-0 – ident: e_1_2_10_8_1 doi: 10.1016/j.cam.2005.04.042 – ident: e_1_2_10_11_1 doi: 10.1016/j.mcm.2005.01.025 – volume: 169 start-page: 689 year: 2005 ident: e_1_2_10_12_1 article-title: A hybrid difference scheme for a singularly perturbed convection‐diffusion problem with discontinuous convection coefficient publication-title: Appl Math Comput – ident: e_1_2_10_17_1 doi: 10.1504/IJMMNO.2020.104325 |
SSID | ssj0008112 |
Score | 2.2943485 |
Snippet | In this article, we devise a uniformly convergent numerical scheme for solving singularly perturbed two‐dimensional parabolic convection–diffusion problem with... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3039 |
SubjectTerms | Convection Convergence Diffusion layers finite difference scheme interior layer Numerical methods piecewise‐uniform meshes Singular perturbation methods singularly perturbed 2‐D parabolic convection–diffusion problem uniform convergence |
Title | Parameter‐uniform numerical method for singularly perturbed 2‐D parabolic convection–diffusion problem with interior layers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7975 https://www.proquest.com/docview/2636174570 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFICD7Ekf1E3FeSOCeHno1iZpuz4O5xjCRMTBwIeSNAmIW5VtfdCn-Q8E_-F-iTm9bCoKIhQKbVLaXJpzTs75DkJHAbWVolxYDtdGQZGub4nIlZZrO4JILqkfgb2je-V1euyy7_Zzr0qIhcn4EHODG8yM9H8NE5yLcX0BDR0Oec0PfIgvd6gH2PzWzYIc1XDSjU6gw1iMOKzgztqkXlT8uhItxMvPQmq6yrTX0F3xfplzyUMtmYha9PIN3fi_D1hHq7nwiZvZaCmjJRVX0Ep3Tm4dV1A5n-xjfJoTqc820Os1Bx8u0wWz6VsSQzDXEMdJttkzwFkWamyuYrA8gGPr4Bk_qZFZzoSSmJhaLQyQcQEUYpx6uqfxFLPpO2RoScBkh_PcNhhMwxgwFqN788QBB6VgE_XaF7fnHSvP3WBFRoBwLaEpocJoR1oyKrTrSEcyKX2iI-Y1tE2pZkxA3G4QcGEUQSM6UG30NSUVs839LVSKH2O1jbAm2taB09A-kIDMD8dTHocjaEilta6ik6IfwygHm0N-jUGYIZlJaFo6hJauosN5yacM5vFDmb1iKIT5dB6HxKNG0mOub1fRcdqnv9YPu90mnHf-WnAXLRMIqYA4R3sPlSajRO0bQWciDtIh_QFeqwDx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7S5NDm0DzakG1eKpSmPXjXlmR7TU4hD7ZtHEpIIIeCsSwJQnadsLs-tKfkHwTyD_NLMuPHbhNaKAWDwZaMLGmkb0Yz3wB8iIRrjEiV46UWFRTth47KfO34rqe4TrUIM7J3xMdB70x-PffPZ2CniYWp-CEmBjeSjHK9JgEng3Rnyho6GKTtMAr9FzAnEWeQ5rV_MuWO6nrlUSfxwziSe7JhnnV5p6n5dC-aAszfYWq5zxwuwI-mhZV7yWW7GKt29usZeeN__sIivK7xJ9utJswSzJh8GebjCXnraBmWankfsU81KfXnN3D7PSU3LhyFh5u7Iqd4rgHLi-q8p8-qRNQMnzIyPpBva_8nuzZD3NGU0YxjrX1GPOOKiIhZ6exehlQ83NxTkpaCrHasTm_DyDrMiMlieIFf7KekF7yFs8OD072eU6dvcDLEEL6jrOBCoYJktRTK-p72tNQ65DaTQde6QlgpFYXuRlGqUBdE9CAsqmxGG-ni-xWYza9yswrMcuvayOvakMiAcM0JTJDSFXW1sda2YLsZyCSruc0pxUY_qViZeYI9nVBPt-D9pOR1xefxhzLrzVxIaokeJTwQCPakH7ot-FgO6l_rJ3G8S_d3_1pwC172TuOj5OjL8bc1eMUpwoLCHt11mB0PC7OBuGesNsv5_QhV2AUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB-sgtQH_1Y8tXYFse1DzmR3k1weRT209USkgtCHkM3ugngXj7vLgz7Zb1DwG_pJOpM_d1osFCEQSHbDZndn9zezM78B2ImEa4xIlOMlFhUU7YeOSn3t-K6nuE60CFOyd3TOguNL-e3Kv6q8KikWpuSHGBvcSDKK9ZoEvK_t3oQ0tNdLmmEU-u9gRgYIJAgQXUyoo1pecdJJ9DCO5J6siWddvlfXfLkVTfDlc5RabDPtBfhZN7D0Lrlp5iPVTO__4m582x8swnyFPtl-OV2WYMpkyzDXGVO3DpdhqZL2IftSUVJ_XYFf5wk5ceEYPD38zjOK5uqxLC9Pe7qsTEPN8Ckj0wN5tnbvWN8McD9TRjOOtQ4ZsYwroiFmhat7EVDx9PBIKVpystmxKrkNI9swIx6LwTV-sZuQVvABLttHPw6OnSp5g5MigvAdZQUXCtUjq6VQ1ve0p6XWIbepDFrWFcJKqShwN4oShZogYgdhUWEz2kgX36_CdHabmTVgllvXRl7LhkQFhCtOYIKErqiljbW2AZ_rcYzTitmcEmx045KTmcfY0zH1dAO2xyX7JZvHK2U266kQV_I8jHkgEOpJP3QbsFuM6T_rx53OPt3X_7fgJ5g9P2zHpydn3zfgPafwCop5dDdhejTIzUcEPSO1VczuP1stA78 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter%E2%80%90uniform+numerical+method+for+singularly+perturbed+2%E2%80%90D+parabolic+convection%E2%80%93diffusion+problem+with+interior+layers&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Majumdar%2C+Anirban&rft.au=Natesan%2C+Srinivasan&rft.date=2022-03-30&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=45&rft.issue=5&rft.spage=3039&rft.epage=3057&rft_id=info:doi/10.1002%2Fmma.7975&rft.externalDBID=10.1002%252Fmma.7975&rft.externalDocID=MMA7975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |