Topology optimization of degradable composite structures with time‐changeable stiffness
For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable structures that take into account the time effect is of importance. To this end, this study introduces a novel topological optimization approac...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 122; no. 17; pp. 4751 - 4773 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.09.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0029-5981 1097-0207 |
DOI | 10.1002/nme.6745 |
Cover
Loading…
Abstract | For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable structures that take into account the time effect is of importance. To this end, this study introduces a novel topological optimization approach for the composite structural layout design considering material degradation to realize structures with changeable stiffness over time. In this approach, two sets of variables are used: a density field that defines the material layout, and a time field that determines the effect of material degradation on mechanical performance. The continuous degradation update formula is proposed by integrating the Heaviside projected function and Kreisselmeier–Steinhauser function to guarantee its derivability. The objective is to minimize the summed compliance in some specified time steps subject to the constraints of volume fraction. The sensitivity of the aforementioned objective with respect to the design variable is deduced by considering the material degradation over time. The proposed design formulation is general and is demonstrated with several design analyses, considering different fix and degradable interface boundary conditions. Moreover, the results are compared with the results of not considering material degradation and demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable structures that take into account the time effect is of importance. To this end, this study introduces a novel topological optimization approach for the composite structural layout design considering material degradation to realize structures with changeable stiffness over time. In this approach, two sets of variables are used: a density field that defines the material layout, and a time field that determines the effect of material degradation on mechanical performance. The continuous degradation update formula is proposed by integrating the Heaviside projected function and Kreisselmeier–Steinhauser function to guarantee its derivability. The objective is to minimize the summed compliance in some specified time steps subject to the constraints of volume fraction. The sensitivity of the aforementioned objective with respect to the design variable is deduced by considering the material degradation over time. The proposed design formulation is general and is demonstrated with several design analyses, considering different fix and degradable interface boundary conditions. Moreover, the results are compared with the results of not considering material degradation and demonstrate the effectiveness of the proposed method. |
Author | Guo, Honghu Xu, Shipeng Takezawa, Akihiro Zhang, Heng Ding, Xiaohong Li, Hao |
Author_xml | – sequence: 1 givenname: Heng orcidid: 0000-0001-5039-6865 surname: Zhang fullname: Zhang, Heng organization: Waseda University – sequence: 2 givenname: Akihiro orcidid: 0000-0001-8197-4306 surname: Takezawa fullname: Takezawa, Akihiro email: atakezawa@waseda.jp organization: Waseda University – sequence: 3 givenname: Xiaohong surname: Ding fullname: Ding, Xiaohong organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Shipeng surname: Xu fullname: Xu, Shipeng organization: University of Shanghai for Science and Technology – sequence: 5 givenname: Hao orcidid: 0000-0003-4316-1253 surname: Li fullname: Li, Hao organization: Kyoto University – sequence: 6 givenname: Honghu surname: Guo fullname: Guo, Honghu organization: Waseda University |
BookMark | eNp10L9OwzAQBnALFYlSkHiESCwsKb4kTuIRVeWPVGApA5PlOJfWVRIH21VVJh6BZ-RJSFsmBJOH-3138ndKBq1pkZALoGOgNLpuGxynWcKOyBAoz0Ia0WxAhv2Ih4zncEJOnVtRCsBoPCSvc9OZ2iy2gem8bvS79Nq0gamCEhdWlrKoMVCm6YzTHgPn7Vr5tUUXbLRfBn0Evz4-1VK2C9xb53VVtejcGTmuZO3w_OcdkZfb6XxyH86e7x4mN7NQRTxmYQF5LHPEOK_SNFelTDKZAANecmBYSqkUL6FgUEZFkcYAHHjEuEojqXiV0HhELg97O2ve1ui8WJm1bfuTImKMxxnNk7RX44NS1jhnsRJK-_1fvZW6FkDFrj7R1yd29fWBq1-BzupG2u1fNDzQja5x-68TT4_Tvf8Gi8aDPA |
CitedBy_id | crossref_primary_10_1016_j_cma_2022_115729 crossref_primary_10_1016_j_compstruct_2022_115593 crossref_primary_10_1016_j_medengphy_2024_104122 crossref_primary_10_1016_j_advengsoft_2023_103457 |
Cites_doi | 10.1016/j.cma.2019.112702 10.1007/s001580050176 10.1680/jemmr.18.00048 10.1007/s00158-015-1370-5 10.1016/j.cma.2020.112886 10.1007/s00158-019-02420-6 10.1016/j.cma.2014.11.012 10.1016/j.actbio.2010.02.028 10.1016/j.mechmachtheory.2019.103622 10.1016/j.compstruct.2014.07.052 10.1155/2015/729076 10.1016/j.mser.2014.01.001 10.1016/j.actbio.2013.12.059 10.1002/nme.116 10.1002/nme.1620240207 10.1007/s10534-019-00170-y 10.1002/nme.5828 10.1007/978-3-662-05086-6 10.1016/j.actbio.2009.10.006 10.1016/j.msec.2009.03.003 10.1016/j.biomaterials.2013.07.010 10.1007/s00158-016-1495-1 10.1007/s004190050248 10.1016/j.cma.2010.05.013 10.1002/nme.6616 10.1016/j.cma.2008.10.008 10.1002/advs.201902443 10.1016/0168-874X(95)00043-S 10.1016/j.finel.2017.12.003 10.1016/j.finel.2016.09.006 10.1016/j.actbio.2011.05.032 10.1007/s00158-010-0594-7 10.1016/j.compstruct.2019.01.059 10.1016/j.applthermaleng.2016.10.134 10.1016/S0045-7825(02)00559-5 10.1016/0045-7949(95)00235-9 10.1016/j.finel.2007.06.006 10.1016/j.mattod.2018.05.018 10.1016/j.jcp.2003.09.032 10.1007/s00158-013-0978-6 10.1016/j.biomaterials.2016.10.017 10.1007/978-3-662-03115-5 10.1016/j.microc.2016.02.005 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.6745 |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 4773 |
ExternalDocumentID | 10_1002_nme_6745 NME6745 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2020M681346 – fundername: National Natural Science Foundation of China funderid: 51975380, 52005377 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2935-b183a8ee38f668cda47a41519d915edaacc9d1b51d2bb6311919259c62ac9f403 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 25 12:07:06 EDT 2025 Tue Jul 01 04:32:08 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Wed Jan 22 16:29:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-b183a8ee38f668cda47a41519d915edaacc9d1b51d2bb6311919259c62ac9f403 |
Notes | Funding information China Postdoctoral Science Foundation, 2020M681346; National Natural Science Foundation of China, 51975380, 52005377 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8197-4306 0000-0003-4316-1253 0000-0001-5039-6865 |
PQID | 2559370846 |
PQPubID | 996376 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2559370846 crossref_citationtrail_10_1002_nme_6745 crossref_primary_10_1002_nme_6745 wiley_primary_10_1002_nme_6745_NME6745 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2021 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 15 September 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2014; 118 2019; 8 2018; 141 2001; 50 2013; 48 2020; 363 2019; 32 2020; 143 2020; 61 1999; 69 2015; 285 2009; 198 2016; 53 1995 2003; 192 2016; 127 2004 2021; 122 1996; 58 2017; 112 2011; 7 2009; 29 2001; 21 1987; 24 2020; 7 2013; 34 2017; 55 2019; 23 2004; 194 2018; 115 2015; 2015 2010; 199 2019; 212 2020; 359 2011; 43 2007; 43 2017; 123 1996; 21 2010; 6 2014; 77 2014; 10 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 7 start-page: 1902443 year: 2020 article-title: Biodegradable magnesium‐based implants in orthopedics—a general review and perspectives publication-title: Adv Sci – volume: 21 start-page: 239 year: 1996 end-page: 251 article-title: Evolutionary structural optimization for problems with stiffness constraints publication-title: Finite Elem Anal Des – volume: 77 start-page: 1 year: 2014 end-page: 34 article-title: Biodegradable metals publication-title: Mater Sci Eng R Rep – volume: 141 start-page: 154 year: 2018 end-page: 165 article-title: Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures publication-title: Finite Elem Anal Des – volume: 199 start-page: 2876 year: 2010 end-page: 2891 article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy publication-title: Comput Methods Appl Mech Eng – volume: 143 start-page: 103622 year: 2020 article-title: Design of compliant mechanisms using continuum topology optimization: a review publication-title: Mech Mach Theory – volume: 53 start-page: 1157 year: 2016 end-page: 1177 article-title: Topology optimization: a review for structural designs under vibration problems publication-title: Struct Multidiscip Optim – volume: 32 start-page: 185 year: 2019 end-page: 193 article-title: Biodegradable magnesium alloys as temporary orthopaedic implants: a review publication-title: Biometals – volume: 198 start-page: 705 year: 2009 end-page: 715 article-title: Space–time topology optimization for one‐dimensional wave propagation publication-title: Comput Methods Appl Mech Eng – volume: 194 start-page: 363 year: 2004 end-page: 393 article-title: Structural optimization using sensitivity analysis and a level‐set method publication-title: J Comput Phys – volume: 69 start-page: 635 year: 1999 end-page: 654 article-title: Material interpolation schemes in topology optimization publication-title: Arch Appl Mech – volume: 21 start-page: 120 year: 2001 end-page: 127 article-title: A 99 line topology optimization code written in matlab publication-title: Struct Multidiscip Optim – volume: 359 start-page: 112702 year: 2020 article-title: Time‐dependent topology optimization of bone plates considering bone remodeling publication-title: Comput Methods Appl Mech Eng – volume: 34 start-page: 8049 year: 2013 end-page: 8060 article-title: Optimizing the design of a bioabsorbable metal stent using computer simulation methods publication-title: Biomaterials – volume: 6 start-page: 1693 year: 2010 end-page: 1697 article-title: Developments in metallic biodegradable stents publication-title: Acta Biomater – volume: 192 start-page: 227 year: 2003 end-page: 246 article-title: A level set method for structural topology optimization publication-title: Comput Methods Appl Mech Eng – volume: 23 start-page: 57 year: 2019 end-page: 71 article-title: Current status and outlook on the clinical translation of biodegradable metals publication-title: Mater Today – volume: 10 start-page: 2313 year: 2014 end-page: 2322 article-title: A physical corrosion model for bioabsorbable metal stents publication-title: Acta Biomater – volume: 212 start-page: 609 year: 2019 end-page: 624 article-title: Multi‐scale structural topology optimization of free‐layer damping structures with damping composite materials publication-title: Compos Struct – volume: 118 start-page: 328 year: 2014 end-page: 341 article-title: Application of composites to orthopedic prostheses for effective bone healing: a review publication-title: Compos Struct – volume: 112 start-page: 287 year: 2017 end-page: 302 article-title: Current status on clinical applications of magnesium‐based orthopaedic implants: a review from clinical translational perspective publication-title: Biomaterials – volume: 363 start-page: 112886 year: 2020 article-title: New hybrid reliability‐based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties publication-title: Comput Methods Appl Mech Eng – volume: 7 start-page: 3523 year: 2011 end-page: 3533 article-title: A corrosion model for bioabsorbable metallic stents publication-title: Acta Biomater – volume: 43 start-page: 1 year: 2011 end-page: 16 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim – volume: 24 start-page: 359 year: 1987 end-page: 373 article-title: The method of moving asymptotes—a new method for structural optimization publication-title: Int J Numer Methods Eng – year: 2004 – volume: 58 start-page: 1067 year: 1996 end-page: 1073 article-title: Evolutionary structural optimization for dynamic problems publication-title: Comput Struct – volume: 6 start-page: 1680 year: 2010 end-page: 1692 article-title: The history of biodegradable magnesium implants: a review publication-title: Acta Biomater – volume: 2015 start-page: 1 year: 2015 end-page: 21 article-title: Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering publication-title: Biomed Res Int – year: 1995 – volume: 115 start-page: 849 year: 2018 end-page: 871 article-title: Heaviside projection–based aggregation in stress‐constrained topology optimization publication-title: Int J Numer Methods Eng – volume: 123 start-page: 9 year: 2017 end-page: 18 article-title: Multi‐material topology optimization of viscoelastically damped structures under time‐dependent loading publication-title: Finite Elem Anal Des – volume: 50 start-page: 2143 year: 2001 end-page: 2158 article-title: Filters in topology optimization publication-title: Int J Numer Methods Eng – volume: 122 start-page: 2095 year: 2021 end-page: 2111 article-title: Robust topology optimization methodology for continuum structures under probabilistic and fuzzy uncertainties publication-title: Int J Numer Methods Eng – volume: 48 start-page: 1031 year: 2013 end-page: 1055 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim – volume: 55 start-page: 257 year: 2017 end-page: 277 article-title: An evaluation of constraint aggregation strategies for wing box mass minimization publication-title: Struct Multidiscip Optim – volume: 127 start-page: 52 year: 2016 end-page: 61 article-title: Topology optimization of microfluidics — a review publication-title: Microchem J – volume: 29 start-page: 1950 year: 2009 end-page: 1958 article-title: A cellular automaton simulation of the degradation of porous polylactide scaffold: I. effect of porosity publication-title: Mater Sci Eng C – volume: 8 start-page: 305 year: 2019 end-page: 319 article-title: Emerging magnesium‐based biomaterials for orthopedic implantation publication-title: Emerg Mater Res – volume: 112 start-page: 841 year: 2017 end-page: 854 article-title: A review about the engineering design of optimal heat transfer systems using topology optimization publication-title: Appl Therm Eng – volume: 285 start-page: 166 year: 2015 end-page: 187 article-title: Topology optimization of viscoelastic structures using a time‐dependent adjoint method publication-title: Comput Methods Appl Mech Eng – volume: 43 start-page: 1039 year: 2007 end-page: 1049 article-title: Convergent and mesh‐independent solutions for the bi‐directional evolutionary structural optimization method publication-title: Finite Elem Anal Des – volume: 61 start-page: 1 year: 2020 end-page: 18 article-title: Space‐time topology optimization for additive manufacturing publication-title: Struct Multidiscip Optim – ident: e_1_2_7_28_1 doi: 10.1016/j.cma.2019.112702 – ident: e_1_2_7_36_1 doi: 10.1007/s001580050176 – ident: e_1_2_7_8_1 doi: 10.1680/jemmr.18.00048 – ident: e_1_2_7_20_1 doi: 10.1007/s00158-015-1370-5 – ident: e_1_2_7_24_1 doi: 10.1016/j.cma.2020.112886 – ident: e_1_2_7_27_1 doi: 10.1007/s00158-019-02420-6 – ident: e_1_2_7_26_1 doi: 10.1016/j.cma.2014.11.012 – ident: e_1_2_7_4_1 doi: 10.1016/j.actbio.2010.02.028 – ident: e_1_2_7_21_1 doi: 10.1016/j.mechmachtheory.2019.103622 – ident: e_1_2_7_2_1 doi: 10.1016/j.compstruct.2014.07.052 – ident: e_1_2_7_6_1 doi: 10.1155/2015/729076 – ident: e_1_2_7_5_1 doi: 10.1016/j.mser.2014.01.001 – ident: e_1_2_7_29_1 doi: 10.1016/j.actbio.2013.12.059 – ident: e_1_2_7_42_1 doi: 10.1002/nme.116 – ident: e_1_2_7_44_1 doi: 10.1002/nme.1620240207 – ident: e_1_2_7_9_1 doi: 10.1007/s10534-019-00170-y – ident: e_1_2_7_38_1 doi: 10.1002/nme.5828 – ident: e_1_2_7_41_1 doi: 10.1007/978-3-662-05086-6 – ident: e_1_2_7_3_1 doi: 10.1016/j.actbio.2009.10.006 – ident: e_1_2_7_30_1 doi: 10.1016/j.msec.2009.03.003 – ident: e_1_2_7_32_1 doi: 10.1016/j.biomaterials.2013.07.010 – ident: e_1_2_7_40_1 doi: 10.1007/s00158-016-1495-1 – ident: e_1_2_7_12_1 doi: 10.1007/s004190050248 – ident: e_1_2_7_16_1 doi: 10.1016/j.cma.2010.05.013 – ident: e_1_2_7_25_1 doi: 10.1002/nme.6616 – ident: e_1_2_7_33_1 doi: 10.1016/j.cma.2008.10.008 – ident: e_1_2_7_10_1 doi: 10.1002/advs.201902443 – ident: e_1_2_7_18_1 doi: 10.1016/0168-874X(95)00043-S – ident: e_1_2_7_35_1 doi: 10.1016/j.finel.2017.12.003 – ident: e_1_2_7_34_1 doi: 10.1016/j.finel.2016.09.006 – ident: e_1_2_7_31_1 doi: 10.1016/j.actbio.2011.05.032 – ident: e_1_2_7_43_1 doi: 10.1007/s00158-010-0594-7 – ident: e_1_2_7_39_1 doi: 10.1016/j.compstruct.2019.01.059 – ident: e_1_2_7_23_1 doi: 10.1016/j.applthermaleng.2016.10.134 – ident: e_1_2_7_14_1 doi: 10.1016/S0045-7825(02)00559-5 – ident: e_1_2_7_17_1 doi: 10.1016/0045-7949(95)00235-9 – ident: e_1_2_7_19_1 doi: 10.1016/j.finel.2007.06.006 – ident: e_1_2_7_37_1 doi: 10.1016/j.mattod.2018.05.018 – ident: e_1_2_7_15_1 doi: 10.1016/j.jcp.2003.09.032 – ident: e_1_2_7_13_1 doi: 10.1007/s00158-013-0978-6 – ident: e_1_2_7_7_1 doi: 10.1016/j.biomaterials.2016.10.017 – ident: e_1_2_7_11_1 doi: 10.1007/978-3-662-03115-5 – ident: e_1_2_7_22_1 doi: 10.1016/j.microc.2016.02.005 |
SSID | ssj0011503 |
Score | 2.3739195 |
Snippet | For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4751 |
SubjectTerms | biodegradable materials Boundary conditions Composite structures Healing Layouts Mechanical properties Performance degradation Stiffness time‐changeable stiffness Topology optimization |
Title | Topology optimization of degradable composite structures with time‐changeable stiffness |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6745 https://www.proquest.com/docview/2559370846 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7Ekx6sVsVqlRVET2nzs9nuHkVbitAepIWKh7B_uWhbIe1BTz6Cz-iTuJNNYhUF8RQCs5DM7Mx-s8x8g9AZszZWkWEe0Yx7RHLmCRIqTzJFUxUbHeYMfIMh7Y_JzSSeFFWV0Avj-CGqCzfwjDxeg4MLmbVXSEOnpkU7BPrLg4gCbf71bcUcBTgnKqs7Ys6CknfWD9vlwq8n0Se8XAWp-SnTq6H78vtccclDa7mQLfXyjbrxfz-wjbYK8Ikv3W7ZQWtmVke1Aojiws2zOtpcYSm0b4OK2jXbRXcjN1bhGc9ttJkWbZx4nmINvBMaWrEwFKpDNZjBjp92aZN6DFe-GGbZv7--uX7jXNbGmDSFgLuHxr3u6KrvFfMZPGVBQuxJGw4EMyZiKaVMaUE6wuKBgGseWCsLoRTXgYwDHUpJI6CS4zbbUjQUiqfEj_bR-mw-MwcIc-kzJQOtbTZFiPGZsThKpiZOaSB4xBvoorRVogrycpih8Zg42uUwsdpMQJsNdFpJPjnCjh9kmqW5k8JlswRyq6jjWzzWQOe53X5dnwwHXXge_lXwCG2EUAsDoyfiJlq3qjfHFsws5Em-bT8AGrnz-Q |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC00HtSDuxjXFkRPk8zSM-nGk7gQl-QgERSEYXqZi5oIMQc9-Ql-o19i1SwxioJ4GgaqYaarq_pVUfUKYEegjnVghcONkA5XUjgJ97WjhI5SHVrjZwx8rXbUvOJn1-H1GOyXvTA5P8Qw4UaWkflrMnBKSNdHWEMfbC1q8HAcJjjiDIq8ji6H3FGEdIKyviOUwiuZZ12_Xq78ehd9AsxRmJrdMyezcFt-YV5eclcbPKmafvlG3vjPX5iDmQJ_soP8wMzDmO0uwGyBRVlh6f0FmB4hKsS31pDdtb8IN518ssIz66HDeSg6OVkvZYaoJwx1YzGqVaeCMMtyitoBxvWMsr6Mxtm_v77lLceZLLqZNCWfuwRXJ8edw6ZTjGhwNOKE0FHoERJhbSDSKBLaJLyRICTwpJEeKjpJtJbGU6FnfKWigNjkJAZcOvITLVPuBstQ6fa6dgWYVK7QyjMGAyrOrSssQimV2jCNvEQGsgp7pbJiXfCX0xiN-zhnXvZj3M2YdrMK20PJx5yz4weZ9VLfcWG1_ZjCq6DhIiSrwm6muF_Xx-3WMT1X_yq4BZPNTusivjhtn6_BlE-lMTSJIlyHCqrBbiC2eVKb2Rn-AFOp-Bg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVELtoYG0qCkBjITgtOk-vI59RJAoPBIh1EqpOKzWrwttEinJoT31J_Ab-SXM7IsUFQlxslYaS2uPZ_yNNfMNwCuJOjaJkwG3UgVcKxnkPDaBlkZ4kzobFwx8k6kYn_OPs3RWZVVSLUzJD9E8uJFlFP6aDHxp_ekWaeiV64sBTx_ALhcIJAgQfW2oowjoJHV6R6pkVBPPhvFpPfPuVfQbX26j1OKaGbXhW_2DZXbJ9_5mrfvm5g_uxv9bwSM4qNAne1sel8ew4-YdaFdIlFV2vurA_hZNIX5NGm7X1SFcnJV9Fa7ZAt3NVVXHyRaeWSKesFSLxShTndLBHCsJajcY1TN682XUzP7n7Y-y4LiQRSfjPXncIzgfDc_ejYOqQUNgECWkgUZ_kEvnEumFkMbmfJAjIIiUVRGqOc-NUTbSaWRjrUVCXHIKwy0j4twoz8PkCbTmi7k7BqZ0KI2OrMVwinMXSodASnuXehHlKlFdeFPrKjMVezk10bjMSt7lOMPdzGg3u_CykVyWjB33yPRqdWeVza4yCq6SQYiArAuvC739dX42nQxpPPlXwRfw8Mv7Ufb5w_TTU9iLKS-G2lCkPWihFtwzBDZr_bw4wb8AgXD2xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+degradable+composite+structures+with+time%E2%80%90changeable+stiffness&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhang%2C+Heng&rft.au=Takezawa%2C+Akihiro&rft.au=Ding%2C+Xiaohong&rft.au=Xu%2C+Shipeng&rft.date=2021-09-15&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=17&rft.spage=4751&rft.epage=4773&rft_id=info:doi/10.1002%2Fnme.6745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |