Topology optimization of degradable composite structures with time‐changeable stiffness

For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable structures that take into account the time effect is of importance. To this end, this study introduces a novel topological optimization approac...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 122; no. 17; pp. 4751 - 4773
Main Authors Zhang, Heng, Takezawa, Akihiro, Ding, Xiaohong, Xu, Shipeng, Li, Hao, Guo, Honghu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.09.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
DOI10.1002/nme.6745

Cover

Loading…
Abstract For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable structures that take into account the time effect is of importance. To this end, this study introduces a novel topological optimization approach for the composite structural layout design considering material degradation to realize structures with changeable stiffness over time. In this approach, two sets of variables are used: a density field that defines the material layout, and a time field that determines the effect of material degradation on mechanical performance. The continuous degradation update formula is proposed by integrating the Heaviside projected function and Kreisselmeier–Steinhauser function to guarantee its derivability. The objective is to minimize the summed compliance in some specified time steps subject to the constraints of volume fraction. The sensitivity of the aforementioned objective with respect to the design variable is deduced by considering the material degradation over time. The proposed design formulation is general and is demonstrated with several design analyses, considering different fix and degradable interface boundary conditions. Moreover, the results are compared with the results of not considering material degradation and demonstrate the effectiveness of the proposed method.
AbstractList For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable structures that take into account the time effect is of importance. To this end, this study introduces a novel topological optimization approach for the composite structural layout design considering material degradation to realize structures with changeable stiffness over time. In this approach, two sets of variables are used: a density field that defines the material layout, and a time field that determines the effect of material degradation on mechanical performance. The continuous degradation update formula is proposed by integrating the Heaviside projected function and Kreisselmeier–Steinhauser function to guarantee its derivability. The objective is to minimize the summed compliance in some specified time steps subject to the constraints of volume fraction. The sensitivity of the aforementioned objective with respect to the design variable is deduced by considering the material degradation over time. The proposed design formulation is general and is demonstrated with several design analyses, considering different fix and degradable interface boundary conditions. Moreover, the results are compared with the results of not considering material degradation and demonstrate the effectiveness of the proposed method.
Author Guo, Honghu
Xu, Shipeng
Takezawa, Akihiro
Zhang, Heng
Ding, Xiaohong
Li, Hao
Author_xml – sequence: 1
  givenname: Heng
  orcidid: 0000-0001-5039-6865
  surname: Zhang
  fullname: Zhang, Heng
  organization: Waseda University
– sequence: 2
  givenname: Akihiro
  orcidid: 0000-0001-8197-4306
  surname: Takezawa
  fullname: Takezawa, Akihiro
  email: atakezawa@waseda.jp
  organization: Waseda University
– sequence: 3
  givenname: Xiaohong
  surname: Ding
  fullname: Ding, Xiaohong
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Shipeng
  surname: Xu
  fullname: Xu, Shipeng
  organization: University of Shanghai for Science and Technology
– sequence: 5
  givenname: Hao
  orcidid: 0000-0003-4316-1253
  surname: Li
  fullname: Li, Hao
  organization: Kyoto University
– sequence: 6
  givenname: Honghu
  surname: Guo
  fullname: Guo, Honghu
  organization: Waseda University
BookMark eNp10L9OwzAQBnALFYlSkHiESCwsKb4kTuIRVeWPVGApA5PlOJfWVRIH21VVJh6BZ-RJSFsmBJOH-3138ndKBq1pkZALoGOgNLpuGxynWcKOyBAoz0Ia0WxAhv2Ih4zncEJOnVtRCsBoPCSvc9OZ2iy2gem8bvS79Nq0gamCEhdWlrKoMVCm6YzTHgPn7Vr5tUUXbLRfBn0Evz4-1VK2C9xb53VVtejcGTmuZO3w_OcdkZfb6XxyH86e7x4mN7NQRTxmYQF5LHPEOK_SNFelTDKZAANecmBYSqkUL6FgUEZFkcYAHHjEuEojqXiV0HhELg97O2ve1ui8WJm1bfuTImKMxxnNk7RX44NS1jhnsRJK-_1fvZW6FkDFrj7R1yd29fWBq1-BzupG2u1fNDzQja5x-68TT4_Tvf8Gi8aDPA
CitedBy_id crossref_primary_10_1016_j_cma_2022_115729
crossref_primary_10_1016_j_compstruct_2022_115593
crossref_primary_10_1016_j_medengphy_2024_104122
crossref_primary_10_1016_j_advengsoft_2023_103457
Cites_doi 10.1016/j.cma.2019.112702
10.1007/s001580050176
10.1680/jemmr.18.00048
10.1007/s00158-015-1370-5
10.1016/j.cma.2020.112886
10.1007/s00158-019-02420-6
10.1016/j.cma.2014.11.012
10.1016/j.actbio.2010.02.028
10.1016/j.mechmachtheory.2019.103622
10.1016/j.compstruct.2014.07.052
10.1155/2015/729076
10.1016/j.mser.2014.01.001
10.1016/j.actbio.2013.12.059
10.1002/nme.116
10.1002/nme.1620240207
10.1007/s10534-019-00170-y
10.1002/nme.5828
10.1007/978-3-662-05086-6
10.1016/j.actbio.2009.10.006
10.1016/j.msec.2009.03.003
10.1016/j.biomaterials.2013.07.010
10.1007/s00158-016-1495-1
10.1007/s004190050248
10.1016/j.cma.2010.05.013
10.1002/nme.6616
10.1016/j.cma.2008.10.008
10.1002/advs.201902443
10.1016/0168-874X(95)00043-S
10.1016/j.finel.2017.12.003
10.1016/j.finel.2016.09.006
10.1016/j.actbio.2011.05.032
10.1007/s00158-010-0594-7
10.1016/j.compstruct.2019.01.059
10.1016/j.applthermaleng.2016.10.134
10.1016/S0045-7825(02)00559-5
10.1016/0045-7949(95)00235-9
10.1016/j.finel.2007.06.006
10.1016/j.mattod.2018.05.018
10.1016/j.jcp.2003.09.032
10.1007/s00158-013-0978-6
10.1016/j.biomaterials.2016.10.017
10.1007/978-3-662-03115-5
10.1016/j.microc.2016.02.005
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6745
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 4773
ExternalDocumentID 10_1002_nme_6745
NME6745
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2020M681346
– fundername: National Natural Science Foundation of China
  funderid: 51975380, 52005377
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-b183a8ee38f668cda47a41519d915edaacc9d1b51d2bb6311919259c62ac9f403
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Fri Jul 25 12:07:06 EDT 2025
Tue Jul 01 04:32:08 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Jan 22 16:29:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-b183a8ee38f668cda47a41519d915edaacc9d1b51d2bb6311919259c62ac9f403
Notes Funding information
China Postdoctoral Science Foundation, 2020M681346; National Natural Science Foundation of China, 51975380, 52005377
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8197-4306
0000-0003-4316-1253
0000-0001-5039-6865
PQID 2559370846
PQPubID 996376
PageCount 23
ParticipantIDs proquest_journals_2559370846
crossref_citationtrail_10_1002_nme_6745
crossref_primary_10_1002_nme_6745
wiley_primary_10_1002_nme_6745_NME6745
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2021
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 15 September 2021
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2014; 118
2019; 8
2018; 141
2001; 50
2013; 48
2020; 363
2019; 32
2020; 143
2020; 61
1999; 69
2015; 285
2009; 198
2016; 53
1995
2003; 192
2016; 127
2004
2021; 122
1996; 58
2017; 112
2011; 7
2009; 29
2001; 21
1987; 24
2020; 7
2013; 34
2017; 55
2019; 23
2004; 194
2018; 115
2015; 2015
2010; 199
2019; 212
2020; 359
2011; 43
2007; 43
2017; 123
1996; 21
2010; 6
2014; 77
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 7
  start-page: 1902443
  year: 2020
  article-title: Biodegradable magnesium‐based implants in orthopedics—a general review and perspectives
  publication-title: Adv Sci
– volume: 21
  start-page: 239
  year: 1996
  end-page: 251
  article-title: Evolutionary structural optimization for problems with stiffness constraints
  publication-title: Finite Elem Anal Des
– volume: 77
  start-page: 1
  year: 2014
  end-page: 34
  article-title: Biodegradable metals
  publication-title: Mater Sci Eng R Rep
– volume: 141
  start-page: 154
  year: 2018
  end-page: 165
  article-title: Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures
  publication-title: Finite Elem Anal Des
– volume: 199
  start-page: 2876
  year: 2010
  end-page: 2891
  article-title: A topology optimization method based on the level set method incorporating a fictitious interface energy
  publication-title: Comput Methods Appl Mech Eng
– volume: 143
  start-page: 103622
  year: 2020
  article-title: Design of compliant mechanisms using continuum topology optimization: a review
  publication-title: Mech Mach Theory
– volume: 53
  start-page: 1157
  year: 2016
  end-page: 1177
  article-title: Topology optimization: a review for structural designs under vibration problems
  publication-title: Struct Multidiscip Optim
– volume: 32
  start-page: 185
  year: 2019
  end-page: 193
  article-title: Biodegradable magnesium alloys as temporary orthopaedic implants: a review
  publication-title: Biometals
– volume: 198
  start-page: 705
  year: 2009
  end-page: 715
  article-title: Space–time topology optimization for one‐dimensional wave propagation
  publication-title: Comput Methods Appl Mech Eng
– volume: 194
  start-page: 363
  year: 2004
  end-page: 393
  article-title: Structural optimization using sensitivity analysis and a level‐set method
  publication-title: J Comput Phys
– volume: 69
  start-page: 635
  year: 1999
  end-page: 654
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch Appl Mech
– volume: 21
  start-page: 120
  year: 2001
  end-page: 127
  article-title: A 99 line topology optimization code written in matlab
  publication-title: Struct Multidiscip Optim
– volume: 359
  start-page: 112702
  year: 2020
  article-title: Time‐dependent topology optimization of bone plates considering bone remodeling
  publication-title: Comput Methods Appl Mech Eng
– volume: 34
  start-page: 8049
  year: 2013
  end-page: 8060
  article-title: Optimizing the design of a bioabsorbable metal stent using computer simulation methods
  publication-title: Biomaterials
– volume: 6
  start-page: 1693
  year: 2010
  end-page: 1697
  article-title: Developments in metallic biodegradable stents
  publication-title: Acta Biomater
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Eng
– volume: 23
  start-page: 57
  year: 2019
  end-page: 71
  article-title: Current status and outlook on the clinical translation of biodegradable metals
  publication-title: Mater Today
– volume: 10
  start-page: 2313
  year: 2014
  end-page: 2322
  article-title: A physical corrosion model for bioabsorbable metal stents
  publication-title: Acta Biomater
– volume: 212
  start-page: 609
  year: 2019
  end-page: 624
  article-title: Multi‐scale structural topology optimization of free‐layer damping structures with damping composite materials
  publication-title: Compos Struct
– volume: 118
  start-page: 328
  year: 2014
  end-page: 341
  article-title: Application of composites to orthopedic prostheses for effective bone healing: a review
  publication-title: Compos Struct
– volume: 112
  start-page: 287
  year: 2017
  end-page: 302
  article-title: Current status on clinical applications of magnesium‐based orthopaedic implants: a review from clinical translational perspective
  publication-title: Biomaterials
– volume: 363
  start-page: 112886
  year: 2020
  article-title: New hybrid reliability‐based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties
  publication-title: Comput Methods Appl Mech Eng
– volume: 7
  start-page: 3523
  year: 2011
  end-page: 3533
  article-title: A corrosion model for bioabsorbable metallic stents
  publication-title: Acta Biomater
– volume: 43
  start-page: 1
  year: 2011
  end-page: 16
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Int J Numer Methods Eng
– year: 2004
– volume: 58
  start-page: 1067
  year: 1996
  end-page: 1073
  article-title: Evolutionary structural optimization for dynamic problems
  publication-title: Comput Struct
– volume: 6
  start-page: 1680
  year: 2010
  end-page: 1692
  article-title: The history of biodegradable magnesium implants: a review
  publication-title: Acta Biomater
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 21
  article-title: Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering
  publication-title: Biomed Res Int
– year: 1995
– volume: 115
  start-page: 849
  year: 2018
  end-page: 871
  article-title: Heaviside projection–based aggregation in stress‐constrained topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 123
  start-page: 9
  year: 2017
  end-page: 18
  article-title: Multi‐material topology optimization of viscoelastically damped structures under time‐dependent loading
  publication-title: Finite Elem Anal Des
– volume: 50
  start-page: 2143
  year: 2001
  end-page: 2158
  article-title: Filters in topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 122
  start-page: 2095
  year: 2021
  end-page: 2111
  article-title: Robust topology optimization methodology for continuum structures under probabilistic and fuzzy uncertainties
  publication-title: Int J Numer Methods Eng
– volume: 48
  start-page: 1031
  year: 2013
  end-page: 1055
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
– volume: 55
  start-page: 257
  year: 2017
  end-page: 277
  article-title: An evaluation of constraint aggregation strategies for wing box mass minimization
  publication-title: Struct Multidiscip Optim
– volume: 127
  start-page: 52
  year: 2016
  end-page: 61
  article-title: Topology optimization of microfluidics — a review
  publication-title: Microchem J
– volume: 29
  start-page: 1950
  year: 2009
  end-page: 1958
  article-title: A cellular automaton simulation of the degradation of porous polylactide scaffold: I. effect of porosity
  publication-title: Mater Sci Eng C
– volume: 8
  start-page: 305
  year: 2019
  end-page: 319
  article-title: Emerging magnesium‐based biomaterials for orthopedic implantation
  publication-title: Emerg Mater Res
– volume: 112
  start-page: 841
  year: 2017
  end-page: 854
  article-title: A review about the engineering design of optimal heat transfer systems using topology optimization
  publication-title: Appl Therm Eng
– volume: 285
  start-page: 166
  year: 2015
  end-page: 187
  article-title: Topology optimization of viscoelastic structures using a time‐dependent adjoint method
  publication-title: Comput Methods Appl Mech Eng
– volume: 43
  start-page: 1039
  year: 2007
  end-page: 1049
  article-title: Convergent and mesh‐independent solutions for the bi‐directional evolutionary structural optimization method
  publication-title: Finite Elem Anal Des
– volume: 61
  start-page: 1
  year: 2020
  end-page: 18
  article-title: Space‐time topology optimization for additive manufacturing
  publication-title: Struct Multidiscip Optim
– ident: e_1_2_7_28_1
  doi: 10.1016/j.cma.2019.112702
– ident: e_1_2_7_36_1
  doi: 10.1007/s001580050176
– ident: e_1_2_7_8_1
  doi: 10.1680/jemmr.18.00048
– ident: e_1_2_7_20_1
  doi: 10.1007/s00158-015-1370-5
– ident: e_1_2_7_24_1
  doi: 10.1016/j.cma.2020.112886
– ident: e_1_2_7_27_1
  doi: 10.1007/s00158-019-02420-6
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cma.2014.11.012
– ident: e_1_2_7_4_1
  doi: 10.1016/j.actbio.2010.02.028
– ident: e_1_2_7_21_1
  doi: 10.1016/j.mechmachtheory.2019.103622
– ident: e_1_2_7_2_1
  doi: 10.1016/j.compstruct.2014.07.052
– ident: e_1_2_7_6_1
  doi: 10.1155/2015/729076
– ident: e_1_2_7_5_1
  doi: 10.1016/j.mser.2014.01.001
– ident: e_1_2_7_29_1
  doi: 10.1016/j.actbio.2013.12.059
– ident: e_1_2_7_42_1
  doi: 10.1002/nme.116
– ident: e_1_2_7_44_1
  doi: 10.1002/nme.1620240207
– ident: e_1_2_7_9_1
  doi: 10.1007/s10534-019-00170-y
– ident: e_1_2_7_38_1
  doi: 10.1002/nme.5828
– ident: e_1_2_7_41_1
  doi: 10.1007/978-3-662-05086-6
– ident: e_1_2_7_3_1
  doi: 10.1016/j.actbio.2009.10.006
– ident: e_1_2_7_30_1
  doi: 10.1016/j.msec.2009.03.003
– ident: e_1_2_7_32_1
  doi: 10.1016/j.biomaterials.2013.07.010
– ident: e_1_2_7_40_1
  doi: 10.1007/s00158-016-1495-1
– ident: e_1_2_7_12_1
  doi: 10.1007/s004190050248
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cma.2010.05.013
– ident: e_1_2_7_25_1
  doi: 10.1002/nme.6616
– ident: e_1_2_7_33_1
  doi: 10.1016/j.cma.2008.10.008
– ident: e_1_2_7_10_1
  doi: 10.1002/advs.201902443
– ident: e_1_2_7_18_1
  doi: 10.1016/0168-874X(95)00043-S
– ident: e_1_2_7_35_1
  doi: 10.1016/j.finel.2017.12.003
– ident: e_1_2_7_34_1
  doi: 10.1016/j.finel.2016.09.006
– ident: e_1_2_7_31_1
  doi: 10.1016/j.actbio.2011.05.032
– ident: e_1_2_7_43_1
  doi: 10.1007/s00158-010-0594-7
– ident: e_1_2_7_39_1
  doi: 10.1016/j.compstruct.2019.01.059
– ident: e_1_2_7_23_1
  doi: 10.1016/j.applthermaleng.2016.10.134
– ident: e_1_2_7_14_1
  doi: 10.1016/S0045-7825(02)00559-5
– ident: e_1_2_7_17_1
  doi: 10.1016/0045-7949(95)00235-9
– ident: e_1_2_7_19_1
  doi: 10.1016/j.finel.2007.06.006
– ident: e_1_2_7_37_1
  doi: 10.1016/j.mattod.2018.05.018
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jcp.2003.09.032
– ident: e_1_2_7_13_1
  doi: 10.1007/s00158-013-0978-6
– ident: e_1_2_7_7_1
  doi: 10.1016/j.biomaterials.2016.10.017
– ident: e_1_2_7_11_1
  doi: 10.1007/978-3-662-03115-5
– ident: e_1_2_7_22_1
  doi: 10.1016/j.microc.2016.02.005
SSID ssj0011503
Score 2.3739195
Snippet For effective bone healing, the stiffness of the bone plate should be adjusted to different bone‐healing processes. Thus, the design of stiffness‐changeable...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4751
SubjectTerms biodegradable materials
Boundary conditions
Composite structures
Healing
Layouts
Mechanical properties
Performance degradation
Stiffness
time‐changeable stiffness
Topology optimization
Title Topology optimization of degradable composite structures with time‐changeable stiffness
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6745
https://www.proquest.com/docview/2559370846
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7Ekx6sVsVqlRVET2nzs9nuHkVbitAepIWKh7B_uWhbIe1BTz6Cz-iTuJNNYhUF8RQCs5DM7Mx-s8x8g9AZszZWkWEe0Yx7RHLmCRIqTzJFUxUbHeYMfIMh7Y_JzSSeFFWV0Avj-CGqCzfwjDxeg4MLmbVXSEOnpkU7BPrLg4gCbf71bcUcBTgnKqs7Ys6CknfWD9vlwq8n0Se8XAWp-SnTq6H78vtccclDa7mQLfXyjbrxfz-wjbYK8Ikv3W7ZQWtmVke1Aojiws2zOtpcYSm0b4OK2jXbRXcjN1bhGc9ttJkWbZx4nmINvBMaWrEwFKpDNZjBjp92aZN6DFe-GGbZv7--uX7jXNbGmDSFgLuHxr3u6KrvFfMZPGVBQuxJGw4EMyZiKaVMaUE6wuKBgGseWCsLoRTXgYwDHUpJI6CS4zbbUjQUiqfEj_bR-mw-MwcIc-kzJQOtbTZFiPGZsThKpiZOaSB4xBvoorRVogrycpih8Zg42uUwsdpMQJsNdFpJPjnCjh9kmqW5k8JlswRyq6jjWzzWQOe53X5dnwwHXXge_lXwCG2EUAsDoyfiJlq3qjfHFsws5Em-bT8AGrnz-Q
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEC00HtSDuxjXFkRPk8zSM-nGk7gQl-QgERSEYXqZi5oIMQc9-Ql-o19i1SwxioJ4GgaqYaarq_pVUfUKYEegjnVghcONkA5XUjgJ97WjhI5SHVrjZwx8rXbUvOJn1-H1GOyXvTA5P8Qw4UaWkflrMnBKSNdHWEMfbC1q8HAcJjjiDIq8ji6H3FGEdIKyviOUwiuZZ12_Xq78ehd9AsxRmJrdMyezcFt-YV5eclcbPKmafvlG3vjPX5iDmQJ_soP8wMzDmO0uwGyBRVlh6f0FmB4hKsS31pDdtb8IN518ssIz66HDeSg6OVkvZYaoJwx1YzGqVaeCMMtyitoBxvWMsr6Mxtm_v77lLceZLLqZNCWfuwRXJ8edw6ZTjGhwNOKE0FHoERJhbSDSKBLaJLyRICTwpJEeKjpJtJbGU6FnfKWigNjkJAZcOvITLVPuBstQ6fa6dgWYVK7QyjMGAyrOrSssQimV2jCNvEQGsgp7pbJiXfCX0xiN-zhnXvZj3M2YdrMK20PJx5yz4weZ9VLfcWG1_ZjCq6DhIiSrwm6muF_Xx-3WMT1X_yq4BZPNTusivjhtn6_BlE-lMTSJIlyHCqrBbiC2eVKb2Rn-AFOp-Bg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVELtoYG0qCkBjITgtOk-vI59RJAoPBIh1EqpOKzWrwttEinJoT31J_Ab-SXM7IsUFQlxslYaS2uPZ_yNNfMNwCuJOjaJkwG3UgVcKxnkPDaBlkZ4kzobFwx8k6kYn_OPs3RWZVVSLUzJD9E8uJFlFP6aDHxp_ekWaeiV64sBTx_ALhcIJAgQfW2oowjoJHV6R6pkVBPPhvFpPfPuVfQbX26j1OKaGbXhW_2DZXbJ9_5mrfvm5g_uxv9bwSM4qNAne1sel8ew4-YdaFdIlFV2vurA_hZNIX5NGm7X1SFcnJV9Fa7ZAt3NVVXHyRaeWSKesFSLxShTndLBHCsJajcY1TN682XUzP7n7Y-y4LiQRSfjPXncIzgfDc_ejYOqQUNgECWkgUZ_kEvnEumFkMbmfJAjIIiUVRGqOc-NUTbSaWRjrUVCXHIKwy0j4twoz8PkCbTmi7k7BqZ0KI2OrMVwinMXSodASnuXehHlKlFdeFPrKjMVezk10bjMSt7lOMPdzGg3u_CykVyWjB33yPRqdWeVza4yCq6SQYiArAuvC739dX42nQxpPPlXwRfw8Mv7Ufb5w_TTU9iLKS-G2lCkPWihFtwzBDZr_bw4wb8AgXD2xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+optimization+of+degradable+composite+structures+with+time%E2%80%90changeable+stiffness&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhang%2C+Heng&rft.au=Takezawa%2C+Akihiro&rft.au=Ding%2C+Xiaohong&rft.au=Xu%2C+Shipeng&rft.date=2021-09-15&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=17&rft.spage=4751&rft.epage=4773&rft_id=info:doi/10.1002%2Fnme.6745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon