Hybrid deep architecture for intrusion detection in cyber‐physical system: An optimization‐based approach

Summary Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 38; no. 9; pp. 3016 - 3039
Main Authors Arumugam, Sajeev Ram, Paul, P. Mano, Issac, Berin Jeba Jingle, Ananth, J. P.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0890-6327
1099-1115
DOI10.1002/acs.3855

Cover

Abstract Summary Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particularly called as networked connected system, in which the system components are spatially distributed and integrated via the communication network. The control mechanism ensures computation significance; however, the system does affect attacks. Researchers are trying to handle this issue via the existing anomaly datasets. In this way, this paper follows an intrusion detection system under three major stages including extraction of features, selection of feature, and detection. The primary stage is the extraction of Statistical features like standard deviation, mean, mode, variance, and median, as well as higher‐order statistical features like moment, percentile, improved correlation, kurtosis, mutual information, skewness, flow‐based features, and information gain‐based features. The curse of dimensionality becomes a significant problem in this scenario, so it is crucial to choose the right features. Improved Linear Discriminant Analysis (LDA) is utilized to choose the right features. The selected features are subjected to a Hybrid classifier for final detection. Here, models like CNN (Convolutional Neural Network) and Bi‐GRU (Bidirectional Gated Recurrent Unit) are combined. A new Bernoulli Map Estimated Arithmetic Optimization Algorithm (BMEAOA) is added to train the system by adjusting the ideal weights of the two classifiers, leading to improved detection outcomes. Ultimately, the effectiveness is assessed in comparison to the other traditional techniques.
AbstractList Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particularly called as networked connected system, in which the system components are spatially distributed and integrated via the communication network. The control mechanism ensures computation significance; however, the system does affect attacks. Researchers are trying to handle this issue via the existing anomaly datasets. In this way, this paper follows an intrusion detection system under three major stages including extraction of features, selection of feature, and detection. The primary stage is the extraction of Statistical features like standard deviation, mean, mode, variance, and median, as well as higher‐order statistical features like moment, percentile, improved correlation, kurtosis, mutual information, skewness, flow‐based features, and information gain‐based features. The curse of dimensionality becomes a significant problem in this scenario, so it is crucial to choose the right features. Improved Linear Discriminant Analysis (LDA) is utilized to choose the right features. The selected features are subjected to a Hybrid classifier for final detection. Here, models like CNN (Convolutional Neural Network) and Bi‐GRU (Bidirectional Gated Recurrent Unit) are combined. A new Bernoulli Map Estimated Arithmetic Optimization Algorithm (BMEAOA) is added to train the system by adjusting the ideal weights of the two classifiers, leading to improved detection outcomes. Ultimately, the effectiveness is assessed in comparison to the other traditional techniques.
Summary Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particularly called as networked connected system, in which the system components are spatially distributed and integrated via the communication network. The control mechanism ensures computation significance; however, the system does affect attacks. Researchers are trying to handle this issue via the existing anomaly datasets. In this way, this paper follows an intrusion detection system under three major stages including extraction of features, selection of feature, and detection. The primary stage is the extraction of Statistical features like standard deviation, mean, mode, variance, and median, as well as higher‐order statistical features like moment, percentile, improved correlation, kurtosis, mutual information, skewness, flow‐based features, and information gain‐based features. The curse of dimensionality becomes a significant problem in this scenario, so it is crucial to choose the right features. Improved Linear Discriminant Analysis (LDA) is utilized to choose the right features. The selected features are subjected to a Hybrid classifier for final detection. Here, models like CNN (Convolutional Neural Network) and Bi‐GRU (Bidirectional Gated Recurrent Unit) are combined. A new Bernoulli Map Estimated Arithmetic Optimization Algorithm (BMEAOA) is added to train the system by adjusting the ideal weights of the two classifiers, leading to improved detection outcomes. Ultimately, the effectiveness is assessed in comparison to the other traditional techniques.
Author Arumugam, Sajeev Ram
Issac, Berin Jeba Jingle
Ananth, J. P.
Paul, P. Mano
Author_xml – sequence: 1
  givenname: Sajeev Ram
  orcidid: 0000-0002-8220-233X
  surname: Arumugam
  fullname: Arumugam, Sajeev Ram
  email: sajeevrama@skcet.ac.in
  organization: Sri Krishna College of Engineering and Technology
– sequence: 2
  givenname: P. Mano
  surname: Paul
  fullname: Paul, P. Mano
  organization: Alliance University
– sequence: 3
  givenname: Berin Jeba Jingle
  surname: Issac
  fullname: Issac, Berin Jeba Jingle
  organization: Karunya (Deemed to be University)
– sequence: 4
  givenname: J. P.
  surname: Ananth
  fullname: Ananth, J. P.
  organization: Sri Krishna College of Engineering and Technology
BookMark eNp1kE1OwzAQhS1UJNqCxBEssWGT4p84sdlVFVAkJBbA2nIcR3WVJsF2hMKKI3BGToLTskKwmtHM9-Zp3gxMmrYxAJxjtMAIkSul_YJyxo7AFCMhEowxm4Ap4gIlGSX5CZh5v0Uo7jCdgt16KJwtYWlMB5XTGxuMDr0zsGodtE1wvbdtE_fjfOxsA_VQGPf18dltBm-1qqEffDC7a7hsYNsFu7PvamQjUihvSqi6zrVKb07BcaVqb85-6hy83N48r9bJw-Pd_Wr5kGgiKEtUqXSlWZZWmGGRC57xgmnG8iwzpShyLjguOcKaVYLkPNVEp5wQRNICVzTL6BxcHO5G29fe-CC3be-aaClpfJwSkVMRqcsDpV3rvTOV7JzdKTdIjOQYpoxhyjHMiC5-odqG_Y_BKVv_JUgOgjdbm-Hfw3K5etrz31TfigM
CitedBy_id crossref_primary_10_1038_s41598_025_91500_3
Cites_doi 10.1016/j.cma.2020.113609
10.1109/TSG.2019.2956161
10.1016/j.comnet.2020.107677
10.1016/j.future.2021.02.001
10.1016/j.eswa.2020.113578
10.1007/s11227-015-1543-4
10.1109/ACCESS.2020.2995743
10.1016/j.icte.2019.03.003
10.1016/j.procs.2020.01.020
10.1109/TCAD.2020.3013072
10.1109/JAS.2020.1003189
10.1007/s00521-019-04453-w
10.1109/JSYST.2019.2923818
10.14722/ndss.2018.23204
10.1109/JIOT.2019.2899492
10.1007/s11704-019-8454-0
10.1109/TSMC.2019.2945067
10.1109/TCNS.2017.2670326
10.1109/TSTE.2017.2788056
10.1109/JPROC.2017.2779456
10.1007/s40747-023-01013-7
10.1109/TCNS.2016.2580906
10.1007/s11036-019-01489-z
10.1109/LCSYS.2019.2925681
10.1016/j.energy.2020.119505
10.1109/JSYST.2020.3040739
10.1016/j.compeleceng.2021.107044
10.1109/TII.2018.2851939
10.1109/JIOT.2021.3067667
10.1109/ACCESS.2018.2855752
10.1109/TSMC.2019.2960301
10.1109/ACCESS.2020.3014644
10.1109/JESTPE.2019.2943449
10.1109/TSUSC.2019.2906657
10.1007/s12652-020-01995-z
10.1109/TSG.2016.2561266
10.1016/j.ijcip.2018.06.003
10.1007/s10845-017-1315-5
10.1109/TII.2020.3047675
10.1109/ACCESS.2020.3011213
10.1109/JPROC.2017.2781198
10.1007/s40313-018-0420-9
10.1109/GLOBECOM42002.2020.9348167
10.1007/s11227-016-1850-4
10.1109/TPWRS.2019.2910396
10.1007/s11431-020-1621-y
10.1007/s00521-018-3635-6
10.1016/j.cose.2023.103167
10.1007/s00500-021-06067-8
10.1109/TSG.2016.2581588
10.1109/TCYB.2019.2915124
10.1109/TIE.2017.2772190
10.1109/TAC.2020.3034195
10.1109/JSYST.2020.2991258
10.1016/j.jpdc.2021.03.011
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3855
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 3039
ExternalDocumentID 10_1002_acs_3855
ACS3855
Genre researchArticle
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-adacfc564f151979868b5c55766ed9b78981d801c5f92784c2c4822024b1f3663
IEDL.DBID DR2
ISSN 0890-6327
IngestDate Fri Jul 25 12:10:25 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Tue Jul 01 03:39:35 EDT 2025
Wed Jan 22 17:14:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-adacfc564f151979868b5c55766ed9b78981d801c5f92784c2c4822024b1f3663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8220-233X
PQID 3099329739
PQPubID 996374
PageCount 24
ParticipantIDs proquest_journals_3099329739
crossref_primary_10_1002_acs_3855
crossref_citationtrail_10_1002_acs_3855
wiley_primary_10_1002_acs_3855_ACS3855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 25
2019; 7
2021; 8
2021; 6
2021; 26
2019; 6
2019; 5
2021; 66
2017; 4
2018; 106
2019; 31
2020; 63
2019; 30
2019; 10
2019; 32
2019; 13
2019; 34
2023; 9
2019; 15
2020; 39
2023; 128
2016; 75
2020; 14
2016; 72
2021; 185
2020; 11
2022; 119
2018; 65
2021; 51
2021; 91
2020; 8
2020; 7
2021; 35
2018; 9
2021; 15
2020; 4
2018; 5
2021; 12
2021; 376
2020; 50
2020
2018; 256
2021; 17
2021; 218
2021; 153
2020; 158
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
Priyadarshini I (e_1_2_10_38_1) 2021; 35
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 8
  start-page: 144575
  year: 2020
  end-page: 144584
  article-title: Active learning‐based XGBoost for cyber physical system against generic AC false data injection attacks
  publication-title: IEEE Access
– volume: 30
  start-page: 125
  year: 2019
  end-page: 135
  article-title: Security against communication network attacks of cyber‐physical systems
  publication-title: J Control Autom Electr Syst
– volume: 9
  start-page: 5693
  issue: 5
  year: 2023
  end-page: 5714
  article-title: A novel ensemble learning‐based model for network intrusion detection
  publication-title: Comp Intellig Syst
– volume: 9
  start-page: 1205
  issue: 2
  year: 2018
  end-page: 1215
  article-title: A cyber‐physical control framework for transient stability in smart grids
  publication-title: IEEE Trans Smart Grid
– volume: 32
  start-page: 9427
  year: 2019
  end-page: 9441
  article-title: A whale optimization algorithm‐trained artificial neural network for smart grid cyber intrusion detection
  publication-title: Neural Comput Appl
– volume: 185
  start-page: 1
  year: 2021
  end-page: 37
  article-title: A cyber‐physical model for SCADA system and its intrusion detection
  publication-title: Comput Networks
– volume: 51
  start-page: 6183
  issue: 10
  year: 2021
  end-page: 6196
  article-title: Distributed consensus tracking of networked agent systems under denial‐of‐service attacks
  publication-title: IEEE Trans Syst Man Cybernet Syst
– volume: 51
  start-page: 4825
  issue: 8
  year: 2021
  end-page: 4835
  article-title: Optimal switching attacks and counter measures in cyber‐physical systems
  publication-title: IEEE Trans Syst Man Cybernet Syst
– volume: 63
  start-page: 1637
  year: 2020
  end-page: 1646
  article-title: Security for cyber‐physical systems: secure control against known‐plaintext attack
  publication-title: Sci China Technol Sci
– volume: 13
  start-page: 3989
  issue: 4
  year: 2019
  end-page: 4000
  article-title: Transformation‐based approach to security verification for cyber‐physical systems
  publication-title: IEEE Syst J
– volume: 15
  start-page: 1094
  issue: 2
  year: 2019
  end-page: 1104
  article-title: Security/timing‐aware design space exploration of CAN FD for automotive cyber‐physical systems
  publication-title: IEEE Trans Ind Inform
– volume: 8
  start-page: 138251
  year: 2020
  end-page: 138263
  article-title: Modeling and hybrid calculation architecture for cyber physical power systems
  publication-title: IEEE Access
– volume: 158
  year: 2020
  article-title: Toward security monitoring of industrial cyber‐physical systems via hierarchically distributed intrusion detection
  publication-title: Exp Syst Appl
– volume: 66
  start-page: 4334
  issue: 9
  year: 2021
  end-page: 4341
  article-title: Resilient control of cyber‐physical system using nonlinear encoding signal against system integrity attacks
  publication-title: IEEE Trans Autom Control
– start-page: 1
  year: 2020
  end-page: 7
– volume: 72
  start-page: 3729
  year: 2016
  end-page: 3763
  article-title: Leveraging information security and computational trust for cybersecurity
  publication-title: J Supercomput
– volume: 7
  start-page: 1204
  issue: 5
  year: 2020
  end-page: 1214
  article-title: A resilient control strategy for cyber‐physical systems subject to denial of service attacks: a leader‐follower set‐theoretic approach
  publication-title: IEEE/CAA J Autom Sin
– volume: 8
  start-page: 13712
  issue: 17
  year: 2021
  end-page: 13722
  article-title: Toward detection and attribution of cyber‐attacks in IoT‐enabled cyber–physical systems
  publication-title: IEEE Internet Things J
– volume: 25
  start-page: 12667
  issue: 20
  year: 2021
  end-page: 12683
  article-title: Ensemble classification for intrusion detection via feature extraction based on deep learning
  publication-title: Soft Comput
– volume: 75
  start-page: 4543
  year: 2016
  end-page: 4574
  article-title: A comprehensive study on APT attacks and counter measures for future networks and communications: challenges and solutions
  publication-title: J Supercomput
– volume: 10
  start-page: 491
  issue: 1
  year: 2019
  end-page: 502
  article-title: A cyber‐physical energy management system for optimal sizing and operation of networked nanogrids with battery swapping stations
  publication-title: IEEE Trans Sustain Energy
– volume: 4
  start-page: 14
  issue: 1
  year: 2017
  end-page: 22
  article-title: Dynamic state recovery for cyber‐physical systems under switching location attacks
  publication-title: IEEE Trans Control Network Syst
– volume: 26
  start-page: 1532
  year: 2021
  end-page: 1542
  article-title: Security assessment for interdependent heterogeneous cyber physical systems
  publication-title: Mob Networks Appl
– volume: 14
  start-page: 5329
  issue: 4
  year: 2020
  end-page: 5339
  article-title: Brief survey on attack detection methods for cyber‐physical systems
  publication-title: IEEE Syst J
– volume: 15
  start-page: 4566
  issue: 3
  year: 2021
  end-page: 4577
  article-title: Scalable attestation protocol resilient to physical attacks for IoT environments
  publication-title: IEEE Syst J
– volume: 31
  start-page: 23
  year: 2019
  end-page: 34
  article-title: Privacy and security of big data in cyber physical systems using Weibull distribution‐based intrusion detection
  publication-title: Neural Comput Appl
– volume: 8
  start-page: 95997
  year: 2020
  end-page: 96005
  article-title: Design of a cosimulation platform with hardware‐in‐the‐loop for cyber‐attacks on cyber‐physical power systems
  publication-title: IEEE Access
– volume: 7
  start-page: 75615
  year: 2019
  end-page: 75628
  article-title: Security assessment for cyber physical distribution power system under intrusion attacks
  publication-title: IEEE Access
– volume: 5
  start-page: 211
  year: 2019
  end-page: 214
  article-title: Artificial intelligence based network intrusion detection with hyper‐parameter optimization tuning on the realistic cyber dataset CSE‐CIC‐IDS 2018 using cloud computing
  publication-title: ICT Exp
– volume: 34
  start-page: 3758
  issue: 5
  year: 2019
  end-page: 3768
  article-title: Line failure detection after a cyber‐physical attack on the grid using Bayesian regression
  publication-title: IEEE Trans Power Syst
– volume: 9
  start-page: 684
  issue: 2
  year: 2018
  end-page: 694
  article-title: Stochastic games for power grid protection against coordinated cyber‐physical attacks
  publication-title: IEEE Trans Smart Grid
– volume: 35
  start-page: 1
  year: 2021
  end-page: 25
  article-title: A new enhanced cyber security framework for medical cyber physical systems
  publication-title: SICS Softw‐Intens Cyber‐Phys Syst
– volume: 6
  start-page: 5224
  issue: 3
  year: 2019
  end-page: 5231
  article-title: Enhanced cyber‐physical security in internet of things through energy auditing
  publication-title: IEEE Internet Things J
– volume: 14
  start-page: 1
  year: 2020
  end-page: 6
  article-title: A topology and risk‐aware access control framework for cyber‐physical space
  publication-title: Front Comput Sci
– volume: 30
  start-page: 1111
  year: 2019
  end-page: 1123
  article-title: Detecting cyber‐physical attacks in cybermanufacturing systems with machine learning methods
  publication-title: J Intell Manuf
– volume: 256
  start-page: 113
  year: 2018
  end-page: 124
  article-title: State‐based intrusion detection for stage‐based cyber physical systems
  publication-title: Int J Crit Infrastruct Prot
– volume: 10
  start-page: 1282
  issue: 1
  year: 2019
  end-page: 1291
  article-title: Detection and identification of cyber and physical attacks on distribution power grids with pvs: an online high‐dimensional data‐driven approach
  publication-title: IEEE J Emerg Select Top Power Electron
– volume: 12
  start-page: 417
  year: 2021
  end-page: 441
  article-title: A decision‐centric approach for secure and energy‐efficient cyber‐physical systems
  publication-title: J Ambient Intell Human Comput
– volume: 106
  start-page: 9
  issue: 1
  year: 2018
  end-page: 20
  article-title: Safety and security in cyber‐physical systems and internet‐of‐things systems
  publication-title: Proc IEEE
– volume: 91
  year: 2021
  article-title: Intrusion detection in cyber‐physical systems using a generic anddomain specific deep autoencoder model
  publication-title: Comput Electric Eng
– volume: 4
  start-page: 295
  issue: 2
  year: 2020
  end-page: 300
  article-title: Learning and information manipulation: repeated hypergames for cyber‐physical security
  publication-title: IEEE Control Syst Lett
– volume: 5
  start-page: 991
  issue: 3
  year: 2018
  end-page: 1002
  article-title: Likelihood ratio‐based scheduler for secure detection in cyber physical systems
  publication-title: IEEE Trans Control Network Syst
– volume: 376
  year: 2021
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Eng
– volume: 106
  start-page: 171
  issue: 1
  year: 2018
  end-page: 200
  article-title: Semantics‐preserving cosynthesis of cyber‐physical systems
  publication-title: Proc IEEE
– volume: 153
  start-page: 150
  year: 2021
  end-page: 160
  article-title: Secure blockchain enabled cyber–physical systems in healthcare using deep belief network with ResNet model
  publication-title: J Parall Distrib Comput
– volume: 128
  year: 2023
  article-title: Network anomaly detection methods in IoT environments via deep learning: a fair comparison of performance and robustness
  publication-title: Comput Secur
– volume: 39
  start-page: 3555
  issue: 11
  year: 2020
  end-page: 3565
  article-title: Fast attack‐resilient distributed state estimator for cyber‐physical systems
  publication-title: IEEE Trans Comput‐Aid Des Integr Circ Syst
– volume: 11
  start-page: 2476
  issue: 3
  year: 2020
  end-page: 2486
  article-title: Cyber‐attack recovery strategy for smart grid based on deep reinforcement learning
  publication-title: IEEE Trans Smart Grid
– volume: 50
  start-page: 2338
  issue: 6
  year: 2020
  end-page: 2345
  article-title: Summation detector for false data‐injection attack in cyber‐physical systems
  publication-title: IEEE Trans Cybernet
– volume: 6
  start-page: 66
  issue: 1
  year: 2021
  end-page: 79
  article-title: An integrated framework for privacy‐preserving based anomaly detection for cyber‐physical systems
  publication-title: IEEE Trans Sustain Comput
– volume: 17
  start-page: 5790
  issue: 8
  year: 2021
  end-page: 5798
  article-title: Siamese neural network based few‐shot learning for anomaly detection in industrial cyber‐physical systems
  publication-title: IEEE Trans Ind Inform
– volume: 65
  start-page: 4257
  issue: 5
  year: 2018
  end-page: 4267
  article-title: Anomaly detection based on zone partition for security protection of industrial cyber‐physical systems
  publication-title: IEEE Trans Ind Electron
– volume: 119
  start-page: 84
  year: 2022
  end-page: 109
  article-title: A hypergraph based Kohonen map for detecting intrusions over cyber–physical systems traffic
  publication-title: Fut Gen Comput Syst
– volume: 218
  year: 2021
  article-title: Intrusion detection of cyber physical energy system based on multivariate ensemble classification
  publication-title: Energy
– ident: e_1_2_10_58_1
– ident: e_1_2_10_10_1
  doi: 10.1016/j.cma.2020.113609
– ident: e_1_2_10_41_1
  doi: 10.1109/TSG.2019.2956161
– ident: e_1_2_10_45_1
  doi: 10.1016/j.comnet.2020.107677
– ident: e_1_2_10_50_1
  doi: 10.1016/j.future.2021.02.001
– ident: e_1_2_10_48_1
  doi: 10.1016/j.eswa.2020.113578
– ident: e_1_2_10_5_1
  doi: 10.1007/s11227-015-1543-4
– volume: 35
  start-page: 1
  year: 2021
  ident: e_1_2_10_38_1
  article-title: A new enhanced cyber security framework for medical cyber physical systems
  publication-title: SICS Softw‐Intens Cyber‐Phys Syst
– ident: e_1_2_10_17_1
  doi: 10.1109/ACCESS.2020.2995743
– ident: e_1_2_10_2_1
  doi: 10.1016/j.icte.2019.03.003
– ident: e_1_2_10_57_1
  doi: 10.1016/j.procs.2020.01.020
– ident: e_1_2_10_18_1
  doi: 10.1109/TCAD.2020.3013072
– ident: e_1_2_10_19_1
  doi: 10.1109/JAS.2020.1003189
– ident: e_1_2_10_43_1
  doi: 10.1007/s00521-019-04453-w
– ident: e_1_2_10_7_1
  doi: 10.1109/JSYST.2019.2923818
– ident: e_1_2_10_53_1
  doi: 10.14722/ndss.2018.23204
– ident: e_1_2_10_13_1
  doi: 10.1109/JIOT.2019.2899492
– ident: e_1_2_10_34_1
  doi: 10.1007/s11704-019-8454-0
– ident: e_1_2_10_22_1
  doi: 10.1109/TSMC.2019.2945067
– ident: e_1_2_10_25_1
  doi: 10.1109/TCNS.2017.2670326
– ident: e_1_2_10_37_1
  doi: 10.1109/TSTE.2017.2788056
– ident: e_1_2_10_59_1
– ident: e_1_2_10_11_1
  doi: 10.1109/JPROC.2017.2779456
– ident: e_1_2_10_60_1
  doi: 10.1007/s40747-023-01013-7
– ident: e_1_2_10_20_1
  doi: 10.1109/TCNS.2016.2580906
– ident: e_1_2_10_28_1
  doi: 10.1007/s11036-019-01489-z
– ident: e_1_2_10_15_1
  doi: 10.1109/LCSYS.2019.2925681
– ident: e_1_2_10_47_1
  doi: 10.1016/j.energy.2020.119505
– ident: e_1_2_10_31_1
  doi: 10.1109/JSYST.2020.3040739
– ident: e_1_2_10_56_1
– ident: e_1_2_10_46_1
  doi: 10.1016/j.compeleceng.2021.107044
– ident: e_1_2_10_21_1
  doi: 10.1109/TII.2018.2851939
– ident: e_1_2_10_55_1
– ident: e_1_2_10_42_1
  doi: 10.1109/JIOT.2021.3067667
– ident: e_1_2_10_6_1
  doi: 10.1109/ACCESS.2018.2855752
– ident: e_1_2_10_24_1
  doi: 10.1109/TSMC.2019.2960301
– ident: e_1_2_10_40_1
  doi: 10.1109/ACCESS.2020.3014644
– ident: e_1_2_10_44_1
  doi: 10.1109/JESTPE.2019.2943449
– ident: e_1_2_10_23_1
  doi: 10.1109/TSUSC.2019.2906657
– ident: e_1_2_10_32_1
  doi: 10.1007/s12652-020-01995-z
– ident: e_1_2_10_30_1
  doi: 10.1109/TSG.2016.2561266
– ident: e_1_2_10_49_1
  doi: 10.1016/j.ijcip.2018.06.003
– ident: e_1_2_10_33_1
  doi: 10.1007/s10845-017-1315-5
– ident: e_1_2_10_4_1
  doi: 10.1109/TII.2020.3047675
– ident: e_1_2_10_14_1
  doi: 10.1109/ACCESS.2020.3011213
– ident: e_1_2_10_12_1
  doi: 10.1109/JPROC.2017.2781198
– ident: e_1_2_10_27_1
  doi: 10.1007/s40313-018-0420-9
– ident: e_1_2_10_54_1
  doi: 10.1109/GLOBECOM42002.2020.9348167
– ident: e_1_2_10_9_1
  doi: 10.1007/s11227-016-1850-4
– ident: e_1_2_10_29_1
  doi: 10.1109/TPWRS.2019.2910396
– ident: e_1_2_10_26_1
  doi: 10.1007/s11431-020-1621-y
– ident: e_1_2_10_39_1
  doi: 10.1007/s00521-018-3635-6
– ident: e_1_2_10_52_1
  doi: 10.1016/j.cose.2023.103167
– ident: e_1_2_10_61_1
  doi: 10.1007/s00500-021-06067-8
– ident: e_1_2_10_16_1
  doi: 10.1109/TSG.2016.2581588
– ident: e_1_2_10_35_1
  doi: 10.1109/TCYB.2019.2915124
– ident: e_1_2_10_36_1
  doi: 10.1109/TIE.2017.2772190
– ident: e_1_2_10_8_1
  doi: 10.1109/TAC.2020.3034195
– ident: e_1_2_10_3_1
  doi: 10.1109/JSYST.2020.2991258
– ident: e_1_2_10_51_1
  doi: 10.1016/j.jpdc.2021.03.011
SSID ssj0009913
Score 2.3964143
Snippet Summary Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations....
Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3016
SubjectTerms Algorithms
Artificial neural networks
cyber physical system
Cyber-physical systems
Discriminant analysis
Feature extraction
hybrid classifier
intrusion detection
Intrusion detection systems
Kurtosis
Optimization
Title Hybrid deep architecture for intrusion detection in cyber‐physical system: An optimization‐based approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3855
https://www.proquest.com/docview/3099329739
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA3SlS58i9UqEURX006TSWbirlRLEXShFgouhiSTgGinxdZFXfkJfqNf4s082ioK4mpgcgMzOUnuSXLvCULHkjRNQH3pCRVyLxDEeDLSiWeItpYyYYly-5BX17zbCy77rF9EVbpcmFwfYrbh5kZGNl-7AS7VuDEXDZV6XKcRc_nlTcqdbP75zVw5CmhPdrgcCVgdURKWurM-aZQVv3qiOb1cJKmZl-msofvy-_Lgksf6y0TV9es36cb__cA6Wi3IJ27lvWUDLZl0E60sSBJuoUF36nK4cGLMCC-eMmBgt_ghdTkaACWUT7IgrhTeYT1V5vnj7X1UgI5zfegz3ErxEOakQZHsCSbOaya4VDLfRr3OxV276xVXMngaeAHzZCK11YwHtukyXkXEI8U0g0ULNwnAHQngv-D0NLPCHWlqogOgIEAEVNNSYDc7qJIOU7OLcMJCCsslZTUw0MiXUnNqSOhzy3wo0FV0WsIT60Kv3F2b8RTnSsskhgaMXQNW0dHMcpRrdPxgUysRjotRCgXQTai7vEtU0UkG1a_141b71j33_mq4j5bdb-fhaDVUAXjMAfCXiTrMeuon6Azvqw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFL1BXKgL30YUtSZGVwNDZzoPXRGUoAILhYSFyWSm0yZGGYjiAld-gt_ol3g7D0CjiXE1yfQ2melpe89te08BjnxaEaah-5ob2JZmulRovsNDTVAupcFcSQO1DtlqW42uedVjvRycZbkwiT7EZMFNjYx4vlYDXC1Il6eqoT5_LhkOY3MwbyLPUJHX-c1UOwqJT7y97LgYHxnUzpRndVrOan71RVOCOUtTYz9TX4G77AuT4yUPpZdRUOKv38Qb__kLq7Cc8k9STTrMGuREtA5LM6qEG9BvjFUaFwmFGJLZjQaCBJfcRypNA9HE8lF8jivCd4SPA_H08fY-THEniUT0KalGZIDTUj_N90QT5ThDkomZb0K3ftGpNbT0VgaNIzVgmh_6XHJmmbKikl5dx3ICxhnGLZYIEXHHRQqMfo8z6apdTU65iSwEuUBQkQYSnC3IR4NIbAMJmW1gxBRIjiTU0X2fW4agtm5JpmMBL8BJho_HU8lydXPGo5eILVMPG9BTDViAw4nlMJHp-MGmmEHspQMVC7CfGOr-LrcAxzFWv9b3qrVb9dz5q-EBLDQ6rabXvGxf78KiaoLkdFoR8giV2EM6Mwr24277Cd5288o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBNEH7-J0agTRp25d2nStb2M65m2IOhj4UNI0AdF1RefDfPIn-Bv9JZ70sk1REJ8KzQm0-ZKcL8k5XwD2Oa1K2zK54QU1x7A9Kg3uitCQVChlMU_RQO9DXradVsc-67JuFlWpc2FSfYjRhpseGcl8rQd4HKrKWDSUi-ey5TI2DTO2g0RCE6LrsXQU8p7kdNn1cHlk0VouPGvSSl7zqysa88tJlpq4meYi3OUfmEaXPJRfBkFZvH7TbvzfHyzBQsY-ST3tLsswJaMVmJ_QJFyFXmuok7hIKGVMJo8ZCNJbch_pJA3EEssHSRRXhO-IGAby6ePtPc5QJ6lA9BGpR6SPk1Ivy_ZEE-02Q5JLma9Bp3ly22gZ2Z0MhkBiwAwecqEEc2xV1Smvnuu4ARMMVy2ODBFv10MCjF5PMOXpM01BhY0cBJlAUFUW0pt1KET9SG4ACVnNwvVSoARSUNfkXDiWpDXTUczEAlGEwxweX2SC5frejEc_lVqmPjagrxuwCHsjyzgV6fjBppQj7GfDFAuwm1j69i6vCAcJVL_W9-uNG_3c_KvhLsxeHTf9i9P2-RbM6RZIQ9NKUECk5DZymUGwk3TaTxyI8nk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+deep+architecture+for+intrusion+detection+in+cyber%E2%80%90physical+system%3A+An+optimization%E2%80%90based+approach&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Sajeev+Ram+Arumugam&rft.au=P+Mano+Paul&rft.au=Berin+Jeba+Jingle+Issac&rft.au=Ananth%2C+J+P&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=38&rft.issue=9&rft.spage=3016&rft.epage=3039&rft_id=info:doi/10.1002%2Facs.3855&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon