Hybrid deep architecture for intrusion detection in cyber‐physical system: An optimization‐based approach
Summary Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particu...
Saved in:
Published in | International journal of adaptive control and signal processing Vol. 38; no. 9; pp. 3016 - 3039 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.09.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0890-6327 1099-1115 |
DOI | 10.1002/acs.3855 |
Cover
Abstract | Summary
Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particularly called as networked connected system, in which the system components are spatially distributed and integrated via the communication network. The control mechanism ensures computation significance; however, the system does affect attacks. Researchers are trying to handle this issue via the existing anomaly datasets. In this way, this paper follows an intrusion detection system under three major stages including extraction of features, selection of feature, and detection. The primary stage is the extraction of Statistical features like standard deviation, mean, mode, variance, and median, as well as higher‐order statistical features like moment, percentile, improved correlation, kurtosis, mutual information, skewness, flow‐based features, and information gain‐based features. The curse of dimensionality becomes a significant problem in this scenario, so it is crucial to choose the right features. Improved Linear Discriminant Analysis (LDA) is utilized to choose the right features. The selected features are subjected to a Hybrid classifier for final detection. Here, models like CNN (Convolutional Neural Network) and Bi‐GRU (Bidirectional Gated Recurrent Unit) are combined. A new Bernoulli Map Estimated Arithmetic Optimization Algorithm (BMEAOA) is added to train the system by adjusting the ideal weights of the two classifiers, leading to improved detection outcomes. Ultimately, the effectiveness is assessed in comparison to the other traditional techniques. |
---|---|
AbstractList | Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particularly called as networked connected system, in which the system components are spatially distributed and integrated via the communication network. The control mechanism ensures computation significance; however, the system does affect attacks. Researchers are trying to handle this issue via the existing anomaly datasets. In this way, this paper follows an intrusion detection system under three major stages including extraction of features, selection of feature, and detection. The primary stage is the extraction of Statistical features like standard deviation, mean, mode, variance, and median, as well as higher‐order statistical features like moment, percentile, improved correlation, kurtosis, mutual information, skewness, flow‐based features, and information gain‐based features. The curse of dimensionality becomes a significant problem in this scenario, so it is crucial to choose the right features. Improved Linear Discriminant Analysis (LDA) is utilized to choose the right features. The selected features are subjected to a Hybrid classifier for final detection. Here, models like CNN (Convolutional Neural Network) and Bi‐GRU (Bidirectional Gated Recurrent Unit) are combined. A new Bernoulli Map Estimated Arithmetic Optimization Algorithm (BMEAOA) is added to train the system by adjusting the ideal weights of the two classifiers, leading to improved detection outcomes. Ultimately, the effectiveness is assessed in comparison to the other traditional techniques. Summary Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically, the system records any intrusion action or breach, which frequently modifies the administrator. Cyber Physical System (CPS) is particularly called as networked connected system, in which the system components are spatially distributed and integrated via the communication network. The control mechanism ensures computation significance; however, the system does affect attacks. Researchers are trying to handle this issue via the existing anomaly datasets. In this way, this paper follows an intrusion detection system under three major stages including extraction of features, selection of feature, and detection. The primary stage is the extraction of Statistical features like standard deviation, mean, mode, variance, and median, as well as higher‐order statistical features like moment, percentile, improved correlation, kurtosis, mutual information, skewness, flow‐based features, and information gain‐based features. The curse of dimensionality becomes a significant problem in this scenario, so it is crucial to choose the right features. Improved Linear Discriminant Analysis (LDA) is utilized to choose the right features. The selected features are subjected to a Hybrid classifier for final detection. Here, models like CNN (Convolutional Neural Network) and Bi‐GRU (Bidirectional Gated Recurrent Unit) are combined. A new Bernoulli Map Estimated Arithmetic Optimization Algorithm (BMEAOA) is added to train the system by adjusting the ideal weights of the two classifiers, leading to improved detection outcomes. Ultimately, the effectiveness is assessed in comparison to the other traditional techniques. |
Author | Arumugam, Sajeev Ram Issac, Berin Jeba Jingle Ananth, J. P. Paul, P. Mano |
Author_xml | – sequence: 1 givenname: Sajeev Ram orcidid: 0000-0002-8220-233X surname: Arumugam fullname: Arumugam, Sajeev Ram email: sajeevrama@skcet.ac.in organization: Sri Krishna College of Engineering and Technology – sequence: 2 givenname: P. Mano surname: Paul fullname: Paul, P. Mano organization: Alliance University – sequence: 3 givenname: Berin Jeba Jingle surname: Issac fullname: Issac, Berin Jeba Jingle organization: Karunya (Deemed to be University) – sequence: 4 givenname: J. P. surname: Ananth fullname: Ananth, J. P. organization: Sri Krishna College of Engineering and Technology |
BookMark | eNp1kE1OwzAQhS1UJNqCxBEssWGT4p84sdlVFVAkJBbA2nIcR3WVJsF2hMKKI3BGToLTskKwmtHM9-Zp3gxMmrYxAJxjtMAIkSul_YJyxo7AFCMhEowxm4Ap4gIlGSX5CZh5v0Uo7jCdgt16KJwtYWlMB5XTGxuMDr0zsGodtE1wvbdtE_fjfOxsA_VQGPf18dltBm-1qqEffDC7a7hsYNsFu7PvamQjUihvSqi6zrVKb07BcaVqb85-6hy83N48r9bJw-Pd_Wr5kGgiKEtUqXSlWZZWmGGRC57xgmnG8iwzpShyLjguOcKaVYLkPNVEp5wQRNICVzTL6BxcHO5G29fe-CC3be-aaClpfJwSkVMRqcsDpV3rvTOV7JzdKTdIjOQYpoxhyjHMiC5-odqG_Y_BKVv_JUgOgjdbm-Hfw3K5etrz31TfigM |
CitedBy_id | crossref_primary_10_1038_s41598_025_91500_3 |
Cites_doi | 10.1016/j.cma.2020.113609 10.1109/TSG.2019.2956161 10.1016/j.comnet.2020.107677 10.1016/j.future.2021.02.001 10.1016/j.eswa.2020.113578 10.1007/s11227-015-1543-4 10.1109/ACCESS.2020.2995743 10.1016/j.icte.2019.03.003 10.1016/j.procs.2020.01.020 10.1109/TCAD.2020.3013072 10.1109/JAS.2020.1003189 10.1007/s00521-019-04453-w 10.1109/JSYST.2019.2923818 10.14722/ndss.2018.23204 10.1109/JIOT.2019.2899492 10.1007/s11704-019-8454-0 10.1109/TSMC.2019.2945067 10.1109/TCNS.2017.2670326 10.1109/TSTE.2017.2788056 10.1109/JPROC.2017.2779456 10.1007/s40747-023-01013-7 10.1109/TCNS.2016.2580906 10.1007/s11036-019-01489-z 10.1109/LCSYS.2019.2925681 10.1016/j.energy.2020.119505 10.1109/JSYST.2020.3040739 10.1016/j.compeleceng.2021.107044 10.1109/TII.2018.2851939 10.1109/JIOT.2021.3067667 10.1109/ACCESS.2018.2855752 10.1109/TSMC.2019.2960301 10.1109/ACCESS.2020.3014644 10.1109/JESTPE.2019.2943449 10.1109/TSUSC.2019.2906657 10.1007/s12652-020-01995-z 10.1109/TSG.2016.2561266 10.1016/j.ijcip.2018.06.003 10.1007/s10845-017-1315-5 10.1109/TII.2020.3047675 10.1109/ACCESS.2020.3011213 10.1109/JPROC.2017.2781198 10.1007/s40313-018-0420-9 10.1109/GLOBECOM42002.2020.9348167 10.1007/s11227-016-1850-4 10.1109/TPWRS.2019.2910396 10.1007/s11431-020-1621-y 10.1007/s00521-018-3635-6 10.1016/j.cose.2023.103167 10.1007/s00500-021-06067-8 10.1109/TSG.2016.2581588 10.1109/TCYB.2019.2915124 10.1109/TIE.2017.2772190 10.1109/TAC.2020.3034195 10.1109/JSYST.2020.2991258 10.1016/j.jpdc.2021.03.011 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/acs.3855 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1115 |
EndPage | 3039 |
ExternalDocumentID | 10_1002_acs_3855 ACS3855 |
Genre | researchArticle |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2935-adacfc564f151979868b5c55766ed9b78981d801c5f92784c2c4822024b1f3663 |
IEDL.DBID | DR2 |
ISSN | 0890-6327 |
IngestDate | Fri Jul 25 12:10:25 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Tue Jul 01 03:39:35 EDT 2025 Wed Jan 22 17:14:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-adacfc564f151979868b5c55766ed9b78981d801c5f92784c2c4822024b1f3663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8220-233X |
PQID | 3099329739 |
PQPubID | 996374 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3099329739 crossref_primary_10_1002_acs_3855 crossref_citationtrail_10_1002_acs_3855 wiley_primary_10_1002_acs_3855_ACS3855 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 20240901 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
PublicationTitle | International journal of adaptive control and signal processing |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2021; 25 2019; 7 2021; 8 2021; 6 2021; 26 2019; 6 2019; 5 2021; 66 2017; 4 2018; 106 2019; 31 2020; 63 2019; 30 2019; 10 2019; 32 2019; 13 2019; 34 2023; 9 2019; 15 2020; 39 2023; 128 2016; 75 2020; 14 2016; 72 2021; 185 2020; 11 2022; 119 2018; 65 2021; 51 2021; 91 2020; 8 2020; 7 2021; 35 2018; 9 2021; 15 2020; 4 2018; 5 2021; 12 2021; 376 2020; 50 2020 2018; 256 2021; 17 2021; 218 2021; 153 2020; 158 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 Priyadarshini I (e_1_2_10_38_1) 2021; 35 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 8 start-page: 144575 year: 2020 end-page: 144584 article-title: Active learning‐based XGBoost for cyber physical system against generic AC false data injection attacks publication-title: IEEE Access – volume: 30 start-page: 125 year: 2019 end-page: 135 article-title: Security against communication network attacks of cyber‐physical systems publication-title: J Control Autom Electr Syst – volume: 9 start-page: 5693 issue: 5 year: 2023 end-page: 5714 article-title: A novel ensemble learning‐based model for network intrusion detection publication-title: Comp Intellig Syst – volume: 9 start-page: 1205 issue: 2 year: 2018 end-page: 1215 article-title: A cyber‐physical control framework for transient stability in smart grids publication-title: IEEE Trans Smart Grid – volume: 32 start-page: 9427 year: 2019 end-page: 9441 article-title: A whale optimization algorithm‐trained artificial neural network for smart grid cyber intrusion detection publication-title: Neural Comput Appl – volume: 185 start-page: 1 year: 2021 end-page: 37 article-title: A cyber‐physical model for SCADA system and its intrusion detection publication-title: Comput Networks – volume: 51 start-page: 6183 issue: 10 year: 2021 end-page: 6196 article-title: Distributed consensus tracking of networked agent systems under denial‐of‐service attacks publication-title: IEEE Trans Syst Man Cybernet Syst – volume: 51 start-page: 4825 issue: 8 year: 2021 end-page: 4835 article-title: Optimal switching attacks and counter measures in cyber‐physical systems publication-title: IEEE Trans Syst Man Cybernet Syst – volume: 63 start-page: 1637 year: 2020 end-page: 1646 article-title: Security for cyber‐physical systems: secure control against known‐plaintext attack publication-title: Sci China Technol Sci – volume: 13 start-page: 3989 issue: 4 year: 2019 end-page: 4000 article-title: Transformation‐based approach to security verification for cyber‐physical systems publication-title: IEEE Syst J – volume: 15 start-page: 1094 issue: 2 year: 2019 end-page: 1104 article-title: Security/timing‐aware design space exploration of CAN FD for automotive cyber‐physical systems publication-title: IEEE Trans Ind Inform – volume: 8 start-page: 138251 year: 2020 end-page: 138263 article-title: Modeling and hybrid calculation architecture for cyber physical power systems publication-title: IEEE Access – volume: 158 year: 2020 article-title: Toward security monitoring of industrial cyber‐physical systems via hierarchically distributed intrusion detection publication-title: Exp Syst Appl – volume: 66 start-page: 4334 issue: 9 year: 2021 end-page: 4341 article-title: Resilient control of cyber‐physical system using nonlinear encoding signal against system integrity attacks publication-title: IEEE Trans Autom Control – start-page: 1 year: 2020 end-page: 7 – volume: 72 start-page: 3729 year: 2016 end-page: 3763 article-title: Leveraging information security and computational trust for cybersecurity publication-title: J Supercomput – volume: 7 start-page: 1204 issue: 5 year: 2020 end-page: 1214 article-title: A resilient control strategy for cyber‐physical systems subject to denial of service attacks: a leader‐follower set‐theoretic approach publication-title: IEEE/CAA J Autom Sin – volume: 8 start-page: 13712 issue: 17 year: 2021 end-page: 13722 article-title: Toward detection and attribution of cyber‐attacks in IoT‐enabled cyber–physical systems publication-title: IEEE Internet Things J – volume: 25 start-page: 12667 issue: 20 year: 2021 end-page: 12683 article-title: Ensemble classification for intrusion detection via feature extraction based on deep learning publication-title: Soft Comput – volume: 75 start-page: 4543 year: 2016 end-page: 4574 article-title: A comprehensive study on APT attacks and counter measures for future networks and communications: challenges and solutions publication-title: J Supercomput – volume: 10 start-page: 491 issue: 1 year: 2019 end-page: 502 article-title: A cyber‐physical energy management system for optimal sizing and operation of networked nanogrids with battery swapping stations publication-title: IEEE Trans Sustain Energy – volume: 4 start-page: 14 issue: 1 year: 2017 end-page: 22 article-title: Dynamic state recovery for cyber‐physical systems under switching location attacks publication-title: IEEE Trans Control Network Syst – volume: 26 start-page: 1532 year: 2021 end-page: 1542 article-title: Security assessment for interdependent heterogeneous cyber physical systems publication-title: Mob Networks Appl – volume: 14 start-page: 5329 issue: 4 year: 2020 end-page: 5339 article-title: Brief survey on attack detection methods for cyber‐physical systems publication-title: IEEE Syst J – volume: 15 start-page: 4566 issue: 3 year: 2021 end-page: 4577 article-title: Scalable attestation protocol resilient to physical attacks for IoT environments publication-title: IEEE Syst J – volume: 31 start-page: 23 year: 2019 end-page: 34 article-title: Privacy and security of big data in cyber physical systems using Weibull distribution‐based intrusion detection publication-title: Neural Comput Appl – volume: 8 start-page: 95997 year: 2020 end-page: 96005 article-title: Design of a cosimulation platform with hardware‐in‐the‐loop for cyber‐attacks on cyber‐physical power systems publication-title: IEEE Access – volume: 7 start-page: 75615 year: 2019 end-page: 75628 article-title: Security assessment for cyber physical distribution power system under intrusion attacks publication-title: IEEE Access – volume: 5 start-page: 211 year: 2019 end-page: 214 article-title: Artificial intelligence based network intrusion detection with hyper‐parameter optimization tuning on the realistic cyber dataset CSE‐CIC‐IDS 2018 using cloud computing publication-title: ICT Exp – volume: 34 start-page: 3758 issue: 5 year: 2019 end-page: 3768 article-title: Line failure detection after a cyber‐physical attack on the grid using Bayesian regression publication-title: IEEE Trans Power Syst – volume: 9 start-page: 684 issue: 2 year: 2018 end-page: 694 article-title: Stochastic games for power grid protection against coordinated cyber‐physical attacks publication-title: IEEE Trans Smart Grid – volume: 35 start-page: 1 year: 2021 end-page: 25 article-title: A new enhanced cyber security framework for medical cyber physical systems publication-title: SICS Softw‐Intens Cyber‐Phys Syst – volume: 6 start-page: 5224 issue: 3 year: 2019 end-page: 5231 article-title: Enhanced cyber‐physical security in internet of things through energy auditing publication-title: IEEE Internet Things J – volume: 14 start-page: 1 year: 2020 end-page: 6 article-title: A topology and risk‐aware access control framework for cyber‐physical space publication-title: Front Comput Sci – volume: 30 start-page: 1111 year: 2019 end-page: 1123 article-title: Detecting cyber‐physical attacks in cybermanufacturing systems with machine learning methods publication-title: J Intell Manuf – volume: 256 start-page: 113 year: 2018 end-page: 124 article-title: State‐based intrusion detection for stage‐based cyber physical systems publication-title: Int J Crit Infrastruct Prot – volume: 10 start-page: 1282 issue: 1 year: 2019 end-page: 1291 article-title: Detection and identification of cyber and physical attacks on distribution power grids with pvs: an online high‐dimensional data‐driven approach publication-title: IEEE J Emerg Select Top Power Electron – volume: 12 start-page: 417 year: 2021 end-page: 441 article-title: A decision‐centric approach for secure and energy‐efficient cyber‐physical systems publication-title: J Ambient Intell Human Comput – volume: 106 start-page: 9 issue: 1 year: 2018 end-page: 20 article-title: Safety and security in cyber‐physical systems and internet‐of‐things systems publication-title: Proc IEEE – volume: 91 year: 2021 article-title: Intrusion detection in cyber‐physical systems using a generic anddomain specific deep autoencoder model publication-title: Comput Electric Eng – volume: 4 start-page: 295 issue: 2 year: 2020 end-page: 300 article-title: Learning and information manipulation: repeated hypergames for cyber‐physical security publication-title: IEEE Control Syst Lett – volume: 5 start-page: 991 issue: 3 year: 2018 end-page: 1002 article-title: Likelihood ratio‐based scheduler for secure detection in cyber physical systems publication-title: IEEE Trans Control Network Syst – volume: 376 year: 2021 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Eng – volume: 106 start-page: 171 issue: 1 year: 2018 end-page: 200 article-title: Semantics‐preserving cosynthesis of cyber‐physical systems publication-title: Proc IEEE – volume: 153 start-page: 150 year: 2021 end-page: 160 article-title: Secure blockchain enabled cyber–physical systems in healthcare using deep belief network with ResNet model publication-title: J Parall Distrib Comput – volume: 128 year: 2023 article-title: Network anomaly detection methods in IoT environments via deep learning: a fair comparison of performance and robustness publication-title: Comput Secur – volume: 39 start-page: 3555 issue: 11 year: 2020 end-page: 3565 article-title: Fast attack‐resilient distributed state estimator for cyber‐physical systems publication-title: IEEE Trans Comput‐Aid Des Integr Circ Syst – volume: 11 start-page: 2476 issue: 3 year: 2020 end-page: 2486 article-title: Cyber‐attack recovery strategy for smart grid based on deep reinforcement learning publication-title: IEEE Trans Smart Grid – volume: 50 start-page: 2338 issue: 6 year: 2020 end-page: 2345 article-title: Summation detector for false data‐injection attack in cyber‐physical systems publication-title: IEEE Trans Cybernet – volume: 6 start-page: 66 issue: 1 year: 2021 end-page: 79 article-title: An integrated framework for privacy‐preserving based anomaly detection for cyber‐physical systems publication-title: IEEE Trans Sustain Comput – volume: 17 start-page: 5790 issue: 8 year: 2021 end-page: 5798 article-title: Siamese neural network based few‐shot learning for anomaly detection in industrial cyber‐physical systems publication-title: IEEE Trans Ind Inform – volume: 65 start-page: 4257 issue: 5 year: 2018 end-page: 4267 article-title: Anomaly detection based on zone partition for security protection of industrial cyber‐physical systems publication-title: IEEE Trans Ind Electron – volume: 119 start-page: 84 year: 2022 end-page: 109 article-title: A hypergraph based Kohonen map for detecting intrusions over cyber–physical systems traffic publication-title: Fut Gen Comput Syst – volume: 218 year: 2021 article-title: Intrusion detection of cyber physical energy system based on multivariate ensemble classification publication-title: Energy – ident: e_1_2_10_58_1 – ident: e_1_2_10_10_1 doi: 10.1016/j.cma.2020.113609 – ident: e_1_2_10_41_1 doi: 10.1109/TSG.2019.2956161 – ident: e_1_2_10_45_1 doi: 10.1016/j.comnet.2020.107677 – ident: e_1_2_10_50_1 doi: 10.1016/j.future.2021.02.001 – ident: e_1_2_10_48_1 doi: 10.1016/j.eswa.2020.113578 – ident: e_1_2_10_5_1 doi: 10.1007/s11227-015-1543-4 – volume: 35 start-page: 1 year: 2021 ident: e_1_2_10_38_1 article-title: A new enhanced cyber security framework for medical cyber physical systems publication-title: SICS Softw‐Intens Cyber‐Phys Syst – ident: e_1_2_10_17_1 doi: 10.1109/ACCESS.2020.2995743 – ident: e_1_2_10_2_1 doi: 10.1016/j.icte.2019.03.003 – ident: e_1_2_10_57_1 doi: 10.1016/j.procs.2020.01.020 – ident: e_1_2_10_18_1 doi: 10.1109/TCAD.2020.3013072 – ident: e_1_2_10_19_1 doi: 10.1109/JAS.2020.1003189 – ident: e_1_2_10_43_1 doi: 10.1007/s00521-019-04453-w – ident: e_1_2_10_7_1 doi: 10.1109/JSYST.2019.2923818 – ident: e_1_2_10_53_1 doi: 10.14722/ndss.2018.23204 – ident: e_1_2_10_13_1 doi: 10.1109/JIOT.2019.2899492 – ident: e_1_2_10_34_1 doi: 10.1007/s11704-019-8454-0 – ident: e_1_2_10_22_1 doi: 10.1109/TSMC.2019.2945067 – ident: e_1_2_10_25_1 doi: 10.1109/TCNS.2017.2670326 – ident: e_1_2_10_37_1 doi: 10.1109/TSTE.2017.2788056 – ident: e_1_2_10_59_1 – ident: e_1_2_10_11_1 doi: 10.1109/JPROC.2017.2779456 – ident: e_1_2_10_60_1 doi: 10.1007/s40747-023-01013-7 – ident: e_1_2_10_20_1 doi: 10.1109/TCNS.2016.2580906 – ident: e_1_2_10_28_1 doi: 10.1007/s11036-019-01489-z – ident: e_1_2_10_15_1 doi: 10.1109/LCSYS.2019.2925681 – ident: e_1_2_10_47_1 doi: 10.1016/j.energy.2020.119505 – ident: e_1_2_10_31_1 doi: 10.1109/JSYST.2020.3040739 – ident: e_1_2_10_56_1 – ident: e_1_2_10_46_1 doi: 10.1016/j.compeleceng.2021.107044 – ident: e_1_2_10_21_1 doi: 10.1109/TII.2018.2851939 – ident: e_1_2_10_55_1 – ident: e_1_2_10_42_1 doi: 10.1109/JIOT.2021.3067667 – ident: e_1_2_10_6_1 doi: 10.1109/ACCESS.2018.2855752 – ident: e_1_2_10_24_1 doi: 10.1109/TSMC.2019.2960301 – ident: e_1_2_10_40_1 doi: 10.1109/ACCESS.2020.3014644 – ident: e_1_2_10_44_1 doi: 10.1109/JESTPE.2019.2943449 – ident: e_1_2_10_23_1 doi: 10.1109/TSUSC.2019.2906657 – ident: e_1_2_10_32_1 doi: 10.1007/s12652-020-01995-z – ident: e_1_2_10_30_1 doi: 10.1109/TSG.2016.2561266 – ident: e_1_2_10_49_1 doi: 10.1016/j.ijcip.2018.06.003 – ident: e_1_2_10_33_1 doi: 10.1007/s10845-017-1315-5 – ident: e_1_2_10_4_1 doi: 10.1109/TII.2020.3047675 – ident: e_1_2_10_14_1 doi: 10.1109/ACCESS.2020.3011213 – ident: e_1_2_10_12_1 doi: 10.1109/JPROC.2017.2781198 – ident: e_1_2_10_27_1 doi: 10.1007/s40313-018-0420-9 – ident: e_1_2_10_54_1 doi: 10.1109/GLOBECOM42002.2020.9348167 – ident: e_1_2_10_9_1 doi: 10.1007/s11227-016-1850-4 – ident: e_1_2_10_29_1 doi: 10.1109/TPWRS.2019.2910396 – ident: e_1_2_10_26_1 doi: 10.1007/s11431-020-1621-y – ident: e_1_2_10_39_1 doi: 10.1007/s00521-018-3635-6 – ident: e_1_2_10_52_1 doi: 10.1016/j.cose.2023.103167 – ident: e_1_2_10_61_1 doi: 10.1007/s00500-021-06067-8 – ident: e_1_2_10_16_1 doi: 10.1109/TSG.2016.2581588 – ident: e_1_2_10_35_1 doi: 10.1109/TCYB.2019.2915124 – ident: e_1_2_10_36_1 doi: 10.1109/TIE.2017.2772190 – ident: e_1_2_10_8_1 doi: 10.1109/TAC.2020.3034195 – ident: e_1_2_10_3_1 doi: 10.1109/JSYST.2020.2991258 – ident: e_1_2_10_51_1 doi: 10.1016/j.jpdc.2021.03.011 |
SSID | ssj0009913 |
Score | 2.3964143 |
Snippet | Summary
Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations.... Intrustion Detection System (IDS) refers to the gear or software that monitors a network or system for malicious activity or policy violations. Periodically,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3016 |
SubjectTerms | Algorithms Artificial neural networks cyber physical system Cyber-physical systems Discriminant analysis Feature extraction hybrid classifier intrusion detection Intrusion detection systems Kurtosis Optimization |
Title | Hybrid deep architecture for intrusion detection in cyber‐physical system: An optimization‐based approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Facs.3855 https://www.proquest.com/docview/3099329739 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA3SlS58i9UqEURX006TSWbirlRLEXShFgouhiSTgGinxdZFXfkJfqNf4s082ioK4mpgcgMzOUnuSXLvCULHkjRNQH3pCRVyLxDEeDLSiWeItpYyYYly-5BX17zbCy77rF9EVbpcmFwfYrbh5kZGNl-7AS7VuDEXDZV6XKcRc_nlTcqdbP75zVw5CmhPdrgcCVgdURKWurM-aZQVv3qiOb1cJKmZl-msofvy-_Lgksf6y0TV9es36cb__cA6Wi3IJ27lvWUDLZl0E60sSBJuoUF36nK4cGLMCC-eMmBgt_ghdTkaACWUT7IgrhTeYT1V5vnj7X1UgI5zfegz3ErxEOakQZHsCSbOaya4VDLfRr3OxV276xVXMngaeAHzZCK11YwHtukyXkXEI8U0g0ULNwnAHQngv-D0NLPCHWlqogOgIEAEVNNSYDc7qJIOU7OLcMJCCsslZTUw0MiXUnNqSOhzy3wo0FV0WsIT60Kv3F2b8RTnSsskhgaMXQNW0dHMcpRrdPxgUysRjotRCgXQTai7vEtU0UkG1a_141b71j33_mq4j5bdb-fhaDVUAXjMAfCXiTrMeuon6Azvqw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFL1BXKgL30YUtSZGVwNDZzoPXRGUoAILhYSFyWSm0yZGGYjiAld-gt_ol3g7D0CjiXE1yfQ2melpe89te08BjnxaEaah-5ob2JZmulRovsNDTVAupcFcSQO1DtlqW42uedVjvRycZbkwiT7EZMFNjYx4vlYDXC1Il6eqoT5_LhkOY3MwbyLPUJHX-c1UOwqJT7y97LgYHxnUzpRndVrOan71RVOCOUtTYz9TX4G77AuT4yUPpZdRUOKv38Qb__kLq7Cc8k9STTrMGuREtA5LM6qEG9BvjFUaFwmFGJLZjQaCBJfcRypNA9HE8lF8jivCd4SPA_H08fY-THEniUT0KalGZIDTUj_N90QT5ThDkomZb0K3ftGpNbT0VgaNIzVgmh_6XHJmmbKikl5dx3ICxhnGLZYIEXHHRQqMfo8z6apdTU65iSwEuUBQkQYSnC3IR4NIbAMJmW1gxBRIjiTU0X2fW4agtm5JpmMBL8BJho_HU8lydXPGo5eILVMPG9BTDViAw4nlMJHp-MGmmEHspQMVC7CfGOr-LrcAxzFWv9b3qrVb9dz5q-EBLDQ6rabXvGxf78KiaoLkdFoR8giV2EM6Mwr24277Cd5288o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBNEH7-J0agTRp25d2nStb2M65m2IOhj4UNI0AdF1RefDfPIn-Bv9JZ70sk1REJ8KzQm0-ZKcL8k5XwD2Oa1K2zK54QU1x7A9Kg3uitCQVChlMU_RQO9DXradVsc-67JuFlWpc2FSfYjRhpseGcl8rQd4HKrKWDSUi-ey5TI2DTO2g0RCE6LrsXQU8p7kdNn1cHlk0VouPGvSSl7zqysa88tJlpq4meYi3OUfmEaXPJRfBkFZvH7TbvzfHyzBQsY-ST3tLsswJaMVmJ_QJFyFXmuok7hIKGVMJo8ZCNJbch_pJA3EEssHSRRXhO-IGAby6ePtPc5QJ6lA9BGpR6SPk1Ivy_ZEE-02Q5JLma9Bp3ly22gZ2Z0MhkBiwAwecqEEc2xV1Smvnuu4ARMMVy2ODBFv10MCjF5PMOXpM01BhY0cBJlAUFUW0pt1KET9SG4ACVnNwvVSoARSUNfkXDiWpDXTUczEAlGEwxweX2SC5frejEc_lVqmPjagrxuwCHsjyzgV6fjBppQj7GfDFAuwm1j69i6vCAcJVL_W9-uNG_3c_KvhLsxeHTf9i9P2-RbM6RZIQ9NKUECk5DZymUGwk3TaTxyI8nk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+deep+architecture+for+intrusion+detection+in+cyber%E2%80%90physical+system%3A+An+optimization%E2%80%90based+approach&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Sajeev+Ram+Arumugam&rft.au=P+Mano+Paul&rft.au=Berin+Jeba+Jingle+Issac&rft.au=Ananth%2C+J+P&rft.date=2024-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=38&rft.issue=9&rft.spage=3016&rft.epage=3039&rft_id=info:doi/10.1002%2Facs.3855&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |