Parameter‐dependent observer‐based feedback compensator design of a space‐time‐varying PDE with application to a class of steelmaking processes

This article deals with the problem of observer‐based feedback compensator design for a linear reaction–advection–diffusion equation subject to a time‐varying diffusion coefficient, a time‐varying advection coefficient, and a space‐time‐varying reaction coefficient. To solve such a problem, these co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 31; no. 16; pp. 7640 - 7656
Main Authors Wang, Jun‐Wei, Yang, Yang
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 10.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article deals with the problem of observer‐based feedback compensator design for a linear reaction–advection–diffusion equation subject to a time‐varying diffusion coefficient, a time‐varying advection coefficient, and a space‐time‐varying reaction coefficient. To solve such a problem, these coefficients are written in parametric forms under their boundedness assumptions. By considering these parametric forms of the coefficients and the distribution functions for control actuation and non‐collocated measurement, a parameter‐dependent observer‐based feedback compensator is constructed such that the resulting closed‐loop coupled equation exponentially converges to a bounded set of the equilibrium profile in the spatial L2 norm. With the aid of the Lyapunov technique and variants of Poincaré–Wirtinger's inequality, a sufficient condition for the existence of such feedback compensator is presented in the form of convex constraints. Finally, extensive simulation results for a numerical example and a class of steelmaking processes are presented to support the proposed design method. For the collocated measurement case, both theoretical and simulation results show that the proposed observer‐based feedback compensator can provide a better control performance than the static feedback compensator in the presence of measurement disturbances.
AbstractList This article deals with the problem of observer‐based feedback compensator design for a linear reaction–advection–diffusion equation subject to a time‐varying diffusion coefficient, a time‐varying advection coefficient, and a space‐time‐varying reaction coefficient. To solve such a problem, these coefficients are written in parametric forms under their boundedness assumptions. By considering these parametric forms of the coefficients and the distribution functions for control actuation and non‐collocated measurement, a parameter‐dependent observer‐based feedback compensator is constructed such that the resulting closed‐loop coupled equation exponentially converges to a bounded set of the equilibrium profile in the spatial L2 norm. With the aid of the Lyapunov technique and variants of Poincaré–Wirtinger's inequality, a sufficient condition for the existence of such feedback compensator is presented in the form of convex constraints. Finally, extensive simulation results for a numerical example and a class of steelmaking processes are presented to support the proposed design method. For the collocated measurement case, both theoretical and simulation results show that the proposed observer‐based feedback compensator can provide a better control performance than the static feedback compensator in the presence of measurement disturbances.
This article deals with the problem of observer‐based feedback compensator design for a linear reaction–advection–diffusion equation subject to a time‐varying diffusion coefficient, a time‐varying advection coefficient, and a space‐time‐varying reaction coefficient. To solve such a problem, these coefficients are written in parametric forms under their boundedness assumptions. By considering these parametric forms of the coefficients and the distribution functions for control actuation and non‐collocated measurement, a parameter‐dependent observer‐based feedback compensator is constructed such that the resulting closed‐loop coupled equation exponentially converges to a bounded set of the equilibrium profile in the spatial norm. With the aid of the Lyapunov technique and variants of Poincaré–Wirtinger's inequality, a sufficient condition for the existence of such feedback compensator is presented in the form of convex constraints. Finally, extensive simulation results for a numerical example and a class of steelmaking processes are presented to support the proposed design method. For the collocated measurement case, both theoretical and simulation results show that the proposed observer‐based feedback compensator can provide a better control performance than the static feedback compensator in the presence of measurement disturbances.
Author Wang, Jun‐Wei
Yang, Yang
Author_xml – sequence: 1
  givenname: Jun‐Wei
  orcidid: 0000-0003-0040-8914
  surname: Wang
  fullname: Wang, Jun‐Wei
  email: junweiwang@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: University of Science and Technology Beijing
BookMark eNp1kM1O3DAQxy0EEp8Sj2Cpl16ydeJkvTlWy0croRYhOEcTZ7z1ktipx4C48Qi98X48SZ3dniq4zIxmfv8Zzf-Q7TrvkLHTXMxyIYovwelZpfJqhx3koq6zvJD17lSXdbaoC7nPDonWQqRZUR6w12sIMGDE8Pbyp8MRXYcuct8ShsdNswXCjhvErgV9z7UfEkQQfeAdkl057g0HTiNoTHi0w5QeITxbt-LXZ-f8ycZfHMaxtxqi9Y5HnwS6B6JJSxGxH-B-wsfgNRIhHbM9Az3hyb98xO4uzm-X37Krn5ffl1-vMl3UsspAa1V1lShlOQdUncQWDegSsC3nSrX1wqiiBaMrLdRctUZOcW6EMpUCUPKIfdruTZd_PyDFZu0fgksnm6JaFEJKmYtEzbaUDp4ooGm0jZtfYgDbN7loJvObZH4zmZ8En_8TjMEOyZP30GyLPtkenz_kmpsfyw3_F287nUc
CitedBy_id crossref_primary_10_1002_rnc_7519
crossref_primary_10_1007_s12190_023_01921_4
crossref_primary_10_1016_j_jfranklin_2024_107493
crossref_primary_10_1002_rnc_6599
crossref_primary_10_1007_s11071_024_09404_2
crossref_primary_10_1177_09596518221118125
Cites_doi 10.1137/1.9780898718607
10.1016/j.sysconle.2020.104698
10.1016/j.automatica.2020.109285
10.1049/iet-cta.2019.0404
10.1007/978-1-4471-5337-5
10.1109/TAC.2012.2196402
10.1016/j.automatica.2017.04.025
10.1109/TAC.2018.2802422
10.1109/TAC.2010.2042229
10.1109/TAC.2019.2944918
10.1109/TAC.2016.2590506
10.1016/j.automatica.2018.03.015
10.1080/00207179.2019.1676469
10.1109/TMECH.2012.2195671
10.1007/BF02866759
10.1007/978-1-4612-4224-6
10.1007/978-94-007-0741-2
10.1016/j.automatica.2012.02.006
10.1109/TIE.2018.2884172
10.1007/978-1-4612-0185-4
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.5715
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 7656
ExternalDocumentID 10_1002_rnc_5715
RNC5715
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Beijing Municipality
  funderid: 4192037
– fundername: Fundamental Research Funds for the Central Universities
  funderid: FRF‐TP‐20‐07B
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2935-acc75d504346ae7d3ebefac4aeb4677b98f72bafc5c0767bf3767b6f07f57aa73
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:20:01 EDT 2025
Tue Jul 01 01:03:08 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Wed Jan 22 16:27:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-acc75d504346ae7d3ebefac4aeb4677b98f72bafc5c0767bf3767b6f07f57aa73
Notes Funding information
Fundamental Research Funds for the Central Universities, FRF‐TP‐20‐07B; Natural Science Foundation of Beijing Municipality, 4192037
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0040-8914
PQID 2582033310
PQPubID 1026344
PageCount 17
ParticipantIDs proquest_journals_2582033310
crossref_citationtrail_10_1002_rnc_5715
crossref_primary_10_1002_rnc_5715
wiley_primary_10_1002_rnc_5715_RNC5715
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 November 2021
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 10 November 2021
  day: 10
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2010; 55
2013; 18
2017; 81
2001
2020; 140
2011
2019; 66
2003; 8
2008
1995
2020; 14
2018; 63
2020; 122
1981
2014
2018; 93
2012; 48
2020; 65
2021; 94
2012; 57
Ray WH (e_1_2_11_2_1) 1981
e_1_2_11_10_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_9_1
e_1_2_11_12_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_18_1
e_1_2_11_6_1
e_1_2_11_17_1
e_1_2_11_5_1
e_1_2_11_16_1
e_1_2_11_4_1
e_1_2_11_15_1
e_1_2_11_3_1
e_1_2_11_19_1
Gahinet P (e_1_2_11_22_1) 1995
References_xml – year: 2011
– volume: 81
  start-page: 447
  year: 2017
  end-page: 454
  article-title: On the ISS properties of a class of parabolic DPS' with discontinuous control using sampled‐in‐space sensing and actuation
  publication-title: Automatica
– year: 1981
– volume: 48
  start-page: 826
  issue: 5
  year: 2012
  end-page: 836
  article-title: Robust sampled‐data control of a class of semilinear parabolic systems
  publication-title: Automatica
– volume: 140
  start-page: 104698
  year: 2020
  article-title: Constrained control of 1‐D parabolic PDEs using sampled in space sensing and actuation
  publication-title: Syst Control Lett
– volume: 94
  start-page: 1804
  issue: 7
  year: 2021
  end-page: 1811
  article-title: A unified Lyapunov‐based design for a dynamic compensator of linear parabolic MIMO PDEs
  publication-title: Int J Control
– volume: 63
  start-page: 4218
  issue: 12
  year: 2018
  end-page: 4233
  article-title: Backstepping control of coupled linear parabolic PIDEs with spatially varying coefficients
  publication-title: IEEE Trans Automat Contr
– volume: 18
  start-page: 998
  issue: 3
  year: 2013
  end-page: 1005
  article-title: Receding horizon control for hot strip mill cooling systems
  publication-title: IEEE/ASME Trans Mechatron
– volume: 8
  start-page: 48
  issue: 8
  year: 2003
  end-page: 58
  article-title: All about the Dirac delta function (?)
  publication-title: Resonance
– year: 2001
– year: 2008
– volume: 14
  start-page: 39
  issue: 1
  year: 2020
  end-page: 51
  article-title: Spatial domain decomposition approach to dynamic compensator design for linear space‐varying parabolic MIMO PDEs
  publication-title: IET Control Theory Appl
– volume: 57
  start-page: 2979
  issue: 12
  year: 2012
  end-page: 2993
  article-title: Adaptive control of 2‐D PDEs using mobile collocated actuator/sensor pairs with augmented vehicle dynamics
  publication-title: IEEE Trans Automat Contr
– volume: 66
  start-page: 8648
  issue: 11
  year: 2019
  end-page: 8658
  article-title: Modeling and observer‐based vibration control of a flexible spacecraft with external disturbances
  publication-title: IEEE Trans Ind Electron
– year: 1995
– volume: 122
  start-page: 109285
  year: 2020
  article-title: Constructive method for finite‐dimensional observer‐based control of 1‐D parabolic PDEs
  publication-title: Automatica
– volume: 62
  start-page: 2026
  issue: 4
  year: 2017
  end-page: 2033
  article-title: Boundary control of coupled reaction‐advection‐diffusion systems with spatially‐varying coefficients
  publication-title: IEEE Trans Automat Control
– volume: 93
  start-page: 197
  year: 2018
  end-page: 210
  article-title: Pointwise exponential stabilization of a linear parabolic PDE system using non‐collocated pointwise observation
  publication-title: Automatica
– year: 2014
– volume: 65
  start-page: 3060
  issue: 7
  year: 2020
  end-page: 3067
  article-title: Backstepping control of coupled linear parabolic PDEs with space and time dependent coefficients
  publication-title: IEEE Trans Automat Contr
– volume: 55
  start-page: 1570
  issue: 7
  year: 2010
  end-page: 1584
  article-title: Guidance of mobile actuator‐plus‐sensor networks for improved control and estimation of distributed parameter systems
  publication-title: IEEE Trans Automat Control
– ident: e_1_2_11_5_1
  doi: 10.1137/1.9780898718607
– ident: e_1_2_11_13_1
  doi: 10.1016/j.sysconle.2020.104698
– ident: e_1_2_11_19_1
  doi: 10.1016/j.automatica.2020.109285
– ident: e_1_2_11_20_1
  doi: 10.1049/iet-cta.2019.0404
– volume-title: LMI Control Toolbox for Use with Matlab
  year: 1995
  ident: e_1_2_11_22_1
– ident: e_1_2_11_6_1
  doi: 10.1007/978-1-4471-5337-5
– ident: e_1_2_11_9_1
  doi: 10.1109/TAC.2012.2196402
– ident: e_1_2_11_10_1
  doi: 10.1016/j.automatica.2017.04.025
– ident: e_1_2_11_18_1
  doi: 10.1109/TAC.2018.2802422
– ident: e_1_2_11_8_1
  doi: 10.1109/TAC.2010.2042229
– volume-title: Advanced Process Control
  year: 1981
  ident: e_1_2_11_2_1
– ident: e_1_2_11_21_1
  doi: 10.1109/TAC.2019.2944918
– ident: e_1_2_11_17_1
  doi: 10.1109/TAC.2016.2590506
– ident: e_1_2_11_11_1
  doi: 10.1016/j.automatica.2018.03.015
– ident: e_1_2_11_12_1
  doi: 10.1080/00207179.2019.1676469
– ident: e_1_2_11_14_1
  doi: 10.1109/TMECH.2012.2195671
– ident: e_1_2_11_23_1
  doi: 10.1007/BF02866759
– ident: e_1_2_11_15_1
  doi: 10.1007/978-1-4612-4224-6
– ident: e_1_2_11_4_1
  doi: 10.1007/978-94-007-0741-2
– ident: e_1_2_11_16_1
  doi: 10.1016/j.automatica.2012.02.006
– ident: e_1_2_11_7_1
  doi: 10.1109/TIE.2018.2884172
– ident: e_1_2_11_3_1
  doi: 10.1007/978-1-4612-0185-4
SSID ssj0009924
Score 2.3609438
Snippet This article deals with the problem of observer‐based feedback compensator design for a linear reaction–advection–diffusion equation subject to a time‐varying...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7640
SubjectTerms Actuation
Advection
Advection-diffusion equation
Collocation methods
Compensators
Diffusion coefficient
distributed parameter system
Distribution functions
Feedback
observer‐based feedback compensator
Parameters
parameter‐dependent design
Steel making
steelmaking processes
Title Parameter‐dependent observer‐based feedback compensator design of a space‐time‐varying PDE with application to a class of steelmaking processes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5715
https://www.proquest.com/docview/2582033310
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEA7Skx78F6tVIoieVstm02SPUltEsIgoCB6WJJtcrN3Sbj148hG8-X4-iTPZ3baKgngKLBk2m8xkvmRnviHkMBKaxVEsA6mtDqKWcoF20gUxwANljZCRL9p31Wtd3EWX9_y-jKrEXJiCH2J64YaW4fdrNHClx6cz0tAR2A8XPr8cQ7UQD93MmKPiuKhnCwA4kABiKt7ZZnhaCX71RDN4OQ9SvZfprpCHanxFcMnjySTXJ-blG3Xj_z5glSyX4JOeFdqyRhbsYJ0szVESbpD3a4XhWjDbH69vVYXcnGYab2_9Q_R7KXXg9bQyjxRj0uEojGd3mvpwEJo5qijsVMZCdyxeD80zjBNeQK_POxTvfuncn3OaZyBgEMejLOid7T_5Kll0WOQx2PEmuet2btsXQVm8ITCAIHigjBE8RX40UAArUgba4pQBBdCwNwsdSydCrZzhpilaQjukldEt1xSOC6UE2yK1QTaw24QyLZlMBeg8nP5SEWkXp9JgYgs3nAlWJ8fVQiamZDbHAhv9pOBkDhOY6gSnuk4Opj2HBZvHD30alS4kpT2Pk5ADUmIMsHCdHPlF_VU-uem1sd35a8ddshhioIyPLWyQWj6a2D1AOrne9zr9Cae2AwI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC7EPagH1yeO62oE0VPr0OlM0nhafDC-BhEFD0KTpJPL6IzMtB48-RP2tv9vf4lV6WlnFAXxFGhSdDqpSn1JV30FsJFIw9MkVZEyzkRJQ_vIeOWjFOGBdlaqJBTtO2s1mlfJ8bW4HoPdKhem5Id4vXAjywj7NRk4XUjvDFlDe2hAQlKC-Q8q6B3OUxdD7qg0LSvaIgSOFMKYinm2Hu9Ukm990RBgjsLU4GcOf8JNNcIyvKS9_VCYbfv0jrzxm58wA9MD_Mn-lAozC2OuMwdTI6yE8_DvXFPEFk74_-e_VZHcgnUNXeCGh-T6cubR8Rlt24zC0vE0TMd3loeIENb1TDPcrKzD7lS_HptHHCi-gJ3vHzC6_mUjP89Z0UUBS1CeZFH13O1dKJTF7stUBtdfgKvDg8u9ZjSo3xBZBBEi0tZKkRNFGuqAkzlHhfHaog4Y3J6lSZWXsdHeCluXDWk8McuYhq9LL6TWki_CeKfbcUvAuFFc5RLVHg-AuUyMT3NlKbdFWMElr8FWtZKZHZCbU42N26ykZY4znOqMproG668970tCjw_6rFTKkA1Mup_FAsES5wiHa7AZVvVT-eyitUft8lc7rsFE8_LsNDs9ap38gsmY4mZCqOEKjBe9B_cbgU9hVoOCvwCsYQcd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA2iILrwLY7PCKKr6tA0TboUx8HnMIiC4KIkabIZnRm0unDlJ7jz__wS701bZxQFcRUoCU2Tc3NP0ptzCdmKhGZJlMhAaquDKFYu0E66IAF6oKwRMvJJ-85b8dFVdHLNr8uoSrwLU-hDfB64oWX49RoNvJ-5vYFo6D3YDxd4v3wsiusSEd24GEhHJUmR0BYYcCCBxVTCs_Vwr2r51RUN-OUwS_VupjlNbqoOFtElnd3HXO-a52_ajf_7ghkyVbJPul_AZZaM2O4cmRzSJJwnb22F8Vow3O8vr1WK3Jz2NB7f-ofo-DLqwO1pZToUg9JhL4ybd5r5eBDac1RRWKqMheqYvR6KJ-gnvIC2G4cUD3_p0K9zmveggUEij20BePb2zqfJov3iIoN9WCBXzcPLg6OgzN4QGKAQPFDGCJ6hQBogwIqMAVycMoAADYuz0Il0ItTKGW7qIhbaoa6Mjl1dOC6UEmyRjHZ7XbtEKNOSyUwA6GH7l4lIuySTBm-2cMOZYDWyU01kakppc8ywcZsWosxhCkOd4lDXyOZnzX4h5_FDndUKC2lp0A9pyIEqMQZkuEa2_aT-2j69aB1gufzXihtkvN1opmfHrdMVMhFi0IyPM1wlo_n9o10D1pPrdQ_vD8l3BdU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter%E2%80%90dependent+observer%E2%80%90based+feedback+compensator+design+of+a+space%E2%80%90time%E2%80%90varying+PDE+with+application+to+a+class+of+steelmaking+processes&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Jun%E2%80%90Wei+Wang&rft.au=Yang%2C+Yang&rft.date=2021-11-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=16&rft.spage=7640&rft.epage=7656&rft_id=info:doi/10.1002%2Frnc.5715&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon