Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan
A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a targ...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 53; no. 2; pp. 968 - 991 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site. |
---|---|
AbstractList | A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source parameters, together with reference rock site conditions, are defined according to the available geological and geophysical information at a target site close to a potential active fault in northern Taiwan. Secondly, the scenario‐based response spectrum for a reference rock site condition is developed theoretically through an empirical approach by using a ground motion prediction equation (GMPE). The effect of the pulse period and the occurrence probability of near‐fault pulse‐like ground motion on RS is evaluated by using the ground motion simulation (GMS) technique, in which the stochastic finite‐fault simulation method is validated and applied for evaluating velocity pulse. Third, site‐specific site amplification is incorporated into RS through a site transfer function calculated from the measured horizontal‐to‐vertical Fourier spectral ratio through the microtremor (MHVR) of the target site. Finally, the design spectrum of the target site is compared with the derived site‐specific RS to evaluate the impact of the neighbor fault on the structure of the target site. |
Author | Chao, Shu‐Hsien Lin, Che‐Min Wu, Chiun‐Lin Loh, Chin‐Hsiung Huang, Jyun‐Yan Chou, Chung‐Che |
Author_xml | – sequence: 1 givenname: Jyun‐Yan orcidid: 0000-0002-2104-5625 surname: Huang fullname: Huang, Jyun‐Yan organization: National Center for Research on Earthquake Engineering – sequence: 2 givenname: Shu‐Hsien surname: Chao fullname: Chao, Shu‐Hsien organization: National Center for Research on Earthquake Engineering – sequence: 3 givenname: Che‐Min orcidid: 0000-0002-9014-1303 surname: Lin fullname: Lin, Che‐Min organization: National Center for Research on Earthquake Engineering – sequence: 4 givenname: Chung‐Che orcidid: 0000-0002-6791-3790 surname: Chou fullname: Chou, Chung‐Che email: cechou@ntu.edu.tw organization: National Taiwan University – sequence: 5 givenname: Chin‐Hsiung orcidid: 0000-0003-1007-5041 surname: Loh fullname: Loh, Chin‐Hsiung organization: National Taiwan University – sequence: 6 givenname: Chiun‐Lin surname: Wu fullname: Wu, Chiun‐Lin organization: National Center for Research on Earthquake Engineering |
BookMark | eNp1kN9KwzAUxoNMcJuCjxDwxpvOtEma9FLG_AMDEed1SNsTzejSLuk2ducj-Iw-id3qlejVgfP9vu8cvhEauNoBQpcxmcSEJDewhgkjnJ-gYUyyNMok4wM0JCSTkZRMnKFRCEtCCE2JGKLti23h6-MzNFBYYwvsITS1C4APm9ZrXMIWqrqBEud7XHSSLcFb94YdaN85jd5ULV7Vra0d3tn2HRvr-tBeCna1qfRRtg4vtN1pd45Oja4CXPzMMXq9my2mD9H86f5xejuPiiSjPNI0MYQAYxnTUpQZFECp1JRDCiI1WlMWF8RAUuY85yKRJmdC0jRLSyFYnNIxuupzG1-vNxBataw33nUnVZLFseBSUtZRk54qfB2CB6MK2x4_7gqwlYqJOnSrum7VodvOcP3L0Hi70n7_Fxr16M5WsP-XU7Pn2ZH_BnDFjx4 |
CitedBy_id | crossref_primary_10_1016_j_soildyn_2024_108933 |
Cites_doi | 10.1007/s00024‐019‐02283‐4 10.1785/gssrl.70.1.59 10.1007/s00024‐019‐02219‐y 10.1007/s00024‐010‐0150‐9 10.1785/gssrl.70.1.19 10.1002/1096‐9845(200010)29:10<1441::AID‐EQE967>3.0.CO;2‐E 10.1007/s10518‐019‐00678‐1 10.1785/0120050245 10.1007/s10518‐021‐01206‐w 10.1007/s10518‐022‐01403‐1 10.1016/j.soildyn.2019.105825 10.1002/eqe.3221 10.1785/0119990064 10.1016/j.enggeo.2020.105569 10.1177/8755293020919415 10.1016/j.jseaes.2017.01.035 10.1193/081016eqs130m 10.1002/(SICI)1096-9845(200003)29:3<339::AID-EQE908>3.0.CO;2-R 10.1785/0120090056 10.1093/gji/ggx217 10.1785/0220180376 10.1785/0120130191 10.1007/s11069‐023‐05993‐0 10.1016/j.enggeo.2021.106170 10.1061/(ASCE)1090‐0241(2006)132:12(1611) 10.1186/s40623‐016‐0519‐9 10.1016/j.enggeo.2021.106498 10.1785/0120130272 10.1016/S0267-7261(03)00075-7 10.1186/s40623‐016‐0559‐1 10.1785/0120120278 10.1177/8755293020952449 10.1785/0120120125 10.3319/TAO.2004.15.4.609(T) 10.1785/0120130196 10.1785/0120080033 10.1177/8755293019891711 10.1016/j.enggeo.2020.105500 10.1785/0120200376 10.1785/0220160082 10.1785/0120100090 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.4055 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 991 |
ExternalDocumentID | 10_1002_eqe_4055 EQE4055 |
Genre | article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c2935-a32f00e4494a87d9ece338a35e6e76faa341c0fe2db5b5728fb4783696d774163 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 22:58:19 EDT 2025 Tue Jul 01 02:21:59 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Wed Jan 22 16:19:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-a32f00e4494a87d9ece338a35e6e76faa341c0fe2db5b5728fb4783696d774163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9014-1303 0000-0002-2104-5625 0000-0003-1007-5041 0000-0002-6791-3790 |
PQID | 2911758834 |
PQPubID | 866380 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2911758834 crossref_citationtrail_10_1002_eqe_4055 crossref_primary_10_1002_eqe_4055 wiley_primary_10_1002_eqe_4055_EQE4055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 112 2019; 90 2022; 297 2000; 29 2006; 96 2021; 289 2012 2011 2019; 17 2019; 126 2009 2020; 269 2013; 103 2006; 132 2020; 36 2008; 98 2000; 90 2017; 210 2017; 138 2023; 21 2009; 99 2021; 37 2011; 168 2023 2022 2021 2017; 33 2004; 15 2020; 270 2016; 87 2020; 49 2019 2017 2016 2020; 177 2023; 118 1999; 70 2011; 101 2014; 104 2016; 68 2003; 23 2019; 176 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 2011 – volume: 98 start-page: 2262 issue: 5 year: 2008 end-page: 2277 article-title: Probability of occurrence of velocity pulses in near‐source ground motions publication-title: Bull Seismol Soc Am – year: 2009 – volume: 297 year: 2022 article-title: Investigation of shallow S‐wave velocity structure and site response parameters in Taiwan by using high‐density microtremor measurements publication-title: Eng Geol – volume: 132 start-page: 1611 issue: 12 year: 2006 end-page: 1620 article-title: Seismic site response for near‐fault forward directivity ground motions publication-title: J Geotech Geoenvironmental Eng – year: 2021 – volume: 270 year: 2020 article-title: Repeatable process for seismic microzonation using 1‐D site‐specific response spectra assessment approaches. Application to the city of Nice, France publication-title: Eng Geol – volume: 21 start-page: 5293 issue: 11 year: 2023 end-page: 5317 article-title: A nonergodic ground‐motion model of Fourier amplitude spectra for France publication-title: Bull Earthq Eng – volume: 36 start-page: 2129 issue: 4 year: 2020 end-page: 2164 article-title: Ground motion prediction equation for crustal earthquakes in Taiwan publication-title: Earthq Spectra – volume: 87 start-page: 1319 issue: 6 year: 2016 end-page: 1326 article-title: Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: a synergy effect of source rupture and site amplification publication-title: Seismol Res Lett – year: 2012 article-title: Dense microtremor survey for site effect study in Taiwan – volume: 68 start-page: 191 year: 2016 article-title: Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan publication-title: Earth Planets Space – volume: 118 start-page: 55 year: 2023 end-page: 94 article-title: Failure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquake, Taiwan publication-title: Nat Hazards – volume: 168 start-page: 85 year: 2011 end-page: 104 article-title: Recipe for predicting strong ground motion from crustal earthquake scenarios publication-title: Pure Appl Geophys – year: 2021 article-title: Blind prediction step 2, 3 of the team TWM: case study based on stochastic green's function and equivalent linear methods – volume: 70 start-page: 19 issue: 1 year: 1999 end-page: 28 article-title: Probabilistic seismic hazard analysis without the ergodic assumption publication-title: Seismol Res Lett – volume: 101 start-page: 742 issue: 2 year: 2011 end-page: 755 article-title: An empirically calibrated framework for including the effects of near‐fault directivity in probabilistic seismic hazard analysis publication-title: Bull Seismol Soc Am – year: 2022 – volume: 36 start-page: 463 issue: 2 year: 2020 end-page: 506 article-title: A horizontal ground‐motion model for crustal earthquakes and subduction earthquakes in Taiwan publication-title: Earthq Spectra – volume: 15 start-page: 609 issue: 4 year: 2004 end-page: 627 article-title: Investigating subsurface structures and P‐ and S‐wave velocities in the Taipei basin publication-title: Terr Atmos Ocean Sci – volume: 99 start-page: 3202 issue: 6 year: 2009 end-page: 3216 article-title: Comparing stochastic point‐source and finite‐source ground‐motion simulations: sMSIM and EXSIM publication-title: Bull Seismol Soc Am – volume: 112 start-page: 361 issue: 1 year: 2022 end-page: 380 article-title: Within‐ and between‐event variabilities of strong‐velocity pulses of moderate earthquakes within dense seismic arrays publication-title: Bull Seismol Soc Am – volume: 90 start-page: 255 issue: 2 year: 2000 end-page: 274 article-title: Stochastic modeling of California ground motions publication-title: Bull Seismol Soc Am – volume: 68 start-page: 147 year: 2016 article-title: Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data publication-title: Earth Planets Space – volume: 17 start-page: 4743 year: 2019 end-page: 4796 article-title: Site‐specific probabilistic seismic hazard analysis for the western area of Naples, Italy publication-title: Bull Earthquake Eng – volume: 21 start-page: 5233 issue: 11 year: 2023 end-page: 5264 article-title: A non‐ergodic effective amplitude ground‐motion model for California publication-title: Bull Earthq Eng – volume: 138 start-page: 399 year: 2017 end-page: 415 article-title: Site correction of a high‐frequency strong‐ground‐motion simulation based on an empirical transfer function publication-title: J Asian Earth Sci – volume: 126 year: 2019 article-title: Regional stochastic GMPE with available recorded data for active region—Application to the Himalayan region publication-title: Soil Dynam Earthquake Eng – volume: 103 start-page: 1360 issue: 2B year: 2013 end-page: 1372 article-title: A method for including path effects in ground‐motion prediction equations: an example using the Mw 9.0 Tohoku earthquake aftershocks publication-title: Bull Seismol Soc Am – volume: 33 start-page: 1433 issue: 4 year: 2017 end-page: 1453 article-title: From ergodic to region‐ and site‐specific probabilistic seismic hazard assessment: method development and application at European and Middle Eastern sites publication-title: Earthq Spectra – year: 2016 – year: 2019 article-title: Observed pulse‐liked ground motion and rupture directivity effect in Taiwan ground motion dataset – volume: 289 year: 2021 article-title: Seismic amplification maps of Italy based on site‐specific microzonation dataset and one‐dimensional numerical approach publication-title: Eng Geol – volume: 104 start-page: 1601 issue: 4 year: 2014 end-page: 1619 article-title: Application of single‐station sigma and site‐response characterization in a probabilistic seismic‐hazard analysis for a new nuclear site publication-title: Bull Seismol Soc Am – year: 2012 – volume: 70 start-page: 59 issue: 1 year: 1999 end-page: 80 article-title: Characterizing crustal earthquake slip models for the prediction of strong ground motion publication-title: Seismol Res Lett – volume: 29 start-page: 339 year: 2000 end-page: 357 article-title: Empirical model for estimating Fourier amplitude spectra of ground acceleration in Taiwan region publication-title: Earthq Eng Struct Dyn – volume: 104 start-page: 1914 issue: 4 year: 2014 end-page: 1929 article-title: Adding fling effects to processed ground‐motion time histories publication-title: Bull Seismol Soc Am – volume: 23 start-page: 715 year: 2003 end-page: 735 article-title: Evaluation of hard rock spectral models for the Taiwan region on the basis of the 1999 Chi‐Chi earthquake data publication-title: Soil Dynam Earthquake Eng – volume: 96 start-page: 2181 issue: 6 year: 2006 end-page: 2205 article-title: Earthquake ground‐motion prediction equations for eastern north America publication-title: Bull Seismol Soc Am – volume: 29 start-page: 1441 issue: 10 year: 2000 end-page: 1455 article-title: Establishing absorbed energy spectra—an attenuation approach publication-title: Earthq Eng Struct Dyn – volume: 269 year: 2020 article-title: Non‐linear modulation of site response: sensitivity to various surface ground‐motion intensity measures and site‐condition proxies using a neural network approach publication-title: Eng Geol – volume: 104 start-page: 2456 issue: 5 year: 2014 end-page: 2466 article-title: An efficient algorithm to identify strong velocity pulses in multi‐component ground motions publication-title: Bull Seismol Soc Am – volume: 49 start-page: 4 issue: 1 year: 2020 end-page: 23 article-title: Spatial correlations of ground motion for non‐ergodic seismic hazard analysis publication-title: Earthq Eng Struct Dyn – volume: 37 start-page: 827 issue: 2 year: 2021 end-page: 856 article-title: Implementing horizontal‐to‐vertical Fourier spectral ratios and spatial correlation in a ground‐motion prediction equation to predict site effects publication-title: Earthq Spectra – volume: 176 start-page: 4861 issue: 11 year: 2019 end-page: 4879 article-title: The high frequency decay parameter (Kappa) in Taiwan publication-title: Pure Appl Geophys – year: 2023 – volume: 90 start-page: 1437 issue: 4 year: 2019 end-page: 1443 article-title: What is the Nakamura method? publication-title: Seismol Res Lett – volume: 177 start-page: 2021 year: 2020 end-page: 2047 article-title: Extension of characterized source model for long‐period ground motions in near‐fault area publication-title: Pure Appl Geophys – volume: 210 start-page: 1092 issue: 2 year: 2017 end-page: 1104 article-title: Between‐event and between‐station variability observed in the Fourier and response spectra domains: comparison with seismological models publication-title: Geophys J Int – year: 2017 article-title: Near‐field long‐period strong ground motion during the 2016 Mw 7.0 Kumamoto earthquake – volume: 103 start-page: 1321 issue: 2B year: 2013 end-page: 1335 article-title: Coseismic deformation time history calculated from acceleration records using an EMD‐derived baseline correction scheme: a new approach validated for the 2011 Tohoku earthquake publication-title: Bull Seismol Soc Am – ident: e_1_2_10_23_1 doi: 10.1007/s00024‐019‐02283‐4 – ident: e_1_2_10_43_1 doi: 10.1785/gssrl.70.1.59 – ident: e_1_2_10_34_1 doi: 10.1007/s00024‐019‐02219‐y – ident: e_1_2_10_36_1 doi: 10.1007/s00024‐010‐0150‐9 – ident: e_1_2_10_14_1 doi: 10.1785/gssrl.70.1.19 – ident: e_1_2_10_9_1 doi: 10.1002/1096‐9845(200010)29:10<1441::AID‐EQE967>3.0.CO;2‐E – ident: e_1_2_10_13_1 – ident: e_1_2_10_4_1 doi: 10.1007/s10518‐019‐00678‐1 – ident: e_1_2_10_35_1 – ident: e_1_2_10_33_1 doi: 10.1785/0120050245 – ident: e_1_2_10_17_1 doi: 10.1007/s10518‐021‐01206‐w – ident: e_1_2_10_18_1 doi: 10.1007/s10518‐022‐01403‐1 – ident: e_1_2_10_29_1 doi: 10.1016/j.soildyn.2019.105825 – ident: e_1_2_10_16_1 doi: 10.1002/eqe.3221 – ident: e_1_2_10_28_1 doi: 10.1785/0119990064 – ident: e_1_2_10_7_1 doi: 10.1016/j.enggeo.2020.105569 – ident: e_1_2_10_12_1 doi: 10.1177/8755293020919415 – ident: e_1_2_10_25_1 doi: 10.1016/j.jseaes.2017.01.035 – ident: e_1_2_10_6_1 doi: 10.1193/081016eqs130m – ident: e_1_2_10_30_1 doi: 10.1002/(SICI)1096-9845(200003)29:3<339::AID-EQE908>3.0.CO;2-R – ident: e_1_2_10_24_1 doi: 10.1785/0120090056 – ident: e_1_2_10_27_1 doi: 10.1093/gji/ggx217 – ident: e_1_2_10_26_1 doi: 10.1785/0220180376 – ident: e_1_2_10_37_1 doi: 10.1785/0120130191 – ident: e_1_2_10_49_1 doi: 10.1007/s11069‐023‐05993‐0 – ident: e_1_2_10_45_1 – ident: e_1_2_10_5_1 doi: 10.1016/j.enggeo.2021.106170 – ident: e_1_2_10_52_1 doi: 10.1061/(ASCE)1090‐0241(2006)132:12(1611) – ident: e_1_2_10_48_1 – ident: e_1_2_10_41_1 – ident: e_1_2_10_42_1 doi: 10.1186/s40623‐016‐0519‐9 – ident: e_1_2_10_40_1 doi: 10.1016/j.enggeo.2021.106498 – ident: e_1_2_10_50_1 doi: 10.1785/0120130272 – ident: e_1_2_10_2_1 – ident: e_1_2_10_39_1 – ident: e_1_2_10_31_1 doi: 10.1016/S0267-7261(03)00075-7 – ident: e_1_2_10_32_1 – ident: e_1_2_10_47_1 doi: 10.1186/s40623‐016‐0559‐1 – ident: e_1_2_10_44_1 doi: 10.1785/0120120278 – ident: e_1_2_10_19_1 doi: 10.1177/8755293020952449 – ident: e_1_2_10_38_1 – ident: e_1_2_10_15_1 doi: 10.1785/0120120125 – ident: e_1_2_10_51_1 doi: 10.3319/TAO.2004.15.4.609(T) – ident: e_1_2_10_8_1 doi: 10.1785/0120130196 – ident: e_1_2_10_20_1 doi: 10.1785/0120080033 – ident: e_1_2_10_11_1 doi: 10.1177/8755293019891711 – ident: e_1_2_10_53_1 doi: 10.1016/j.enggeo.2020.105500 – ident: e_1_2_10_46_1 doi: 10.1785/0120200376 – ident: e_1_2_10_22_1 – ident: e_1_2_10_3_1 – ident: e_1_2_10_21_1 doi: 10.1785/0220160082 – ident: e_1_2_10_10_1 doi: 10.1785/0120100090 |
SSID | ssj0003607 |
Score | 2.4123793 |
Snippet | A new methodology is proposed for developing a scenario‐based site‐specific response spectrum (RS) considering near‐fault effects in Taiwan. First, source... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 968 |
SubjectTerms | Empirical equations Fault lines Ground motion ground motion prediction equation ground motion simulation horizontal‐to‐vertical Fourier spectral ratios Motion simulation Movement near‐fault pulse‐like ground motion Probability theory Response spectra Rocks Simulation site‐specific effect Transfer functions |
Title | Site‐specific response spectra developed by considering near‐fault motion with finite‐fault simulation in Taiwan |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4055 https://www.proquest.com/docview/2911758834 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA7ikz54F-eNCKJP3bo0bdNHkckQFNQNBj6UkxsMterWKfrkT_A3-ktMmnaboiA-9aE5oU1yki-H830HoX3gVBINzBOCUI_GBIpAk5eAIklTc4gDy0Y-O4_aXXraC3tlVqXlwjh9iHHAzXpGsV9bBwc-bExEQ9Wjqhu0YfnlNlXL4qHLiXJUEPljuUxmduBKd9Ynjcrw60k0gZfTILU4ZU4W0XX1fS655KY-ynldvH6TbvzfDyyhhRJ84iO3WpbRjMpW0PyUJOEqeroyGPTj7d0yMG0WER64JFqFC07mAHBJs1IS8xcsynqfxhZnxmmMpYbRbY5ddSBsw7xY9zPXqXs17N-VNcNwP8Md6D9Dtoa6J63OcdsrazN4wgCE0IOAaN9XlCYUWCwTJZS57EIQqkjFkQYwp6PwtSKShzyMCdOcWsJIEsm4AIHraDa7z9QGwk0pDeyRQglzXQOhGTAeRkxZbNqUgtfQYTVPqSiFy239jNvUSS6T1IxkakeyhvbGLR-cWMcPbbarqU5Ldx2mZlkaGMVYQGvooJizX-3T1kXLPjf_2nALzREDhFym9zaazQcjtWOATM53iyX7Ce9L9YY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6FcCg9QFuoGhrKVkJwcuKs1_ZanBBKFGgSCUikHCpZ-ytZTV3ID6iceIQ-Y5-EXa-dBEQl1JMP3lnZuzs734xmvgF4xTiRWDPqCYGJR2LMikCTlzCFk47mLA5sNfJwFPUn5OM0nNbgbVUL4_gh1gE3qxnFfW0V3Aak2xvWUPVNtQzcCB_AQ9vQu_CnPm-4o4LIXxNmUnMHV8yzPm5Xkn_aog3A3IaphZ3pPYHz6gtdeslFa7XkLfHzL_LGe_7CHjwu8Sd65w7MPtRUfgC7W6yET-H7FwNDb3_d2CJMm0iE5i6PVqGiLHPOUFlppSTi10iULT-NLMqN3hhJzVazJXINgpCN9CKd5W5S92qRXZZtw1CWozHLfrD8GUx63fH7vle2Z_CEwQihxwKsfV8RkhBGY5kooYy_y4JQRSqONGPGQApfKyx5yMMYU82JrRlJIhkXOPAQ6vlVro4AdaQ0yEcKJYzHxoSmjPIwosrC044UvAFvqo1KRcldbltozFLHuoxTs5KpXckGnK5HfnV8Hf8Y06z2Oi01dpGak2mQFKUBacDrYtPulE-7n7r2-fx_B76Enf54OEgHH0Znx_AIG1zkEr-bUF_OV-qFwTVLflKc398r_vmh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BIiE48CoVW16uhOCUJes4iXNEsCseLSqwKyH1EPkprbpNt_sAwYmfwG_kl2DHyS6gVkKccsiMldgzns_WzDcAO4wTiTWjnhCYeCTGLL9o8hKmcFLXnMWBrUb-fh4dt8npdXhdZFXaWhjHDzG-cLOeke_X1sF7Uu9PSEPVX1UzaCOchhkS-dRa9NHlhDoqiPwxXyY1W3BJPOvj_VLzdSia4MuXKDUPM81F-Fl-oMsu-VUbDXlN3L_hbvzYHyzBQoE-0YEzl2WYUtkKzL_gJPwEN1cGhD49PNoSTJtGhPoui1ahvCizz1BRZ6Uk4ndIFA0_jS7KjNcYTc1G3SFy7YGQvedFupO5Qd2rQed30TQMdTLUYp1blq1Cu9loHR57RXMGTxiEEHoswNr3FSEJYTSWiRLKnHZZEKpIxZFmzIRH4WuFJQ95GGOqObEVI0kk4xwFfoZK9idTa4DqUhrcI4US5rzGhKaM8jCiyoLTuhS8CnvlOqWiYC63DTS6qeNcxqmZydTOZBW-jiV7jq3jHzIb5VKnhb8OUmOXBkdRGpAq7OZr9l_9tHHRsM8v7xXchtkfR83028n52TrMYQOKXNb3BlSG_ZHaNKBmyLdy630GdIr4WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Site%E2%80%90specific+response+spectra+developed+by+considering+near%E2%80%90fault+motion+with+finite%E2%80%90fault+simulation+in+Taiwan&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Jyun%E2%80%90Yan+Huang&rft.au=Shu%E2%80%90Hsien+Chao&rft.au=Che%E2%80%90Min+Lin&rft.au=Chung%E2%80%90Che+Chou&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=53&rft.issue=2&rft.spage=968&rft.epage=991&rft_id=info:doi/10.1002%2Feqe.4055&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |