Seismic response mitigation of buildings with an active inerter damper system
Summary It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics....
Saved in:
Published in | Structural control and health monitoring Vol. 29; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Pavia
John Wiley & Sons, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics. In this study, a novel active control system named active inerter damper (AID) is proposed to mitigate seismic response of buildings which is composed of a mechanical ball‐screw inerter, a servo‐hydraulic actuator, sensors, and a digital controller. Compared to an active mass damper, the AID requires less mass support structure and installation space in real engineering practice. In this paper, two force tracking controllers for the AID system are proposed, designed, and validated in the laboratory first which aim to impose control force on buildings accurately because force tracking performance of an active control system is extremely crucial to its seismic control performance. Afterwards, shake table tests of a three‐story steel specimen with an AID system are conducted to validate the feasibility of AID control application for buildings. The control force is computed from a machine learning‐based controller that utilizes acceleration feedback directly from the steel specimen. Experimental results demonstrate that force tracking performance of the AID system is satisfactory. Meanwhile, the AID system mitigates seismic response of the steel specimen successfully and effectively. |
---|---|
AbstractList | It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics. In this study, a novel active control system named active inerter damper (AID) is proposed to mitigate seismic response of buildings which is composed of a mechanical ball‐screw inerter, a servo‐hydraulic actuator, sensors, and a digital controller. Compared to an active mass damper, the AID requires less mass support structure and installation space in real engineering practice. In this paper, two force tracking controllers for the AID system are proposed, designed, and validated in the laboratory first which aim to impose control force on buildings accurately because force tracking performance of an active control system is extremely crucial to its seismic control performance. Afterwards, shake table tests of a three‐story steel specimen with an AID system are conducted to validate the feasibility of AID control application for buildings. The control force is computed from a machine learning‐based controller that utilizes acceleration feedback directly from the steel specimen. Experimental results demonstrate that force tracking performance of the AID system is satisfactory. Meanwhile, the AID system mitigates seismic response of the steel specimen successfully and effectively. Summary It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics. In this study, a novel active control system named active inerter damper (AID) is proposed to mitigate seismic response of buildings which is composed of a mechanical ball‐screw inerter, a servo‐hydraulic actuator, sensors, and a digital controller. Compared to an active mass damper, the AID requires less mass support structure and installation space in real engineering practice. In this paper, two force tracking controllers for the AID system are proposed, designed, and validated in the laboratory first which aim to impose control force on buildings accurately because force tracking performance of an active control system is extremely crucial to its seismic control performance. Afterwards, shake table tests of a three‐story steel specimen with an AID system are conducted to validate the feasibility of AID control application for buildings. The control force is computed from a machine learning‐based controller that utilizes acceleration feedback directly from the steel specimen. Experimental results demonstrate that force tracking performance of the AID system is satisfactory. Meanwhile, the AID system mitigates seismic response of the steel specimen successfully and effectively. |
Author | Chen, Po‐Chang Ting, Guan‐Chung Chen, Pei‐Ching |
Author_xml | – sequence: 1 givenname: Pei‐Ching orcidid: 0000-0001-7626-3454 surname: Chen fullname: Chen, Pei‐Ching email: peichingchen@mail.ntust.edu.tw organization: National Taiwan University of Science and Technology – sequence: 2 givenname: Po‐Chang surname: Chen fullname: Chen, Po‐Chang organization: National Taiwan University of Science and Technology – sequence: 3 givenname: Guan‐Chung surname: Ting fullname: Ting, Guan‐Chung organization: National Taiwan University |
BookMark | eNp1kM9LwzAYhoNMcJuCf0LAi5fO5suPrkcZOoWJh81zSNN0ZrRpTTLH_nu7TTyInt7v8LzvB88IDVzrDELXJJ2QNIW7EPUE8oyfoSHhjCcAgg5-bs4v0CiETU8KmPIhelkaGxqrsTeha10wuLHRrlW0rcNthYutrUvr1gHvbHzHymGlo_002Drjo_G4VE3XR9iHaJpLdF6pOpir7xyjt8eH1ewpWbzOn2f3i0RDTnlCaMnTXOQg-FQXXGhFCCsZKJoVvNRMZwKMKCgoKAgYpvKCUpaWFSsLWnFBx-jmtNv59mNrQpSbdutd_1KCmNIsZxlAT92eKO3bELypZOdto_xeklQeZMleljzI6tHJL1TbeJQQvbL1X4XkVNjZ2uz_HZbL1ezIfwHKx3ys |
CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115678 crossref_primary_10_1016_j_heliyon_2024_e35870 crossref_primary_10_1061_JSENDH_STENG_12695 crossref_primary_10_1016_j_jobe_2025_111791 crossref_primary_10_1016_j_soildyn_2025_109353 crossref_primary_10_1016_j_engstruct_2023_116760 crossref_primary_10_1142_S0219455424501608 crossref_primary_10_3390_act12060252 crossref_primary_10_1016_j_istruc_2024_105925 |
Cites_doi | 10.1115/1.482466 10.1111/j.1467‐8667.2006.00460.x 10.12989/sem.2001.12.6.633 10.3390/app10155342 10.1088/0964‐1726/17/01/015021 10.1002/eqe.2366 10.1080/00423110701519031 10.1016/j.jsv.2016.12.036 10.1109/TAC.2002.803532 10.1177/1077546314528365 10.1016/0005‐1098(84)90014‐1 10.1080/00423110412331289871 10.1016/j.jsv.2021.116121 10.1002/stc.2015 10.1002/eqe.837 10.1061/(ASCE)0733‐9399(1995)121:2(322) 10.1016/j.soildyn.2017.09.020 10.1155/2019/3612516 10.1080/00207179.2013.842263 10.1177/1077546313478294 10.1016/j.engstruct.2021.112655 10.1243/09544062JMES2199 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/stc.2975 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1545-2263 |
EndPage | n/a |
ExternalDocumentID | 10_1002_stc_2975 STC2975 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 109‐2625‐M‐011‐002 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HBH HF~ HHY HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D Q.N QB0 QRW R.K RHX ROL RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WIH WIK WLBEL WOHZO WYISQ XV2 ~IA ~WT AAYXX ABJCF ADMLS AEUYN AFKRA AGQPQ BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PTHSS 1OB 7ST 8FD C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c2935-13d509692658cb56ca114d42a37b5dc4c762e6b32a2b12e4a9b3340df4db3f563 |
IEDL.DBID | DR2 |
ISSN | 1545-2255 |
IngestDate | Wed Aug 13 04:54:41 EDT 2025 Tue Jul 01 04:05:46 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Wed Jan 22 16:24:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2935-13d509692658cb56ca114d42a37b5dc4c762e6b32a2b12e4a9b3340df4db3f563 |
Notes | Funding information Ministry of Science and Technology, Taiwan, Grant/Award Number: MOST 109‐2625‐M‐011‐002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7626-3454 |
PQID | 2683794722 |
PQPubID | 2034347 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2683794722 crossref_primary_10_1002_stc_2975 crossref_citationtrail_10_1002_stc_2975 wiley_primary_10_1002_stc_2975_STC2975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationPlace | Pavia |
PublicationPlace_xml | – name: Pavia |
PublicationTitle | Structural control and health monitoring |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2007; 17 2021; 27 2019; 2019 1984; 20 2004; 42 2017; 24 2021; 504 2013; 86 2008; 37 1953; 5 2017; 392 2021; 243 2020; 10 2017; 115 1942; 64 2014; 43 2020; 18 2011; 225 2002; 47 2000 2006; 21 2015; 21 2008; 46 2000; 122 2001; 12 1995; 121 2016; 22 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Chen PC (e_1_2_10_26_1) 2021; 27 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 Nowak RF (e_1_2_10_12_1) 2000 e_1_2_10_15_1 e_1_2_10_13_1 e_1_2_10_11_1 Cohen GH (e_1_2_10_10_1) 1953; 5 Ziegler JG (e_1_2_10_9_1) 1942; 64 e_1_2_10_27_1 e_1_2_10_28_1 Chen PC (e_1_2_10_25_1) 2020; 18 |
References_xml | – volume: 47 start-page: 1648 issue: 10 year: 2002 end-page: 1662 article-title: Synthesis of mechanical networks: the inerter publication-title: IEEE Trans Autom Control – volume: 86 start-page: 2035 issue: 11 year: 2013 end-page: 2051 article-title: Design and modelling of a fluid inerter publication-title: Int J Control – volume: 504 year: 2021 article-title: Modeling, design and experiments of a ball‐screw inerter with mechanical diodes publication-title: J Sound Vib – volume: 20 start-page: 645 issue: 5 year: 1984 end-page: 651 article-title: Automatic tuning of simple regulators with specifications on phase and amplitude margins publication-title: Automatica – volume: 27 start-page: 705 issue: 4 year: 2021 end-page: 717 article-title: Performance‐based optimization of LQR for active mass damper using symbiotic organisms search publication-title: Smart Struct Syst – year: 2000 – volume: 21 start-page: 919 issue: 5 year: 2015 end-page: 937 article-title: A state‐of‐the‐art review of structural control systems publication-title: J Vib Control – volume: 46 start-page: 575 issue: 7 year: 2008 end-page: 595 article-title: The impact of inerter nonlinearities on vehicle suspension control publication-title: Veh Syst Dyn – volume: 18 start-page: 337 issue: 3 year: 2020 end-page: 348 article-title: A versatile small‐scale structural laboratory for novel experimental earthquake engineering publication-title: Earthquakes Struct – volume: 115 start-page: 838 year: 2017 end-page: 852 article-title: Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil‐structure interaction publication-title: Soil Dyn Earthquake Eng – volume: 37 start-page: 1785 issue: 15 year: 2008 end-page: 1800 article-title: Dynamic force control with hydraulic actuators using added compliance and displacement compensation publication-title: Earthquake Eng Struct Dyn – volume: 17 issue: 1 year: 2007 article-title: robust control design of active structural vibration suppression using an active mass damper publication-title: Smart Mater Struct – volume: 121 start-page: 322 issue: 2 year: 1995 end-page: 338 article-title: Role of control‐structure interaction in protective system design publication-title: J Eng Mech – volume: 12 start-page: 633 issue: 6 year: 2001 end-page: 656 article-title: Seismic test of modal control with direct output feedback for building structures publication-title: Struct Eng Mech – volume: 5 start-page: 827 year: 1953 end-page: 834 article-title: Theoretical considerations of retarded control publication-title: Trans ASME – volume: 42 start-page: 235 issue: 4 year: 2004 end-page: 257 article-title: Performance benefits in passive vehicle suspensions employing inerters publication-title: Veh Syst Dyn – volume: 43 start-page: 681 issue: 5 year: 2014 end-page: 699 article-title: Model‐based multi‐metric control of uniaxial shake tables publication-title: Earthquake Eng Struct Dyn – volume: 225 start-page: 66 issue: 1 year: 2011 end-page: 72 article-title: Designing and testing a hydraulic inerter publication-title: Proc Inst Mech Eng, Part C: J Mech Eng Sci – volume: 64 start-page: 759 year: 1942 end-page: 768 article-title: Optimum settings for automatic controllers publication-title: Trans ASME – volume: 24 issue: 11 year: 2017 article-title: A control framework for uniaxial shaking tables considering tracking performance and system robustness publication-title: Struct Control Health Monit – volume: 10 issue: 15 year: 2020 article-title: Machine‐learning based optimal seismic control of structure with active mass damper publication-title: Appl Sci – volume: 392 start-page: 18 year: 2017 end-page: 30 article-title: Active vibration control of structure by active mass damper and multi‐modal negative acceleration feedback control algorithm publication-title: J Sound Vib – volume: 2019 year: 2019 article-title: Adaptive model reference sliding mode control of structural nonlinear vibration publication-title: Shock Vib – volume: 122 start-page: 232 issue: 1 year: 2000 end-page: 237 article-title: Nonlinear force/pressure tracking of an electro‐hydraulic actuator publication-title: J Dyn Sys Meas Control – volume: 243 year: 2021 article-title: Inerter‐based structural vibration control: a state‐of‐the‐art review publication-title: Eng Struct – volume: 22 start-page: 224 issue: 1 year: 2016 end-page: 234 article-title: Vibration control of an optical table employing mechatronic inerter networks publication-title: J Vib Control – volume: 21 start-page: 605 issue: 8 year: 2006 end-page: 611 article-title: Active control of structures using energy‐based LQR method publication-title: Comput Aided Civ Inf Eng – ident: e_1_2_10_16_1 doi: 10.1115/1.482466 – ident: e_1_2_10_3_1 doi: 10.1111/j.1467‐8667.2006.00460.x – ident: e_1_2_10_4_1 doi: 10.12989/sem.2001.12.6.633 – ident: e_1_2_10_28_1 doi: 10.3390/app10155342 – ident: e_1_2_10_7_1 doi: 10.1088/0964‐1726/17/01/015021 – ident: e_1_2_10_13_1 doi: 10.1002/eqe.2366 – volume: 64 start-page: 759 year: 1942 ident: e_1_2_10_9_1 article-title: Optimum settings for automatic controllers publication-title: Trans ASME – ident: e_1_2_10_19_1 doi: 10.1080/00423110701519031 – ident: e_1_2_10_8_1 doi: 10.1016/j.jsv.2016.12.036 – ident: e_1_2_10_17_1 doi: 10.1109/TAC.2002.803532 – ident: e_1_2_10_23_1 doi: 10.1177/1077546314528365 – ident: e_1_2_10_11_1 doi: 10.1016/0005‐1098(84)90014‐1 – ident: e_1_2_10_18_1 doi: 10.1080/00423110412331289871 – volume-title: Proceedings of the 12th World Conference on Earthquake Engineering year: 2000 ident: e_1_2_10_12_1 – volume: 27 start-page: 705 issue: 4 year: 2021 ident: e_1_2_10_26_1 article-title: Performance‐based optimization of LQR for active mass damper using symbiotic organisms search publication-title: Smart Struct Syst – ident: e_1_2_10_20_1 doi: 10.1016/j.jsv.2021.116121 – ident: e_1_2_10_14_1 doi: 10.1002/stc.2015 – ident: e_1_2_10_15_1 doi: 10.1002/eqe.837 – volume: 18 start-page: 337 issue: 3 year: 2020 ident: e_1_2_10_25_1 article-title: A versatile small‐scale structural laboratory for novel experimental earthquake engineering publication-title: Earthquakes Struct – ident: e_1_2_10_27_1 doi: 10.1061/(ASCE)0733‐9399(1995)121:2(322) – ident: e_1_2_10_5_1 doi: 10.1016/j.soildyn.2017.09.020 – ident: e_1_2_10_6_1 doi: 10.1155/2019/3612516 – volume: 5 start-page: 827 year: 1953 ident: e_1_2_10_10_1 article-title: Theoretical considerations of retarded control publication-title: Trans ASME – ident: e_1_2_10_22_1 doi: 10.1080/00207179.2013.842263 – ident: e_1_2_10_2_1 doi: 10.1177/1077546313478294 – ident: e_1_2_10_24_1 doi: 10.1016/j.engstruct.2021.112655 – ident: e_1_2_10_21_1 doi: 10.1243/09544062JMES2199 |
SSID | ssj0026285 |
Score | 2.3666823 |
Snippet | Summary
It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical... It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Active control Active damping active inerter damper Actuators Buildings Control systems Controllers Earthquake dampers force tracking Hydraulic equipment Machine learning Mechanical properties Seismic engineering Seismic response seismic response mitigation shake table test Shake table tests Steel structural control Tracking control |
Title | Seismic response mitigation of buildings with an active inerter damper system |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2975 https://www.proquest.com/docview/2683794722 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMeD9KQH32J9EUH0lHabV7tHKZYi6MG2UPCw5LVQtFvp1ouf3kx2t62iIJ72sAnsZiaTf8LMLwhdGZvqOOYxEUJq4p1CEZVGnBi_1bCRgLch2-JR9kf8fizGZVYl1MIUfIjlgRvMjBCvYYIrnTdX0NAcCIRxG-rLIVUL9NDTkhxFoTIwoFK5IN5lRcWdjWiz6vh1JVrJy3WRGlaZ3g56rr6vSC55abwvdMN8fEM3_u8HdtF2KT7xbeEte2jDZftoaw1JeIAeBm6STycGz4vkWYenkwLDMcvwLMW6vEY7x3CCi1WGVYiYGIoIvY2wVV6Iz3FBiD5Eo97dsNsn5ZULxPh1X5AWs8CDiakXJkYLaZTfL1lOFWtrYQ03PnY6qRlVVLeo4yrWjPHIptxqlgrJjlAtm2XuGGHmQ0WHKi07MuLOMtX2TuEip3lHS-FMHd1Uw5-YkkcO12K8JgVJmSZ-gBIYoDq6XLZ8KxgcP7Q5qyyYlLMwT6j02-8YcJh1dB1M8Wv_ZDDswvPkrw1P0SaFSoiQC3iGaov5uzv3-mShL4InfgJwnuLS |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEIAHrQf14FusVl1B9BSb7qsNnsQH9dEetIIHIewrULSp9HHx17ubTVoVBfGUQ3Yh2Z2dnRlmvgE4VDqRUUSjgDEuAysUIhBJSANlXQ0dMvc2y7Zo8-YjvXliTzNwWtTCeD7EJODmTkamr90BdwHp6pQaOnQIwqjOZmHONfR24PyL-wk7CrvawAyWSllghZYV5NkQV4uZX--iqYH52UzN7pmrZXguvtCnl7ycjEfyRL1_gzf-8xdWYCm3P9GZF5hVmDHpGix-ohKuQ-vBdIe9rkIDnz9rUK_rSRz9FPUTJPNO2kPkgrhIpEhkShO5OkK7TUgLa4sPkIdEb8Dj1WXnvBnkXRcCZa9-FtSIdkiYCFvbREnGlbAuk6ZYkLpkWlFl1afhkmCBZQ0bKiJJCA11QrUkCeNkE0ppPzVbgIjVFg0sJG_wkBpNRN3KhQmNpA3JmVFlOC7WP1Y5ktx1xniNPUwZx3aBYrdAZTiYjHzzGI4fxlSKLYzzgziMMbceeOSImGU4yvbi1_nxQ-fcPbf_OnAf5pud1l18d92-3YEF7AojstTACpRGg7HZtebKSO5lYvkBnh3m7g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFIAfWkH04C7WNYLoaeqYrc1RrKVuRWwFwcOQbaCoU-ly8debzNJWURBPc5gEZvKWvIT3vgdwpE2shKAiYIyrwCmFDGQc0kC7o4YJmX-bZlu0ePORXj-xpzyr0tfCZHyI8YWbt4zUX3sDfzfx6QQaOvAEQlFlszBHeSh824b6wxgdhX1pYMpKpSxwOssK8GyIT4uZX7eiSXw5HaWm20xjGZ6LD8yyS14qo6Gq6I9v7Mb__cEKLOXRJzrP1GUVZmyyBotTTMJ1uGvb7uCtq1E_y5616K2bcTh6CerFSOV9tAfIX-EimSCZukzkqwidkJCRLhLvowwRvQGPjcvORTPIey4E2m38LDgjxgNhBHaRiVaMa-kOTIZiSaqKGU21c56WK4IlVmfYUikUITQ0MTWKxIyTTSglvcRuASLOV9SwVLzGQ2oNkVWnFTa0itYUZ1aX4aRY_kjnQHLfF-M1ylDKOHILFPkFKsPheOR7BuH4YcxuIcEoN8NBhLk7fwvPwyzDcSqKX-dH7c6Ff27_deABzN_XG9HtVetmBxawr4pI8wJ3oTTsj-yei1WGaj9Vyk8H6eWd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+response+mitigation+of+buildings+with+an+active+inerter+damper+system&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Pei%E2%80%90Ching+Chen&rft.au=Po%E2%80%90Chang+Chen&rft.au=Guan%E2%80%90Chung+Ting&rft.date=2022-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=8&rft_id=info:doi/10.1002%2Fstc.2975&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon |