Seismic response mitigation of buildings with an active inerter damper system

Summary It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics....

Full description

Saved in:
Bibliographic Details
Published inStructural control and health monitoring Vol. 29; no. 8
Main Authors Chen, Pei‐Ching, Chen, Po‐Chang, Ting, Guan‐Chung
Format Journal Article
LanguageEnglish
Published Pavia John Wiley & Sons, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics. In this study, a novel active control system named active inerter damper (AID) is proposed to mitigate seismic response of buildings which is composed of a mechanical ball‐screw inerter, a servo‐hydraulic actuator, sensors, and a digital controller. Compared to an active mass damper, the AID requires less mass support structure and installation space in real engineering practice. In this paper, two force tracking controllers for the AID system are proposed, designed, and validated in the laboratory first which aim to impose control force on buildings accurately because force tracking performance of an active control system is extremely crucial to its seismic control performance. Afterwards, shake table tests of a three‐story steel specimen with an AID system are conducted to validate the feasibility of AID control application for buildings. The control force is computed from a machine learning‐based controller that utilizes acceleration feedback directly from the steel specimen. Experimental results demonstrate that force tracking performance of the AID system is satisfactory. Meanwhile, the AID system mitigates seismic response of the steel specimen successfully and effectively.
AbstractList It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics. In this study, a novel active control system named active inerter damper (AID) is proposed to mitigate seismic response of buildings which is composed of a mechanical ball‐screw inerter, a servo‐hydraulic actuator, sensors, and a digital controller. Compared to an active mass damper, the AID requires less mass support structure and installation space in real engineering practice. In this paper, two force tracking controllers for the AID system are proposed, designed, and validated in the laboratory first which aim to impose control force on buildings accurately because force tracking performance of an active control system is extremely crucial to its seismic control performance. Afterwards, shake table tests of a three‐story steel specimen with an AID system are conducted to validate the feasibility of AID control application for buildings. The control force is computed from a machine learning‐based controller that utilizes acceleration feedback directly from the steel specimen. Experimental results demonstrate that force tracking performance of the AID system is satisfactory. Meanwhile, the AID system mitigates seismic response of the steel specimen successfully and effectively.
Summary It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter has much smaller mass than a conventional mass damper when identical inertial force is attained due to its mechanical characteristics. In this study, a novel active control system named active inerter damper (AID) is proposed to mitigate seismic response of buildings which is composed of a mechanical ball‐screw inerter, a servo‐hydraulic actuator, sensors, and a digital controller. Compared to an active mass damper, the AID requires less mass support structure and installation space in real engineering practice. In this paper, two force tracking controllers for the AID system are proposed, designed, and validated in the laboratory first which aim to impose control force on buildings accurately because force tracking performance of an active control system is extremely crucial to its seismic control performance. Afterwards, shake table tests of a three‐story steel specimen with an AID system are conducted to validate the feasibility of AID control application for buildings. The control force is computed from a machine learning‐based controller that utilizes acceleration feedback directly from the steel specimen. Experimental results demonstrate that force tracking performance of the AID system is satisfactory. Meanwhile, the AID system mitigates seismic response of the steel specimen successfully and effectively.
Author Chen, Po‐Chang
Ting, Guan‐Chung
Chen, Pei‐Ching
Author_xml – sequence: 1
  givenname: Pei‐Ching
  orcidid: 0000-0001-7626-3454
  surname: Chen
  fullname: Chen, Pei‐Ching
  email: peichingchen@mail.ntust.edu.tw
  organization: National Taiwan University of Science and Technology
– sequence: 2
  givenname: Po‐Chang
  surname: Chen
  fullname: Chen, Po‐Chang
  organization: National Taiwan University of Science and Technology
– sequence: 3
  givenname: Guan‐Chung
  surname: Ting
  fullname: Ting, Guan‐Chung
  organization: National Taiwan University
BookMark eNp1kM9LwzAYhoNMcJuCf0LAi5fO5suPrkcZOoWJh81zSNN0ZrRpTTLH_nu7TTyInt7v8LzvB88IDVzrDELXJJ2QNIW7EPUE8oyfoSHhjCcAgg5-bs4v0CiETU8KmPIhelkaGxqrsTeha10wuLHRrlW0rcNthYutrUvr1gHvbHzHymGlo_002Drjo_G4VE3XR9iHaJpLdF6pOpir7xyjt8eH1ewpWbzOn2f3i0RDTnlCaMnTXOQg-FQXXGhFCCsZKJoVvNRMZwKMKCgoKAgYpvKCUpaWFSsLWnFBx-jmtNv59mNrQpSbdutd_1KCmNIsZxlAT92eKO3bELypZOdto_xeklQeZMleljzI6tHJL1TbeJQQvbL1X4XkVNjZ2uz_HZbL1ezIfwHKx3ys
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115678
crossref_primary_10_1016_j_heliyon_2024_e35870
crossref_primary_10_1061_JSENDH_STENG_12695
crossref_primary_10_1016_j_jobe_2025_111791
crossref_primary_10_1016_j_soildyn_2025_109353
crossref_primary_10_1016_j_engstruct_2023_116760
crossref_primary_10_1142_S0219455424501608
crossref_primary_10_3390_act12060252
crossref_primary_10_1016_j_istruc_2024_105925
Cites_doi 10.1115/1.482466
10.1111/j.1467‐8667.2006.00460.x
10.12989/sem.2001.12.6.633
10.3390/app10155342
10.1088/0964‐1726/17/01/015021
10.1002/eqe.2366
10.1080/00423110701519031
10.1016/j.jsv.2016.12.036
10.1109/TAC.2002.803532
10.1177/1077546314528365
10.1016/0005‐1098(84)90014‐1
10.1080/00423110412331289871
10.1016/j.jsv.2021.116121
10.1002/stc.2015
10.1002/eqe.837
10.1061/(ASCE)0733‐9399(1995)121:2(322)
10.1016/j.soildyn.2017.09.020
10.1155/2019/3612516
10.1080/00207179.2013.842263
10.1177/1077546313478294
10.1016/j.engstruct.2021.112655
10.1243/09544062JMES2199
ContentType Journal Article
Copyright 2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
DOI 10.1002/stc.2975
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1545-2263
EndPage n/a
ExternalDocumentID 10_1002_stc_2975
STC2975
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 109‐2625‐M‐011‐002
GroupedDBID .3N
.GA
.Y3
05W
0R~
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HBH
HF~
HHY
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RHX
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WYISQ
XV2
~IA
~WT
AAYXX
ABJCF
ADMLS
AEUYN
AFKRA
AGQPQ
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PTHSS
1OB
7ST
8FD
C1K
FR3
KR7
SOI
ID FETCH-LOGICAL-c2935-13d509692658cb56ca114d42a37b5dc4c762e6b32a2b12e4a9b3340df4db3f563
IEDL.DBID DR2
ISSN 1545-2255
IngestDate Wed Aug 13 04:54:41 EDT 2025
Tue Jul 01 04:05:46 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Wed Jan 22 16:24:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2935-13d509692658cb56ca114d42a37b5dc4c762e6b32a2b12e4a9b3340df4db3f563
Notes Funding information
Ministry of Science and Technology, Taiwan, Grant/Award Number: MOST 109‐2625‐M‐011‐002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7626-3454
PQID 2683794722
PQPubID 2034347
PageCount 21
ParticipantIDs proquest_journals_2683794722
crossref_primary_10_1002_stc_2975
crossref_citationtrail_10_1002_stc_2975
wiley_primary_10_1002_stc_2975_STC2975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace Pavia
PublicationPlace_xml – name: Pavia
PublicationTitle Structural control and health monitoring
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2007; 17
2021; 27
2019; 2019
1984; 20
2004; 42
2017; 24
2021; 504
2013; 86
2008; 37
1953; 5
2017; 392
2021; 243
2020; 10
2017; 115
1942; 64
2014; 43
2020; 18
2011; 225
2002; 47
2000
2006; 21
2015; 21
2008; 46
2000; 122
2001; 12
1995; 121
2016; 22
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Chen PC (e_1_2_10_26_1) 2021; 27
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
Nowak RF (e_1_2_10_12_1) 2000
e_1_2_10_15_1
e_1_2_10_13_1
e_1_2_10_11_1
Cohen GH (e_1_2_10_10_1) 1953; 5
Ziegler JG (e_1_2_10_9_1) 1942; 64
e_1_2_10_27_1
e_1_2_10_28_1
Chen PC (e_1_2_10_25_1) 2020; 18
References_xml – volume: 47
  start-page: 1648
  issue: 10
  year: 2002
  end-page: 1662
  article-title: Synthesis of mechanical networks: the inerter
  publication-title: IEEE Trans Autom Control
– volume: 86
  start-page: 2035
  issue: 11
  year: 2013
  end-page: 2051
  article-title: Design and modelling of a fluid inerter
  publication-title: Int J Control
– volume: 504
  year: 2021
  article-title: Modeling, design and experiments of a ball‐screw inerter with mechanical diodes
  publication-title: J Sound Vib
– volume: 20
  start-page: 645
  issue: 5
  year: 1984
  end-page: 651
  article-title: Automatic tuning of simple regulators with specifications on phase and amplitude margins
  publication-title: Automatica
– volume: 27
  start-page: 705
  issue: 4
  year: 2021
  end-page: 717
  article-title: Performance‐based optimization of LQR for active mass damper using symbiotic organisms search
  publication-title: Smart Struct Syst
– year: 2000
– volume: 21
  start-page: 919
  issue: 5
  year: 2015
  end-page: 937
  article-title: A state‐of‐the‐art review of structural control systems
  publication-title: J Vib Control
– volume: 46
  start-page: 575
  issue: 7
  year: 2008
  end-page: 595
  article-title: The impact of inerter nonlinearities on vehicle suspension control
  publication-title: Veh Syst Dyn
– volume: 18
  start-page: 337
  issue: 3
  year: 2020
  end-page: 348
  article-title: A versatile small‐scale structural laboratory for novel experimental earthquake engineering
  publication-title: Earthquakes Struct
– volume: 115
  start-page: 838
  year: 2017
  end-page: 852
  article-title: Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil‐structure interaction
  publication-title: Soil Dyn Earthquake Eng
– volume: 37
  start-page: 1785
  issue: 15
  year: 2008
  end-page: 1800
  article-title: Dynamic force control with hydraulic actuators using added compliance and displacement compensation
  publication-title: Earthquake Eng Struct Dyn
– volume: 17
  issue: 1
  year: 2007
  article-title: robust control design of active structural vibration suppression using an active mass damper
  publication-title: Smart Mater Struct
– volume: 121
  start-page: 322
  issue: 2
  year: 1995
  end-page: 338
  article-title: Role of control‐structure interaction in protective system design
  publication-title: J Eng Mech
– volume: 12
  start-page: 633
  issue: 6
  year: 2001
  end-page: 656
  article-title: Seismic test of modal control with direct output feedback for building structures
  publication-title: Struct Eng Mech
– volume: 5
  start-page: 827
  year: 1953
  end-page: 834
  article-title: Theoretical considerations of retarded control
  publication-title: Trans ASME
– volume: 42
  start-page: 235
  issue: 4
  year: 2004
  end-page: 257
  article-title: Performance benefits in passive vehicle suspensions employing inerters
  publication-title: Veh Syst Dyn
– volume: 43
  start-page: 681
  issue: 5
  year: 2014
  end-page: 699
  article-title: Model‐based multi‐metric control of uniaxial shake tables
  publication-title: Earthquake Eng Struct Dyn
– volume: 225
  start-page: 66
  issue: 1
  year: 2011
  end-page: 72
  article-title: Designing and testing a hydraulic inerter
  publication-title: Proc Inst Mech Eng, Part C: J Mech Eng Sci
– volume: 64
  start-page: 759
  year: 1942
  end-page: 768
  article-title: Optimum settings for automatic controllers
  publication-title: Trans ASME
– volume: 24
  issue: 11
  year: 2017
  article-title: A control framework for uniaxial shaking tables considering tracking performance and system robustness
  publication-title: Struct Control Health Monit
– volume: 10
  issue: 15
  year: 2020
  article-title: Machine‐learning based optimal seismic control of structure with active mass damper
  publication-title: Appl Sci
– volume: 392
  start-page: 18
  year: 2017
  end-page: 30
  article-title: Active vibration control of structure by active mass damper and multi‐modal negative acceleration feedback control algorithm
  publication-title: J Sound Vib
– volume: 2019
  year: 2019
  article-title: Adaptive model reference sliding mode control of structural nonlinear vibration
  publication-title: Shock Vib
– volume: 122
  start-page: 232
  issue: 1
  year: 2000
  end-page: 237
  article-title: Nonlinear force/pressure tracking of an electro‐hydraulic actuator
  publication-title: J Dyn Sys Meas Control
– volume: 243
  year: 2021
  article-title: Inerter‐based structural vibration control: a state‐of‐the‐art review
  publication-title: Eng Struct
– volume: 22
  start-page: 224
  issue: 1
  year: 2016
  end-page: 234
  article-title: Vibration control of an optical table employing mechatronic inerter networks
  publication-title: J Vib Control
– volume: 21
  start-page: 605
  issue: 8
  year: 2006
  end-page: 611
  article-title: Active control of structures using energy‐based LQR method
  publication-title: Comput Aided Civ Inf Eng
– ident: e_1_2_10_16_1
  doi: 10.1115/1.482466
– ident: e_1_2_10_3_1
  doi: 10.1111/j.1467‐8667.2006.00460.x
– ident: e_1_2_10_4_1
  doi: 10.12989/sem.2001.12.6.633
– ident: e_1_2_10_28_1
  doi: 10.3390/app10155342
– ident: e_1_2_10_7_1
  doi: 10.1088/0964‐1726/17/01/015021
– ident: e_1_2_10_13_1
  doi: 10.1002/eqe.2366
– volume: 64
  start-page: 759
  year: 1942
  ident: e_1_2_10_9_1
  article-title: Optimum settings for automatic controllers
  publication-title: Trans ASME
– ident: e_1_2_10_19_1
  doi: 10.1080/00423110701519031
– ident: e_1_2_10_8_1
  doi: 10.1016/j.jsv.2016.12.036
– ident: e_1_2_10_17_1
  doi: 10.1109/TAC.2002.803532
– ident: e_1_2_10_23_1
  doi: 10.1177/1077546314528365
– ident: e_1_2_10_11_1
  doi: 10.1016/0005‐1098(84)90014‐1
– ident: e_1_2_10_18_1
  doi: 10.1080/00423110412331289871
– volume-title: Proceedings of the 12th World Conference on Earthquake Engineering
  year: 2000
  ident: e_1_2_10_12_1
– volume: 27
  start-page: 705
  issue: 4
  year: 2021
  ident: e_1_2_10_26_1
  article-title: Performance‐based optimization of LQR for active mass damper using symbiotic organisms search
  publication-title: Smart Struct Syst
– ident: e_1_2_10_20_1
  doi: 10.1016/j.jsv.2021.116121
– ident: e_1_2_10_14_1
  doi: 10.1002/stc.2015
– ident: e_1_2_10_15_1
  doi: 10.1002/eqe.837
– volume: 18
  start-page: 337
  issue: 3
  year: 2020
  ident: e_1_2_10_25_1
  article-title: A versatile small‐scale structural laboratory for novel experimental earthquake engineering
  publication-title: Earthquakes Struct
– ident: e_1_2_10_27_1
  doi: 10.1061/(ASCE)0733‐9399(1995)121:2(322)
– ident: e_1_2_10_5_1
  doi: 10.1016/j.soildyn.2017.09.020
– ident: e_1_2_10_6_1
  doi: 10.1155/2019/3612516
– volume: 5
  start-page: 827
  year: 1953
  ident: e_1_2_10_10_1
  article-title: Theoretical considerations of retarded control
  publication-title: Trans ASME
– ident: e_1_2_10_22_1
  doi: 10.1080/00207179.2013.842263
– ident: e_1_2_10_2_1
  doi: 10.1177/1077546313478294
– ident: e_1_2_10_24_1
  doi: 10.1016/j.engstruct.2021.112655
– ident: e_1_2_10_21_1
  doi: 10.1243/09544062JMES2199
SSID ssj0026285
Score 2.3666823
Snippet Summary It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical...
It is realized that force exerted at the two ends of an inerter is proportional to their relative acceleration between them. Generally, a mechanical inerter...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Active control
Active damping
active inerter damper
Actuators
Buildings
Control systems
Controllers
Earthquake dampers
force tracking
Hydraulic equipment
Machine learning
Mechanical properties
Seismic engineering
Seismic response
seismic response mitigation
shake table test
Shake table tests
Steel
structural control
Tracking control
Title Seismic response mitigation of buildings with an active inerter damper system
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fstc.2975
https://www.proquest.com/docview/2683794722
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMeD9KQH32J9EUH0lHabV7tHKZYi6MG2UPCw5LVQtFvp1ouf3kx2t62iIJ72sAnsZiaTf8LMLwhdGZvqOOYxEUJq4p1CEZVGnBi_1bCRgLch2-JR9kf8fizGZVYl1MIUfIjlgRvMjBCvYYIrnTdX0NAcCIRxG-rLIVUL9NDTkhxFoTIwoFK5IN5lRcWdjWiz6vh1JVrJy3WRGlaZ3g56rr6vSC55abwvdMN8fEM3_u8HdtF2KT7xbeEte2jDZftoaw1JeIAeBm6STycGz4vkWYenkwLDMcvwLMW6vEY7x3CCi1WGVYiYGIoIvY2wVV6Iz3FBiD5Eo97dsNsn5ZULxPh1X5AWs8CDiakXJkYLaZTfL1lOFWtrYQ03PnY6qRlVVLeo4yrWjPHIptxqlgrJjlAtm2XuGGHmQ0WHKi07MuLOMtX2TuEip3lHS-FMHd1Uw5-YkkcO12K8JgVJmSZ-gBIYoDq6XLZ8KxgcP7Q5qyyYlLMwT6j02-8YcJh1dB1M8Wv_ZDDswvPkrw1P0SaFSoiQC3iGaov5uzv3-mShL4InfgJwnuLS
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEIAHrQf14FusVl1B9BSb7qsNnsQH9dEetIIHIewrULSp9HHx17ubTVoVBfGUQ3Yh2Z2dnRlmvgE4VDqRUUSjgDEuAysUIhBJSANlXQ0dMvc2y7Zo8-YjvXliTzNwWtTCeD7EJODmTkamr90BdwHp6pQaOnQIwqjOZmHONfR24PyL-wk7CrvawAyWSllghZYV5NkQV4uZX--iqYH52UzN7pmrZXguvtCnl7ycjEfyRL1_gzf-8xdWYCm3P9GZF5hVmDHpGix-ohKuQ-vBdIe9rkIDnz9rUK_rSRz9FPUTJPNO2kPkgrhIpEhkShO5OkK7TUgLa4sPkIdEb8Dj1WXnvBnkXRcCZa9-FtSIdkiYCFvbREnGlbAuk6ZYkLpkWlFl1afhkmCBZQ0bKiJJCA11QrUkCeNkE0ppPzVbgIjVFg0sJG_wkBpNRN3KhQmNpA3JmVFlOC7WP1Y5ktx1xniNPUwZx3aBYrdAZTiYjHzzGI4fxlSKLYzzgziMMbceeOSImGU4yvbi1_nxQ-fcPbf_OnAf5pud1l18d92-3YEF7AojstTACpRGg7HZtebKSO5lYvkBnh3m7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JSwMxFIAfWkH04C7WNYLoaeqYrc1RrKVuRWwFwcOQbaCoU-ly8debzNJWURBPc5gEZvKWvIT3vgdwpE2shKAiYIyrwCmFDGQc0kC7o4YJmX-bZlu0ePORXj-xpzyr0tfCZHyI8YWbt4zUX3sDfzfx6QQaOvAEQlFlszBHeSh824b6wxgdhX1pYMpKpSxwOssK8GyIT4uZX7eiSXw5HaWm20xjGZ6LD8yyS14qo6Gq6I9v7Mb__cEKLOXRJzrP1GUVZmyyBotTTMJ1uGvb7uCtq1E_y5616K2bcTh6CerFSOV9tAfIX-EimSCZukzkqwidkJCRLhLvowwRvQGPjcvORTPIey4E2m38LDgjxgNhBHaRiVaMa-kOTIZiSaqKGU21c56WK4IlVmfYUikUITQ0MTWKxIyTTSglvcRuASLOV9SwVLzGQ2oNkVWnFTa0itYUZ1aX4aRY_kjnQHLfF-M1ylDKOHILFPkFKsPheOR7BuH4YcxuIcEoN8NBhLk7fwvPwyzDcSqKX-dH7c6Ff27_deABzN_XG9HtVetmBxawr4pI8wJ3oTTsj-yei1WGaj9Vyk8H6eWd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+response+mitigation+of+buildings+with+an+active+inerter+damper+system&rft.jtitle=Structural+control+and+health+monitoring&rft.au=Pei%E2%80%90Ching+Chen&rft.au=Po%E2%80%90Chang+Chen&rft.au=Guan%E2%80%90Chung+Ting&rft.date=2022-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1545-2263&rft.volume=29&rft.issue=8&rft_id=info:doi/10.1002%2Fstc.2975&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-2255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-2255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-2255&client=summon