Life‐cycle benefits estimation for hybrid seismic‐resistant self‐centering braced frames

The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system developed for improving the seismic resilience of traditional braced frames (e.g., buckling restrained braced frames [BRBFs]) and self‐centering br...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 52; no. 10; pp. 3097 - 3119
Main Authors Hu, Shuling, Zhu, Songye
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN0098-8847
1096-9845
DOI10.1002/eqe.3914

Cover

Loading…
Abstract The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system developed for improving the seismic resilience of traditional braced frames (e.g., buckling restrained braced frames [BRBFs]) and self‐centering braced frames (SCBFs) by reducing residual inter‐story drifts (RIDs) and floor acceleration responses simultaneously. Nevertheless, the excellent performance of HSBFs is captured by introducing high initial construction costs. This paper aims to highlight the benefits of HSBFs compared with BRBFs and SCBFs by investigating the earthquake‐induced life‐cycle costs. To this end, 6‐story BRBF, SCBF, and HSBF are designed separately to achieve the same maximum inter‐story drifts under design basis earthquakes (DBE) for a fair comparison. The advanced numerical models of the considered systems were developed, and nonlinear dynamic analyses were conducted to obtain the structural seismic responses under various intensities. Monte Carlo simulation (MCS) was adopted for considering the modeling uncertainty. The life‐cycle costs were subsequently estimated based on the revised HAZUS loss estimation method. The influence of RIDs, initial construction costs of SMABs and VDs, and values of contents inside buildings were comprehensively investigated. It has been found that HSBF can achieve better performance in reducing seismic loss than BRBF and SCBF due to its excellent capability of controlling structural and nonstructural damage. SCBF may show higher seismic loss than BRBFs, given high RID limits for demolition or high building contents’ value, highlighting the importance of controlling floor acceleration responses of SCBFs. The life‐cycle benefits of BRBFs, SCBFs, and HSBFs are highly influenced by the RIDs, initial construction costs of SMABs and VDs, building contents’ values, and building's lifetime. HSBFs show better life‐cycle benefits than SCBFs when the building's lifetime is not lower than 50 years. Compared to BRBF, the life‐cycle cost effectiveness of SCBF can be only achieved when the initial cost of SMABs is lower than 1.21 times that of BRBs for the building with 50 years’ lifetime; the life‐cycle cost effectiveness of HSBF6 can be only achieved when the initial cost of SMABs or VDs is lower than 1.84 times that of BRBs for the building with 50 years’ lifetime. It has been concluded that reducing the initial costs of SMABs and VDs is critical and essential for increasing the life‐cycle economic benefits of SCBFs and HSBFs and promoting their real‐world applications.
AbstractList The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system developed for improving the seismic resilience of traditional braced frames (e.g., buckling restrained braced frames [BRBFs]) and self‐centering braced frames (SCBFs) by reducing residual inter‐story drifts (RIDs) and floor acceleration responses simultaneously. Nevertheless, the excellent performance of HSBFs is captured by introducing high initial construction costs. This paper aims to highlight the benefits of HSBFs compared with BRBFs and SCBFs by investigating the earthquake‐induced life‐cycle costs. To this end, 6‐story BRBF, SCBF, and HSBF are designed separately to achieve the same maximum inter‐story drifts under design basis earthquakes (DBE) for a fair comparison. The advanced numerical models of the considered systems were developed, and nonlinear dynamic analyses were conducted to obtain the structural seismic responses under various intensities. Monte Carlo simulation (MCS) was adopted for considering the modeling uncertainty. The life‐cycle costs were subsequently estimated based on the revised HAZUS loss estimation method. The influence of RIDs, initial construction costs of SMABs and VDs, and values of contents inside buildings were comprehensively investigated. It has been found that HSBF can achieve better performance in reducing seismic loss than BRBF and SCBF due to its excellent capability of controlling structural and nonstructural damage. SCBF may show higher seismic loss than BRBFs, given high RID limits for demolition or high building contents’ value, highlighting the importance of controlling floor acceleration responses of SCBFs. The life‐cycle benefits of BRBFs, SCBFs, and HSBFs are highly influenced by the RIDs, initial construction costs of SMABs and VDs, building contents’ values, and building's lifetime. HSBFs show better life‐cycle benefits than SCBFs when the building's lifetime is not lower than 50 years. Compared to BRBF, the life‐cycle cost effectiveness of SCBF can be only achieved when the initial cost of SMABs is lower than 1.21 times that of BRBs for the building with 50 years’ lifetime; the life‐cycle cost effectiveness of HSBF6 can be only achieved when the initial cost of SMABs or VDs is lower than 1.84 times that of BRBs for the building with 50 years’ lifetime. It has been concluded that reducing the initial costs of SMABs and VDs is critical and essential for increasing the life‐cycle economic benefits of SCBFs and HSBFs and promoting their real‐world applications.
Author Zhu, Songye
Hu, Shuling
Author_xml – sequence: 1
  givenname: Shuling
  orcidid: 0000-0003-3031-4337
  surname: Hu
  fullname: Hu, Shuling
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Songye
  orcidid: 0000-0002-2617-3378
  surname: Zhu
  fullname: Zhu, Songye
  email: songye.zhu@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNp1kM1KAzEURoNUsK2CjzDgxs3UZDKZSZZS6g8URNCtIUlvNGU60yYpMjsfwWf0SUxbV6KrwOV83809IzRouxYQOid4QjAurmADEypIeYSGBIsqF7xkAzTEWPCc87I-QaMQlhhjWuF6iF7mzsLXx6fpTQOZhhasiyGDEN1KRde1me189tZr7xZZABdWziTcQ3AhqjamWWN3eWgjeNe-ZtorA4vMerWCcIqOrWoCnP28Y_R8M3ua3uXzh9v76fU8N4WgZW5qRhghRIHVrLKaM2rZgpe8qioorMEKayIoJoIxzimmBdcUi4JUpNAaDB2ji0Pv2nebbfq9XHZb36aVsuC0LEmdyhJ1eaCM70LwYOXapzN9LwmWO3sy2ZM7ewmd_EKNi3sh0SvX_BXID4F310D_b7GcPc72_DdHiYUb
CitedBy_id crossref_primary_10_1016_j_jobe_2024_109225
crossref_primary_10_1016_j_jobe_2024_110373
crossref_primary_10_1016_j_engstruct_2024_117731
crossref_primary_10_1016_j_engstruct_2024_118943
crossref_primary_10_1016_j_istruc_2023_105831
crossref_primary_10_1016_j_jobe_2024_108809
crossref_primary_10_1016_j_soildyn_2023_108277
crossref_primary_10_1002_eqe_4243
crossref_primary_10_1016_j_jobe_2024_108723
crossref_primary_10_3390_designs8050091
crossref_primary_10_3390_buildings14061567
crossref_primary_10_1016_j_oceaneng_2023_115355
crossref_primary_10_1016_j_istruc_2024_107968
crossref_primary_10_1016_j_istruc_2024_106513
crossref_primary_10_1177_87552930241292650
crossref_primary_10_1016_j_engstruct_2023_116235
crossref_primary_10_1016_j_jcsr_2023_108267
crossref_primary_10_1016_j_engstruct_2023_117195
crossref_primary_10_1016_j_probengmech_2024_103630
crossref_primary_10_3390_app14114888
crossref_primary_10_1016_j_jcsr_2024_108679
crossref_primary_10_1016_j_engstruct_2024_119417
crossref_primary_10_1016_j_soildyn_2024_108609
crossref_primary_10_1016_j_compstruct_2023_117308
crossref_primary_10_1016_j_istruc_2024_107911
crossref_primary_10_1061_JSENDH_STENG_13134
crossref_primary_10_1016_j_istruc_2024_107553
crossref_primary_10_1016_j_tws_2024_112586
crossref_primary_10_1016_j_istruc_2023_105254
crossref_primary_10_1016_j_tws_2024_112186
crossref_primary_10_3390_buildings14072155
crossref_primary_10_1016_j_jcsr_2024_109045
crossref_primary_10_3390_app14178037
crossref_primary_10_1016_j_engstruct_2024_118256
crossref_primary_10_1016_j_jcsr_2024_108902
crossref_primary_10_1016_j_jcsr_2024_108505
crossref_primary_10_1016_j_istruc_2025_108367
crossref_primary_10_1177_13694332241289175
crossref_primary_10_1016_j_engstruct_2023_116808
crossref_primary_10_1016_j_engstruct_2024_117723
crossref_primary_10_1016_j_engstruct_2023_117307
crossref_primary_10_1016_j_soildyn_2024_108813
crossref_primary_10_1016_j_istruc_2024_107547
crossref_primary_10_1016_j_ymssp_2023_110873
crossref_primary_10_1016_j_istruc_2024_106174
crossref_primary_10_1061_JSENDH_STENG_13667
crossref_primary_10_1016_j_jcsr_2023_108401
crossref_primary_10_1016_j_jcsr_2024_108700
crossref_primary_10_1002_eqe_4275
crossref_primary_10_1061_JSENDH_STENG_12813
Cites_doi 10.1016/j.engstruct.2020.110424
10.1016/j.engstruct.2014.11.036
10.1016/j.engstruct.2019.01.049
10.1016/j.engstruct.2019.110038
10.1002/eqe.2777
10.1061/(ASCE)0733-9445(2007)133:3(389)
10.1016/j.ress.2011.04.002
10.1016/j.engstruct.2019.110021
10.1016/j.engstruct.2016.09.051
10.1016/j.jcsr.2013.11.008
10.1016/j.soildyn.2020.106546
10.1016/j.jobe.2021.103556
10.1002/eqe.3555
10.12989/eas.2014.7.3.271
10.1088/1361-665X/aad5b0
10.1016/j.engstruct.2022.113877
10.1016/j.engstruct.2019.01.029
10.1002/eqe.3174
10.1061/(ASCE)ST.1943-541X.0003082
10.1061/(ASCE)0733-9445(2005)131:4(529)
10.1002/eqe.1081
10.1016/j.engstruct.2020.111338
10.1193/1.1810536
10.1061/41000(315)32
10.1061/(ASCE)0733-9445(2001)127:2(113)
10.1016/j.jcsr.2022.107392
10.1061/(ASCE)ST.1943-541X.0001675
10.1016/j.jcsr.2022.107559
10.1061/(ASCE)0733-9445(2005)131:3(438)
10.1016/j.jcsr.2015.12.008
10.1193/070913EQS197M
10.1016/j.jcsr.2022.107230
10.1016/S0141-0296(02)00175-X
10.1016/j.engstruct.2017.07.067
10.1016/j.jobe.2021.103940
10.1016/j.jcsr.2022.107357
10.1061/(ASCE)0733-9445(2008)134:1(121)
10.1016/j.jcsr.2011.04.006
10.1016/j.engstruct.2004.05.015
10.1016/j.engstruct.2021.112191
10.1177/1077546319879537
10.1002/eqe.3728
10.1139/l07-038
10.1016/j.engstruct.2020.110399
10.1016/j.jcsr.2022.107172
10.1016/j.engstruct.2017.10.075
10.1016/j.nucengdes.2013.05.012
10.1016/j.engstruct.2017.10.068
10.1088/1361-665X/ac8efc
10.1016/j.engstruct.2012.02.037
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.3914
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 3119
ExternalDocumentID 10_1002_eqe_3914
EQE3914
Genre article
GrantInformation_xml – fundername: Hong Kong Polytechnic University
  funderid: ZE2L; P0038795
– fundername: National Key Research and Development Program of China
  funderid: 2019YFB1600700
– fundername: Research Grants Council, University Grants Committee
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c2934-c7515111aefb56fb853f5d848666e2fc0a0b193019558830328b30921612bbec3
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Mon Jul 14 09:58:26 EDT 2025
Tue Jul 01 02:21:59 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Wed Jan 22 16:20:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2934-c7515111aefb56fb853f5d848666e2fc0a0b193019558830328b30921612bbec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3031-4337
0000-0002-2617-3378
PQID 2834417848
PQPubID 866380
PageCount 23
ParticipantIDs proquest_journals_2834417848
crossref_primary_10_1002_eqe_3914
crossref_citationtrail_10_1002_eqe_3914
wiley_primary_10_1002_eqe_3914_EQE3914
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 254
2004; 20
2005; 131
2004; 26
2017; 46
2020; 204
2011; 96
2017; 150
2017; 153
2007; 34
2016; 119
2021; 238
2007; 133
2020; 211
2011; 67
2022; 31
2014; 94
2014; 7
1992; 2
2022; 198
2022; 195
2022; 196
2022; 191
2012
2022; 192
2010
2022; 51
2021; 147
2011; 40
2022; 45
2009
2008
2020; 225
2007
2022; 48
2006
2021; 142
2013; 262
2017; 130
2003
2019; 183
2018; 27
2001; 127
2018; 154
2022
2021
2019; 48
2003; 25
2020; 26
2016
2015
2013
2017; 143
2008; 134
2014; 30
2012; 40
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
Wen Y (e_1_2_9_46_1) 1992; 2
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
FEMA (e_1_2_9_33_1) 2012
Reddy Chukka NDK (e_1_2_9_37_1) 2021
Ghasemof A (e_1_2_9_38_1) 2021
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
FEMA. FEMA P58 (e_1_2_9_32_1) 2012
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
ASCE. ASCE/SEI 7–16 (e_1_2_9_2_1) 2016
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
Merritt S (e_1_2_9_59_1) 2003
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_55_1
Mazzoni S (e_1_2_9_57_1) 2006
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
GB50011‐2010 (e_1_2_9_4_1) 2010
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
FEMA. FEMA P695 (e_1_2_9_62_1) 2009
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2009
– start-page: 2021
  year: 2021
  article-title: Seismic fragility and life cycle cost analysis of reinforced concrete structures with a hybrid damper
  publication-title: Adv Civi Eng
– volume: 25
  start-page: 655
  year: 2003
  end-page: 666
  article-title: Seismic demands on steel braced frame buildings with buckling‐restrained braces
  publication-title: Eng Struct
– volume: 26
  start-page: 362
  year: 2020
  end-page: 374
  article-title: Overturning risk of furniture in earthquake‐affected areas
  publication-title: J Vib Control
– volume: 94
  start-page: 122
  year: 2014
  end-page: 136
  article-title: Cyclic performance of extended end‐plate connections equipped with shape memory alloy bolts
  publication-title: J Constr Steel Res
– volume: 196
  year: 2022
  article-title: High strength steel frames with curved knee braces: performance‐based damage‐control design framework
  publication-title: J Constr Steel Res
– volume: 2
  start-page: 63
  year: 1992
  end-page: 76
  article-title: Reliability and cost‐effectiveness of structures with active control
  publication-title: Intell Structures
– volume: 31
  year: 2022
  article-title: Machine learning‐driven performance‐based seismic design of hybrid self‐centering braced frames with SMA braces and viscous dampers
  publication-title: Smart Mater Struct
– volume: 119
  start-page: 133
  year: 2016
  end-page: 143
  article-title: High‐mode effects on seismic performance of multi‐story self‐centering braced steel frames
  publication-title: J Constr Steel Res
– volume: 127
  start-page: 113
  year: 2001
  end-page: 121
  article-title: Posttensioned seismic‐resistant connections for steel frames
  publication-title: J Struct Eng
– volume: 131
  start-page: 529
  year: 2005
  end-page: 540
  article-title: Seismic performance of post‐tensioned steel moment resisting frames with friction devices
  publication-title: J Struct Eng
– volume: 211
  year: 2020
  article-title: Development and validation test of a novel Self‐centering Energy‐absorbing Dual Rocking Core (SEDRC) system for seismic resilience
  publication-title: Eng Struct
– year: 2022
  article-title: Seismic evaluation of friction spring‐based self‐centering braced frames based on life‐cycle cost
  publication-title: Earthq Eng Struct Dyn
– year: 2015
  article-title: Life cycle cost‐benefit evaluation of self‐centering and conventional concentrically braced frames
– volume: 238
  year: 2021
  article-title: Self‐centering companion spines with friction spring dampers: validation test and direct displacement‐based design
  publication-title: Eng Struct
– volume: 130
  start-page: 67
  year: 2017
  end-page: 82
  article-title: Performance‐based seismic design of self‐centering steel frames with SMA‐based braces
  publication-title: Eng Struct
– volume: 191
  year: 2022
  article-title: Seismic resilient steel structures: a review of research, practice, challenges and opportunities
  publication-title: J Constr Steel Res
– volume: 204
  year: 2020
  article-title: Seismic economic losses in mid‐rise steel buildings with conventional and emerging lateral force resisting systems
  publication-title: Eng Struct
– volume: 183
  start-page: 533
  year: 2019
  end-page: 549
  article-title: Superelastic NiTi SMA cables: thermal‐mechanical behavior, hysteretic modelling and seismic application
  publication-title: Eng Struct
– volume: 134
  start-page: 121
  year: 2008
  end-page: 131
  article-title: Seismic analysis of concentrically braced frame systems with self‐centering friction damping braces
  publication-title: J Struct Eng
– volume: 211
  year: 2020
  article-title: Seismic life‐cycle cost assessment of steel frames equipped with steel panel walls
  publication-title: Eng Struct
– volume: 150
  start-page: 390
  year: 2017
  end-page: 408
  article-title: Self‐centring behaviour of steel and steel‐concrete composite connections equipped with NiTi SMA bolts
  publication-title: Eng Struct
– volume: 51
  start-page: 44
  year: 2022
  end-page: 65
  article-title: Seismic performance of bridges with novel SMA cable‐restrained high damping rubber bearings against near‐fault ground motions
  publication-title: Earthq Eng Struct Dyn
– volume: 34
  start-page: 1075
  year: 2007
  end-page: 1086
  article-title: Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review
  publication-title: Can J Civ Eng
– year: 2022
– volume: 154
  start-page: 93
  year: 2018
  end-page: 102
  article-title: Seismic performance of concentrically braced frames with non‐buckling braces: a comparative study
  publication-title: Eng Struct
– volume: 183
  start-page: 1091
  year: 2019
  end-page: 1108
  article-title: A multi‐stage‐based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls
  publication-title: Eng Struct
– volume: 7
  start-page: 271
  year: 2014
  end-page: 294
  article-title: Life‐cycle cost optimization of steel moment‐frame structures: performance‐based seismic design approach
  publication-title: Earthq Struct
– volume: 192
  year: 2022
  article-title: Performance‐based‐plastic‐design of damage‐control steel MRFs equipped with self‐centring energy dissipation bays
  publication-title: J Constr Steel Res
– volume: 48
  year: 2022
  article-title: A framework for the lifecycle cost assessment of structures considering multiple mainshock‐aftershock sequences
  publication-title: J Build Eng
– year: 2007
– start-page: 4041
  year: 2021
  end-page: 4049
– year: 2003
– volume: 147
  year: 2021
  article-title: Comparative study on seismic fragility assessment of self‐centering energy‐absorbing dual rocking core versus buckling restrained braced systems under Mainshock–Aftershock sequences
  publication-title: J Struct Eng
– volume: 40
  start-page: 1163
  year: 2011
  end-page: 1179
  article-title: Multi‐hazard upgrade decision making for critical infrastructure based on life‐cycle cost criteria
  publication-title: Earthq Eng Struct Dyn
– volume: 131
  start-page: 438
  year: 2005
  end-page: 448
  article-title: Experimental studies of full‐scale posttensioned steel connections
  publication-title: J Struct Eng
– volume: 143
  year: 2017
  article-title: Self‐centering beam‐to‐column connections with combined superelastic SMA bolts and steel angles
  publication-title: J Struct Eng
– volume: 40
  start-page: 288
  year: 2012
  end-page: 298
  article-title: Development and experimental validation of a nickel–titanium shape memory alloy self‐centering buckling‐restrained brace
  publication-title: Eng Struct
– volume: 254
  year: 2022
  article-title: Estimation of economic seismic loss of steel moment‐frame buildings using a machine learning algorithm
  publication-title: Eng Struct
– year: 2016
– volume: 20
  start-page: 1211
  year: 2004
  end-page: 1237
  article-title: Effect of seismic risk on lifetime property value
  publication-title: Earthquake Spectra
– volume: 26
  start-page: 1407
  year: 2004
  end-page: 1421
  article-title: Life cycle cost oriented seismic design optimization of steel moment frame structures with risk‐taking preference
  publication-title: Eng Struct
– year: 2010
– year: 2012
– volume: 142
  year: 2021
  article-title: Comparative seismic fragility assessment of mid‐rise steel buildings with non‐buckling (BRB and SMA) braced frames and self‐centering energy‐absorbing dual rocking core system
  publication-title: Soil Dyn Earthquake Eng
– volume: 225
  year: 2020
  article-title: Self‐centering energy‐absorbing rocking core system with friction spring damper: experiments, modeling and design
  publication-title: Eng Struct
– volume: 262
  start-page: 429
  year: 2013
  end-page: 434
  article-title: Life‐cycle cost assessment of seismically base‐isolated structures in nuclear power plants
  publication-title: Nucl Eng Des
– volume: 67
  start-page: 1621
  year: 2011
  end-page: 1635
  article-title: Development of floor slab for steel post‐tensioned self‐centering moment frames
  publication-title: J Constr Steel Res
– volume: 153
  start-page: 628
  year: 2017
  end-page: 638
  article-title: Performance‐based plastic design approach for multi‐story self‐centering concentrically braced frames using SMA braces
  publication-title: Eng Struct
– volume: 195
  year: 2022
  article-title: An experimental study of steel‐concrete composite connections equipped with fuse angles
  publication-title: J Constr Steel Res
– volume: 45
  year: 2022
  article-title: Hybrid steel staggered truss frame (SSTF): a probabilistic spectral energy modification coefficient surface model for damage‐control evaluation and performance insights
  publication-title: J Build Eng
– volume: 48
  start-page: 1045
  year: 2019
  end-page: 1065
  article-title: Self‐centering friction spring dampers for seismic resilience
  publication-title: Earthq Eng Struct Dyn
– volume: 133
  start-page: 389
  year: 2007
  end-page: 399
  article-title: Behavior and design of posttensioned steel frame systems
  publication-title: J Struct Eng
– year: 2006
– start-page: 12
  year: 2008
  end-page: 17
  article-title: Permissible residual deformation levels for building structures considering both safety and human elements
– volume: 204
  year: 2020
  article-title: Seismic evaluation of low‐rise steel building frames with self‐centering energy‐absorbing rigid cores designed using a force‐based approach
  publication-title: Eng Struct
– volume: 46
  start-page: 117
  year: 2017
  end-page: 137
  article-title: Shake table test and numerical study of self‐centering steel frame with SMA braces
  publication-title: Earthq Eng Struct Dyn
– volume: 30
  start-page: 989
  year: 2014
  end-page: 1005
  article-title: NGA‐West2 database
  publication-title: Earthquake Spectra
– volume: 96
  start-page: 1311
  year: 2011
  end-page: 1331
  article-title: Life‐cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions
  publication-title: Reliab Eng Syst Saf
– volume: 27
  year: 2018
  article-title: A self‐centering brace with superior energy dissipation capability: development and experimental study
  publication-title: Smart Mater Struct
– year: 2013
– volume: 198
  year: 2022
  article-title: Structural and nonstructural damage assessment of steel buildings equipped with self‐centering energy‐absorbing rocking core systems: a comparative study
  publication-title: J Constr Steel Res
– volume-title: Minimum Design Loads for Buildings and Other Structures
  year: 2016
  ident: e_1_2_9_2_1
– ident: e_1_2_9_27_1
  doi: 10.1016/j.engstruct.2020.110424
– ident: e_1_2_9_44_1
  doi: 10.1016/j.engstruct.2014.11.036
– ident: e_1_2_9_54_1
  doi: 10.1016/j.engstruct.2019.01.049
– ident: e_1_2_9_16_1
  doi: 10.1016/j.engstruct.2019.110038
– ident: e_1_2_9_51_1
  doi: 10.1002/eqe.2777
– ident: e_1_2_9_22_1
  doi: 10.1061/(ASCE)0733-9445(2007)133:3(389)
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ress.2011.04.002
– ident: e_1_2_9_3_1
– volume-title: Subassemblage Testing of Corebrace Buckling‐Restrained Braces
  year: 2003
  ident: e_1_2_9_59_1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.engstruct.2019.110021
– ident: e_1_2_9_52_1
  doi: 10.1016/j.engstruct.2016.09.051
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jcsr.2013.11.008
– ident: e_1_2_9_31_1
  doi: 10.1016/j.soildyn.2020.106546
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jobe.2021.103556
– ident: e_1_2_9_13_1
  doi: 10.1002/eqe.3555
– volume-title: Code for Seismic Design of Buildings
  year: 2010
  ident: e_1_2_9_4_1
– ident: e_1_2_9_40_1
  doi: 10.12989/eas.2014.7.3.271
– ident: e_1_2_9_17_1
  doi: 10.1088/1361-665X/aad5b0
– ident: e_1_2_9_61_1
  doi: 10.1016/j.engstruct.2022.113877
– ident: e_1_2_9_5_1
  doi: 10.1016/j.engstruct.2019.01.029
– ident: e_1_2_9_12_1
  doi: 10.1002/eqe.3174
– ident: e_1_2_9_63_1
  doi: 10.1061/(ASCE)ST.1943-541X.0003082
– ident: e_1_2_9_21_1
  doi: 10.1061/(ASCE)0733-9445(2005)131:4(529)
– volume-title: HAZUS‐MH 2.1 Technical Manual: Earthquake Model
  year: 2012
  ident: e_1_2_9_33_1
– ident: e_1_2_9_48_1
  doi: 10.1002/eqe.1081
– start-page: 4041
  volume-title: Multi‐Objective Optimal Design of Steel MRF Buildings Based on Life‐Cycle Cost Using a Swift Algorithm
  year: 2021
  ident: e_1_2_9_38_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.engstruct.2020.111338
– ident: e_1_2_9_49_1
  doi: 10.1193/1.1810536
– ident: e_1_2_9_55_1
  doi: 10.1061/41000(315)32
– ident: e_1_2_9_11_1
– ident: e_1_2_9_19_1
  doi: 10.1061/(ASCE)0733-9445(2001)127:2(113)
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jcsr.2022.107392
– volume-title: Quantification of Building Seismic Performance Factors
  year: 2009
  ident: e_1_2_9_62_1
– ident: e_1_2_9_25_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001675
– volume-title: Seismic Performance Assessment of Buildings
  year: 2012
  ident: e_1_2_9_32_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jcsr.2022.107559
– ident: e_1_2_9_20_1
  doi: 10.1061/(ASCE)0733-9445(2005)131:3(438)
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jcsr.2015.12.008
– ident: e_1_2_9_60_1
  doi: 10.1193/070913EQS197M
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jcsr.2022.107230
– ident: e_1_2_9_58_1
  doi: 10.1016/S0141-0296(02)00175-X
– ident: e_1_2_9_9_1
  doi: 10.1016/j.engstruct.2017.07.067
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jobe.2021.103940
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jcsr.2022.107357
– ident: e_1_2_9_18_1
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(121)
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jcsr.2011.04.006
– ident: e_1_2_9_39_1
  doi: 10.1016/j.engstruct.2004.05.015
– volume: 2
  start-page: 63
  year: 1992
  ident: e_1_2_9_46_1
  article-title: Reliability and cost‐effectiveness of structures with active control
  publication-title: Intell Structures
– ident: e_1_2_9_29_1
  doi: 10.1016/j.engstruct.2021.112191
– ident: e_1_2_9_64_1
  doi: 10.1177/1077546319879537
– ident: e_1_2_9_43_1
  doi: 10.1002/eqe.3728
– ident: e_1_2_9_24_1
  doi: 10.1139/l07-038
– ident: e_1_2_9_41_1
  doi: 10.1016/j.engstruct.2020.110399
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jcsr.2022.107172
– ident: e_1_2_9_53_1
  doi: 10.1016/j.engstruct.2017.10.075
– ident: e_1_2_9_42_1
  doi: 10.1016/j.nucengdes.2013.05.012
– ident: e_1_2_9_56_1
  doi: 10.1016/j.engstruct.2017.10.068
– ident: e_1_2_9_35_1
  doi: 10.1088/1361-665X/ac8efc
– volume-title: OpenSees Command Language Manual
  year: 2006
  ident: e_1_2_9_57_1
– start-page: 2021
  year: 2021
  ident: e_1_2_9_37_1
  article-title: Seismic fragility and life cycle cost analysis of reinforced concrete structures with a hybrid damper
  publication-title: Adv Civi Eng
– ident: e_1_2_9_26_1
  doi: 10.1016/j.engstruct.2012.02.037
– ident: e_1_2_9_45_1
SSID ssj0003607
Score 2.5976307
Snippet The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3097
SubjectTerms Acceleration
Bracing
BRBF
Buildings
Construction
Construction costs
Cost effectiveness
Costs
Dynamical systems
Earthquake damage
Earthquake dampers
Earthquake resistance
Earthquakes
Economic benefits
Frames
hybrid self‐centering braced frames
initial construction cost
life‐cycle cost
Mathematical models
Monte Carlo simulation
Nonlinear dynamics
Numerical models
Seismic activity
Seismic response
self‐centering
shape memory alloy
Shape memory alloys
Statistical methods
Viscous damping
Title Life‐cycle benefits estimation for hybrid seismic‐resistant self‐centering braced frames
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3914
https://www.proquest.com/docview/2834417848
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEURP28bso-lRpKWICoqFguCSZBMs1vWx20M9-RP8jf4SZ_bRVlEQTwvLTMgmk8k3y8w3hOwbZXkEkYMjtPQcj0OAIgWPHONq1dKMKZ1VvZ9fBN2ed9r3-0VWJdbC5PwQkx9ueDIyf40HXKqkMSUNNc8GAvashzWmaiEeupoyR7kBm9BlCvDAJe8s441S8etNNIWXsyA1u2U6S-SmnF-eXHJfH6Wqrl-_UTf-7wOWyWIBPulxbi0rZM7Eq2RhhpJwjdyeDaz5eHvXY5CgCjyhHaQJRS6OvMiRAsqld2Ms9KKJGSQPAw3iELQjEI1TeDe0qI9cnzgkhSlqE1GLWWDJOul12tcnXafoweBoAAKeo5sAeMAfSmOVH1gFt7v1I-EJCHsMt5pJpgADYtmhL4SL7HzKZS0OQJIrsA93g1Tix9hsEsoglDFguC3JhAfDSQBTSsvIBloLHTWr5LDcj1AXBOXYJ2MY5tTKPIQVC3HFqmRvIvmUk3L8IFMrtzQsjmUScuwqctSE6VfJQbY3v-qH7cs2Prf-KrhN5rEVfZ4cWCOV9GVkdgCwpGo3M81Pp8zsGQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kHtSDb7E-I4ietsbstk3xJNJStRaUFnoQl002waLWx64HPfkT_I3-Emd2u20VBfG0sEyWbDKZfF_IfAOwbZQVITIHR-rAczyBBCWQInSMq1VFc650kvV-1izV295Jp9gZg4MsFybVhxgcuNHKSOI1LXA6kN4bqoaaR4OMnYpYj1NB74RPXQy1o9wSHwhmSozBmfIsF3tZy6970RBgjsLUZJ-pzcBl1sP0eslN4TlWBf36Tbzxn78wC9N9_MkOU4eZgzHTm4epEVXCBbhqdK35eHvXL2jBFAZD240jRnIcaZ4jQ6DLrl8o14tFphvddTWaI28nLNqL8d2tpfYk90mfZNhHbUJm6SJYtAjtWrV1VHf6ZRgcjVjAc3QZMQ-GxMBYVSxZhRu8LYbSk8h8jLCaB1whDKTMw6KULgn0KZdXBGJJodBF3CXI9e57ZhkYRzZj0HcrAZcefi5APKV0ENqS1lKH5TzsZhPi675GOZXKuPVTdWXh44j5NGJ52BpYPqS6HD_YrGVz6vdXZuQLKiyyX8bu52EnmZxf2_vV8yo9V_5quAkT9dZZw28cN09XYZIq06d3BdcgFz89m3XEL7HaSPz0E1Zx8DQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQfTgW6xWjSB62jZmH02PYlt8o2KhILhssgkWa63uetCTP8Hf6C9xZh9tFQXxtLDMhGwymXyzzHxDyJaWhocQOVhCBY7lcAhQAsFDS9tK1hRjUiVV76dn3kHLOWq77SyrEmthUn6IwQ83PBmJv8YD3g9NZUgaqh81BOzYw3rc8ZhAi65fDqmjbI8N-DIFuOCceJbxSq759Soa4stRlJpcM80Zcp1PMM0uuSs_x7KsXr9xN_7vC2bJdIY-6V5qLnNkTPfmydQIJ-ECuTnpGP3x9q5eQIJKcIWmE0cUyTjSKkcKMJfevmClF410J7rvKBCHqB2RaC-Gd12D-kj2iUNSmKLSITWYBhYtklazcbV_YGVNGCwFSMCxVBUQDzjEQBvpekbC9W7cUDgC4h7NjWIBkwACse7QFcJGej5psxoHJMklGIi9RAq9h55eJpRBLKPBcmsBEw4MFwCakioIjaeUUGG1SHby_fBVxlCOjTK6fsqtzH1YMR9XrEg2B5L9lJXjB5lSvqV-di4jn2Nbkd0qTL9ItpO9-VXfb1w08LnyV8ENMnFeb_onh2fHq2QS29KniYIlUoifnvUagJdYridW-gm-me7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life%E2%80%90cycle+benefits+estimation+for+hybrid+seismic%E2%80%90resistant+self%E2%80%90centering+braced+frames&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Hu%2C+Shuling&rft.au=Zhu%2C+Songye&rft.date=2023-08-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=52&rft.issue=10&rft.spage=3097&rft.epage=3119&rft_id=info:doi/10.1002%2Feqe.3914&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon