Life‐cycle benefits estimation for hybrid seismic‐resistant self‐centering braced frames
The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system developed for improving the seismic resilience of traditional braced frames (e.g., buckling restrained braced frames [BRBFs]) and self‐centering br...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 52; no. 10; pp. 3097 - 3119 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0098-8847 1096-9845 |
DOI | 10.1002/eqe.3914 |
Cover
Loading…
Abstract | The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system developed for improving the seismic resilience of traditional braced frames (e.g., buckling restrained braced frames [BRBFs]) and self‐centering braced frames (SCBFs) by reducing residual inter‐story drifts (RIDs) and floor acceleration responses simultaneously. Nevertheless, the excellent performance of HSBFs is captured by introducing high initial construction costs. This paper aims to highlight the benefits of HSBFs compared with BRBFs and SCBFs by investigating the earthquake‐induced life‐cycle costs. To this end, 6‐story BRBF, SCBF, and HSBF are designed separately to achieve the same maximum inter‐story drifts under design basis earthquakes (DBE) for a fair comparison. The advanced numerical models of the considered systems were developed, and nonlinear dynamic analyses were conducted to obtain the structural seismic responses under various intensities. Monte Carlo simulation (MCS) was adopted for considering the modeling uncertainty. The life‐cycle costs were subsequently estimated based on the revised HAZUS loss estimation method. The influence of RIDs, initial construction costs of SMABs and VDs, and values of contents inside buildings were comprehensively investigated. It has been found that HSBF can achieve better performance in reducing seismic loss than BRBF and SCBF due to its excellent capability of controlling structural and nonstructural damage. SCBF may show higher seismic loss than BRBFs, given high RID limits for demolition or high building contents’ value, highlighting the importance of controlling floor acceleration responses of SCBFs. The life‐cycle benefits of BRBFs, SCBFs, and HSBFs are highly influenced by the RIDs, initial construction costs of SMABs and VDs, building contents’ values, and building's lifetime. HSBFs show better life‐cycle benefits than SCBFs when the building's lifetime is not lower than 50 years. Compared to BRBF, the life‐cycle cost effectiveness of SCBF can be only achieved when the initial cost of SMABs is lower than 1.21 times that of BRBs for the building with 50 years’ lifetime; the life‐cycle cost effectiveness of HSBF6 can be only achieved when the initial cost of SMABs or VDs is lower than 1.84 times that of BRBs for the building with 50 years’ lifetime. It has been concluded that reducing the initial costs of SMABs and VDs is critical and essential for increasing the life‐cycle economic benefits of SCBFs and HSBFs and promoting their real‐world applications. |
---|---|
AbstractList | The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system developed for improving the seismic resilience of traditional braced frames (e.g., buckling restrained braced frames [BRBFs]) and self‐centering braced frames (SCBFs) by reducing residual inter‐story drifts (RIDs) and floor acceleration responses simultaneously. Nevertheless, the excellent performance of HSBFs is captured by introducing high initial construction costs. This paper aims to highlight the benefits of HSBFs compared with BRBFs and SCBFs by investigating the earthquake‐induced life‐cycle costs. To this end, 6‐story BRBF, SCBF, and HSBF are designed separately to achieve the same maximum inter‐story drifts under design basis earthquakes (DBE) for a fair comparison. The advanced numerical models of the considered systems were developed, and nonlinear dynamic analyses were conducted to obtain the structural seismic responses under various intensities. Monte Carlo simulation (MCS) was adopted for considering the modeling uncertainty. The life‐cycle costs were subsequently estimated based on the revised HAZUS loss estimation method. The influence of RIDs, initial construction costs of SMABs and VDs, and values of contents inside buildings were comprehensively investigated. It has been found that HSBF can achieve better performance in reducing seismic loss than BRBF and SCBF due to its excellent capability of controlling structural and nonstructural damage. SCBF may show higher seismic loss than BRBFs, given high RID limits for demolition or high building contents’ value, highlighting the importance of controlling floor acceleration responses of SCBFs. The life‐cycle benefits of BRBFs, SCBFs, and HSBFs are highly influenced by the RIDs, initial construction costs of SMABs and VDs, building contents’ values, and building's lifetime. HSBFs show better life‐cycle benefits than SCBFs when the building's lifetime is not lower than 50 years. Compared to BRBF, the life‐cycle cost effectiveness of SCBF can be only achieved when the initial cost of SMABs is lower than 1.21 times that of BRBs for the building with 50 years’ lifetime; the life‐cycle cost effectiveness of HSBF6 can be only achieved when the initial cost of SMABs or VDs is lower than 1.84 times that of BRBs for the building with 50 years’ lifetime. It has been concluded that reducing the initial costs of SMABs and VDs is critical and essential for increasing the life‐cycle economic benefits of SCBFs and HSBFs and promoting their real‐world applications. |
Author | Zhu, Songye Hu, Shuling |
Author_xml | – sequence: 1 givenname: Shuling orcidid: 0000-0003-3031-4337 surname: Hu fullname: Hu, Shuling organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Songye orcidid: 0000-0002-2617-3378 surname: Zhu fullname: Zhu, Songye email: songye.zhu@polyu.edu.hk organization: The Hong Kong Polytechnic University |
BookMark | eNp1kM1KAzEURoNUsK2CjzDgxs3UZDKZSZZS6g8URNCtIUlvNGU60yYpMjsfwWf0SUxbV6KrwOV83809IzRouxYQOid4QjAurmADEypIeYSGBIsqF7xkAzTEWPCc87I-QaMQlhhjWuF6iF7mzsLXx6fpTQOZhhasiyGDEN1KRde1me189tZr7xZZABdWziTcQ3AhqjamWWN3eWgjeNe-ZtorA4vMerWCcIqOrWoCnP28Y_R8M3ua3uXzh9v76fU8N4WgZW5qRhghRIHVrLKaM2rZgpe8qioorMEKayIoJoIxzimmBdcUi4JUpNAaDB2ji0Pv2nebbfq9XHZb36aVsuC0LEmdyhJ1eaCM70LwYOXapzN9LwmWO3sy2ZM7ewmd_EKNi3sh0SvX_BXID4F310D_b7GcPc72_DdHiYUb |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_109225 crossref_primary_10_1016_j_jobe_2024_110373 crossref_primary_10_1016_j_engstruct_2024_117731 crossref_primary_10_1016_j_engstruct_2024_118943 crossref_primary_10_1016_j_istruc_2023_105831 crossref_primary_10_1016_j_jobe_2024_108809 crossref_primary_10_1016_j_soildyn_2023_108277 crossref_primary_10_1002_eqe_4243 crossref_primary_10_1016_j_jobe_2024_108723 crossref_primary_10_3390_designs8050091 crossref_primary_10_3390_buildings14061567 crossref_primary_10_1016_j_oceaneng_2023_115355 crossref_primary_10_1016_j_istruc_2024_107968 crossref_primary_10_1016_j_istruc_2024_106513 crossref_primary_10_1177_87552930241292650 crossref_primary_10_1016_j_engstruct_2023_116235 crossref_primary_10_1016_j_jcsr_2023_108267 crossref_primary_10_1016_j_engstruct_2023_117195 crossref_primary_10_1016_j_probengmech_2024_103630 crossref_primary_10_3390_app14114888 crossref_primary_10_1016_j_jcsr_2024_108679 crossref_primary_10_1016_j_engstruct_2024_119417 crossref_primary_10_1016_j_soildyn_2024_108609 crossref_primary_10_1016_j_compstruct_2023_117308 crossref_primary_10_1016_j_istruc_2024_107911 crossref_primary_10_1061_JSENDH_STENG_13134 crossref_primary_10_1016_j_istruc_2024_107553 crossref_primary_10_1016_j_tws_2024_112586 crossref_primary_10_1016_j_istruc_2023_105254 crossref_primary_10_1016_j_tws_2024_112186 crossref_primary_10_3390_buildings14072155 crossref_primary_10_1016_j_jcsr_2024_109045 crossref_primary_10_3390_app14178037 crossref_primary_10_1016_j_engstruct_2024_118256 crossref_primary_10_1016_j_jcsr_2024_108902 crossref_primary_10_1016_j_jcsr_2024_108505 crossref_primary_10_1016_j_istruc_2025_108367 crossref_primary_10_1177_13694332241289175 crossref_primary_10_1016_j_engstruct_2023_116808 crossref_primary_10_1016_j_engstruct_2024_117723 crossref_primary_10_1016_j_engstruct_2023_117307 crossref_primary_10_1016_j_soildyn_2024_108813 crossref_primary_10_1016_j_istruc_2024_107547 crossref_primary_10_1016_j_ymssp_2023_110873 crossref_primary_10_1016_j_istruc_2024_106174 crossref_primary_10_1061_JSENDH_STENG_13667 crossref_primary_10_1016_j_jcsr_2023_108401 crossref_primary_10_1016_j_jcsr_2024_108700 crossref_primary_10_1002_eqe_4275 crossref_primary_10_1061_JSENDH_STENG_12813 |
Cites_doi | 10.1016/j.engstruct.2020.110424 10.1016/j.engstruct.2014.11.036 10.1016/j.engstruct.2019.01.049 10.1016/j.engstruct.2019.110038 10.1002/eqe.2777 10.1061/(ASCE)0733-9445(2007)133:3(389) 10.1016/j.ress.2011.04.002 10.1016/j.engstruct.2019.110021 10.1016/j.engstruct.2016.09.051 10.1016/j.jcsr.2013.11.008 10.1016/j.soildyn.2020.106546 10.1016/j.jobe.2021.103556 10.1002/eqe.3555 10.12989/eas.2014.7.3.271 10.1088/1361-665X/aad5b0 10.1016/j.engstruct.2022.113877 10.1016/j.engstruct.2019.01.029 10.1002/eqe.3174 10.1061/(ASCE)ST.1943-541X.0003082 10.1061/(ASCE)0733-9445(2005)131:4(529) 10.1002/eqe.1081 10.1016/j.engstruct.2020.111338 10.1193/1.1810536 10.1061/41000(315)32 10.1061/(ASCE)0733-9445(2001)127:2(113) 10.1016/j.jcsr.2022.107392 10.1061/(ASCE)ST.1943-541X.0001675 10.1016/j.jcsr.2022.107559 10.1061/(ASCE)0733-9445(2005)131:3(438) 10.1016/j.jcsr.2015.12.008 10.1193/070913EQS197M 10.1016/j.jcsr.2022.107230 10.1016/S0141-0296(02)00175-X 10.1016/j.engstruct.2017.07.067 10.1016/j.jobe.2021.103940 10.1016/j.jcsr.2022.107357 10.1061/(ASCE)0733-9445(2008)134:1(121) 10.1016/j.jcsr.2011.04.006 10.1016/j.engstruct.2004.05.015 10.1016/j.engstruct.2021.112191 10.1177/1077546319879537 10.1002/eqe.3728 10.1139/l07-038 10.1016/j.engstruct.2020.110399 10.1016/j.jcsr.2022.107172 10.1016/j.engstruct.2017.10.075 10.1016/j.nucengdes.2013.05.012 10.1016/j.engstruct.2017.10.068 10.1088/1361-665X/ac8efc 10.1016/j.engstruct.2012.02.037 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3914 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 3119 |
ExternalDocumentID | 10_1002_eqe_3914 EQE3914 |
Genre | article |
GrantInformation_xml | – fundername: Hong Kong Polytechnic University funderid: ZE2L; P0038795 – fundername: National Key Research and Development Program of China funderid: 2019YFB1600700 – fundername: Research Grants Council, University Grants Committee |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c2934-c7515111aefb56fb853f5d848666e2fc0a0b193019558830328b30921612bbec3 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Mon Jul 14 09:58:26 EDT 2025 Tue Jul 01 02:21:59 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Wed Jan 22 16:20:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2934-c7515111aefb56fb853f5d848666e2fc0a0b193019558830328b30921612bbec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3031-4337 0000-0002-2617-3378 |
PQID | 2834417848 |
PQPubID | 866380 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2834417848 crossref_primary_10_1002_eqe_3914 crossref_citationtrail_10_1002_eqe_3914 wiley_primary_10_1002_eqe_3914_EQE3914 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 254 2004; 20 2005; 131 2004; 26 2017; 46 2020; 204 2011; 96 2017; 150 2017; 153 2007; 34 2016; 119 2021; 238 2007; 133 2020; 211 2011; 67 2022; 31 2014; 94 2014; 7 1992; 2 2022; 198 2022; 195 2022; 196 2022; 191 2012 2022; 192 2010 2022; 51 2021; 147 2011; 40 2022; 45 2009 2008 2020; 225 2007 2022; 48 2006 2021; 142 2013; 262 2017; 130 2003 2019; 183 2018; 27 2001; 127 2018; 154 2022 2021 2019; 48 2003; 25 2020; 26 2016 2015 2013 2017; 143 2008; 134 2014; 30 2012; 40 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 Wen Y (e_1_2_9_46_1) 1992; 2 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_54_1 FEMA (e_1_2_9_33_1) 2012 Reddy Chukka NDK (e_1_2_9_37_1) 2021 Ghasemof A (e_1_2_9_38_1) 2021 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 FEMA. FEMA P58 (e_1_2_9_32_1) 2012 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_60_1 ASCE. ASCE/SEI 7–16 (e_1_2_9_2_1) 2016 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 Merritt S (e_1_2_9_59_1) 2003 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_55_1 Mazzoni S (e_1_2_9_57_1) 2006 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 GB50011‐2010 (e_1_2_9_4_1) 2010 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 FEMA. FEMA P695 (e_1_2_9_62_1) 2009 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – year: 2009 – start-page: 2021 year: 2021 article-title: Seismic fragility and life cycle cost analysis of reinforced concrete structures with a hybrid damper publication-title: Adv Civi Eng – volume: 25 start-page: 655 year: 2003 end-page: 666 article-title: Seismic demands on steel braced frame buildings with buckling‐restrained braces publication-title: Eng Struct – volume: 26 start-page: 362 year: 2020 end-page: 374 article-title: Overturning risk of furniture in earthquake‐affected areas publication-title: J Vib Control – volume: 94 start-page: 122 year: 2014 end-page: 136 article-title: Cyclic performance of extended end‐plate connections equipped with shape memory alloy bolts publication-title: J Constr Steel Res – volume: 196 year: 2022 article-title: High strength steel frames with curved knee braces: performance‐based damage‐control design framework publication-title: J Constr Steel Res – volume: 2 start-page: 63 year: 1992 end-page: 76 article-title: Reliability and cost‐effectiveness of structures with active control publication-title: Intell Structures – volume: 31 year: 2022 article-title: Machine learning‐driven performance‐based seismic design of hybrid self‐centering braced frames with SMA braces and viscous dampers publication-title: Smart Mater Struct – volume: 119 start-page: 133 year: 2016 end-page: 143 article-title: High‐mode effects on seismic performance of multi‐story self‐centering braced steel frames publication-title: J Constr Steel Res – volume: 127 start-page: 113 year: 2001 end-page: 121 article-title: Posttensioned seismic‐resistant connections for steel frames publication-title: J Struct Eng – volume: 131 start-page: 529 year: 2005 end-page: 540 article-title: Seismic performance of post‐tensioned steel moment resisting frames with friction devices publication-title: J Struct Eng – volume: 211 year: 2020 article-title: Development and validation test of a novel Self‐centering Energy‐absorbing Dual Rocking Core (SEDRC) system for seismic resilience publication-title: Eng Struct – year: 2022 article-title: Seismic evaluation of friction spring‐based self‐centering braced frames based on life‐cycle cost publication-title: Earthq Eng Struct Dyn – year: 2015 article-title: Life cycle cost‐benefit evaluation of self‐centering and conventional concentrically braced frames – volume: 238 year: 2021 article-title: Self‐centering companion spines with friction spring dampers: validation test and direct displacement‐based design publication-title: Eng Struct – volume: 130 start-page: 67 year: 2017 end-page: 82 article-title: Performance‐based seismic design of self‐centering steel frames with SMA‐based braces publication-title: Eng Struct – volume: 191 year: 2022 article-title: Seismic resilient steel structures: a review of research, practice, challenges and opportunities publication-title: J Constr Steel Res – volume: 204 year: 2020 article-title: Seismic economic losses in mid‐rise steel buildings with conventional and emerging lateral force resisting systems publication-title: Eng Struct – volume: 183 start-page: 533 year: 2019 end-page: 549 article-title: Superelastic NiTi SMA cables: thermal‐mechanical behavior, hysteretic modelling and seismic application publication-title: Eng Struct – volume: 134 start-page: 121 year: 2008 end-page: 131 article-title: Seismic analysis of concentrically braced frame systems with self‐centering friction damping braces publication-title: J Struct Eng – volume: 211 year: 2020 article-title: Seismic life‐cycle cost assessment of steel frames equipped with steel panel walls publication-title: Eng Struct – volume: 150 start-page: 390 year: 2017 end-page: 408 article-title: Self‐centring behaviour of steel and steel‐concrete composite connections equipped with NiTi SMA bolts publication-title: Eng Struct – volume: 51 start-page: 44 year: 2022 end-page: 65 article-title: Seismic performance of bridges with novel SMA cable‐restrained high damping rubber bearings against near‐fault ground motions publication-title: Earthq Eng Struct Dyn – volume: 34 start-page: 1075 year: 2007 end-page: 1086 article-title: Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review publication-title: Can J Civ Eng – year: 2022 – volume: 154 start-page: 93 year: 2018 end-page: 102 article-title: Seismic performance of concentrically braced frames with non‐buckling braces: a comparative study publication-title: Eng Struct – volume: 183 start-page: 1091 year: 2019 end-page: 1108 article-title: A multi‐stage‐based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls publication-title: Eng Struct – volume: 7 start-page: 271 year: 2014 end-page: 294 article-title: Life‐cycle cost optimization of steel moment‐frame structures: performance‐based seismic design approach publication-title: Earthq Struct – volume: 192 year: 2022 article-title: Performance‐based‐plastic‐design of damage‐control steel MRFs equipped with self‐centring energy dissipation bays publication-title: J Constr Steel Res – volume: 48 year: 2022 article-title: A framework for the lifecycle cost assessment of structures considering multiple mainshock‐aftershock sequences publication-title: J Build Eng – year: 2007 – start-page: 4041 year: 2021 end-page: 4049 – year: 2003 – volume: 147 year: 2021 article-title: Comparative study on seismic fragility assessment of self‐centering energy‐absorbing dual rocking core versus buckling restrained braced systems under Mainshock–Aftershock sequences publication-title: J Struct Eng – volume: 40 start-page: 1163 year: 2011 end-page: 1179 article-title: Multi‐hazard upgrade decision making for critical infrastructure based on life‐cycle cost criteria publication-title: Earthq Eng Struct Dyn – volume: 131 start-page: 438 year: 2005 end-page: 448 article-title: Experimental studies of full‐scale posttensioned steel connections publication-title: J Struct Eng – volume: 143 year: 2017 article-title: Self‐centering beam‐to‐column connections with combined superelastic SMA bolts and steel angles publication-title: J Struct Eng – volume: 40 start-page: 288 year: 2012 end-page: 298 article-title: Development and experimental validation of a nickel–titanium shape memory alloy self‐centering buckling‐restrained brace publication-title: Eng Struct – volume: 254 year: 2022 article-title: Estimation of economic seismic loss of steel moment‐frame buildings using a machine learning algorithm publication-title: Eng Struct – year: 2016 – volume: 20 start-page: 1211 year: 2004 end-page: 1237 article-title: Effect of seismic risk on lifetime property value publication-title: Earthquake Spectra – volume: 26 start-page: 1407 year: 2004 end-page: 1421 article-title: Life cycle cost oriented seismic design optimization of steel moment frame structures with risk‐taking preference publication-title: Eng Struct – year: 2010 – year: 2012 – volume: 142 year: 2021 article-title: Comparative seismic fragility assessment of mid‐rise steel buildings with non‐buckling (BRB and SMA) braced frames and self‐centering energy‐absorbing dual rocking core system publication-title: Soil Dyn Earthquake Eng – volume: 225 year: 2020 article-title: Self‐centering energy‐absorbing rocking core system with friction spring damper: experiments, modeling and design publication-title: Eng Struct – volume: 262 start-page: 429 year: 2013 end-page: 434 article-title: Life‐cycle cost assessment of seismically base‐isolated structures in nuclear power plants publication-title: Nucl Eng Des – volume: 67 start-page: 1621 year: 2011 end-page: 1635 article-title: Development of floor slab for steel post‐tensioned self‐centering moment frames publication-title: J Constr Steel Res – volume: 153 start-page: 628 year: 2017 end-page: 638 article-title: Performance‐based plastic design approach for multi‐story self‐centering concentrically braced frames using SMA braces publication-title: Eng Struct – volume: 195 year: 2022 article-title: An experimental study of steel‐concrete composite connections equipped with fuse angles publication-title: J Constr Steel Res – volume: 45 year: 2022 article-title: Hybrid steel staggered truss frame (SSTF): a probabilistic spectral energy modification coefficient surface model for damage‐control evaluation and performance insights publication-title: J Build Eng – volume: 48 start-page: 1045 year: 2019 end-page: 1065 article-title: Self‐centering friction spring dampers for seismic resilience publication-title: Earthq Eng Struct Dyn – volume: 133 start-page: 389 year: 2007 end-page: 399 article-title: Behavior and design of posttensioned steel frame systems publication-title: J Struct Eng – year: 2006 – start-page: 12 year: 2008 end-page: 17 article-title: Permissible residual deformation levels for building structures considering both safety and human elements – volume: 204 year: 2020 article-title: Seismic evaluation of low‐rise steel building frames with self‐centering energy‐absorbing rigid cores designed using a force‐based approach publication-title: Eng Struct – volume: 46 start-page: 117 year: 2017 end-page: 137 article-title: Shake table test and numerical study of self‐centering steel frame with SMA braces publication-title: Earthq Eng Struct Dyn – volume: 30 start-page: 989 year: 2014 end-page: 1005 article-title: NGA‐West2 database publication-title: Earthquake Spectra – volume: 96 start-page: 1311 year: 2011 end-page: 1331 article-title: Life‐cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions publication-title: Reliab Eng Syst Saf – volume: 27 year: 2018 article-title: A self‐centering brace with superior energy dissipation capability: development and experimental study publication-title: Smart Mater Struct – year: 2013 – volume: 198 year: 2022 article-title: Structural and nonstructural damage assessment of steel buildings equipped with self‐centering energy‐absorbing rocking core systems: a comparative study publication-title: J Constr Steel Res – volume-title: Minimum Design Loads for Buildings and Other Structures year: 2016 ident: e_1_2_9_2_1 – ident: e_1_2_9_27_1 doi: 10.1016/j.engstruct.2020.110424 – ident: e_1_2_9_44_1 doi: 10.1016/j.engstruct.2014.11.036 – ident: e_1_2_9_54_1 doi: 10.1016/j.engstruct.2019.01.049 – ident: e_1_2_9_16_1 doi: 10.1016/j.engstruct.2019.110038 – ident: e_1_2_9_51_1 doi: 10.1002/eqe.2777 – ident: e_1_2_9_22_1 doi: 10.1061/(ASCE)0733-9445(2007)133:3(389) – ident: e_1_2_9_36_1 doi: 10.1016/j.ress.2011.04.002 – ident: e_1_2_9_3_1 – volume-title: Subassemblage Testing of Corebrace Buckling‐Restrained Braces year: 2003 ident: e_1_2_9_59_1 – ident: e_1_2_9_30_1 doi: 10.1016/j.engstruct.2019.110021 – ident: e_1_2_9_52_1 doi: 10.1016/j.engstruct.2016.09.051 – ident: e_1_2_9_10_1 doi: 10.1016/j.jcsr.2013.11.008 – ident: e_1_2_9_31_1 doi: 10.1016/j.soildyn.2020.106546 – ident: e_1_2_9_15_1 doi: 10.1016/j.jobe.2021.103556 – ident: e_1_2_9_13_1 doi: 10.1002/eqe.3555 – volume-title: Code for Seismic Design of Buildings year: 2010 ident: e_1_2_9_4_1 – ident: e_1_2_9_40_1 doi: 10.12989/eas.2014.7.3.271 – ident: e_1_2_9_17_1 doi: 10.1088/1361-665X/aad5b0 – ident: e_1_2_9_61_1 doi: 10.1016/j.engstruct.2022.113877 – ident: e_1_2_9_5_1 doi: 10.1016/j.engstruct.2019.01.029 – ident: e_1_2_9_12_1 doi: 10.1002/eqe.3174 – ident: e_1_2_9_63_1 doi: 10.1061/(ASCE)ST.1943-541X.0003082 – ident: e_1_2_9_21_1 doi: 10.1061/(ASCE)0733-9445(2005)131:4(529) – volume-title: HAZUS‐MH 2.1 Technical Manual: Earthquake Model year: 2012 ident: e_1_2_9_33_1 – ident: e_1_2_9_48_1 doi: 10.1002/eqe.1081 – start-page: 4041 volume-title: Multi‐Objective Optimal Design of Steel MRF Buildings Based on Life‐Cycle Cost Using a Swift Algorithm year: 2021 ident: e_1_2_9_38_1 – ident: e_1_2_9_28_1 doi: 10.1016/j.engstruct.2020.111338 – ident: e_1_2_9_49_1 doi: 10.1193/1.1810536 – ident: e_1_2_9_55_1 doi: 10.1061/41000(315)32 – ident: e_1_2_9_11_1 – ident: e_1_2_9_19_1 doi: 10.1061/(ASCE)0733-9445(2001)127:2(113) – ident: e_1_2_9_6_1 doi: 10.1016/j.jcsr.2022.107392 – volume-title: Quantification of Building Seismic Performance Factors year: 2009 ident: e_1_2_9_62_1 – ident: e_1_2_9_25_1 doi: 10.1061/(ASCE)ST.1943-541X.0001675 – volume-title: Seismic Performance Assessment of Buildings year: 2012 ident: e_1_2_9_32_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.jcsr.2022.107559 – ident: e_1_2_9_20_1 doi: 10.1061/(ASCE)0733-9445(2005)131:3(438) – ident: e_1_2_9_50_1 doi: 10.1016/j.jcsr.2015.12.008 – ident: e_1_2_9_60_1 doi: 10.1193/070913EQS197M – ident: e_1_2_9_14_1 doi: 10.1016/j.jcsr.2022.107230 – ident: e_1_2_9_58_1 doi: 10.1016/S0141-0296(02)00175-X – ident: e_1_2_9_9_1 doi: 10.1016/j.engstruct.2017.07.067 – ident: e_1_2_9_47_1 doi: 10.1016/j.jobe.2021.103940 – ident: e_1_2_9_7_1 doi: 10.1016/j.jcsr.2022.107357 – ident: e_1_2_9_18_1 doi: 10.1061/(ASCE)0733-9445(2008)134:1(121) – ident: e_1_2_9_23_1 doi: 10.1016/j.jcsr.2011.04.006 – ident: e_1_2_9_39_1 doi: 10.1016/j.engstruct.2004.05.015 – volume: 2 start-page: 63 year: 1992 ident: e_1_2_9_46_1 article-title: Reliability and cost‐effectiveness of structures with active control publication-title: Intell Structures – ident: e_1_2_9_29_1 doi: 10.1016/j.engstruct.2021.112191 – ident: e_1_2_9_64_1 doi: 10.1177/1077546319879537 – ident: e_1_2_9_43_1 doi: 10.1002/eqe.3728 – ident: e_1_2_9_24_1 doi: 10.1139/l07-038 – ident: e_1_2_9_41_1 doi: 10.1016/j.engstruct.2020.110399 – ident: e_1_2_9_8_1 doi: 10.1016/j.jcsr.2022.107172 – ident: e_1_2_9_53_1 doi: 10.1016/j.engstruct.2017.10.075 – ident: e_1_2_9_42_1 doi: 10.1016/j.nucengdes.2013.05.012 – ident: e_1_2_9_56_1 doi: 10.1016/j.engstruct.2017.10.068 – ident: e_1_2_9_35_1 doi: 10.1088/1361-665X/ac8efc – volume-title: OpenSees Command Language Manual year: 2006 ident: e_1_2_9_57_1 – start-page: 2021 year: 2021 ident: e_1_2_9_37_1 article-title: Seismic fragility and life cycle cost analysis of reinforced concrete structures with a hybrid damper publication-title: Adv Civi Eng – ident: e_1_2_9_26_1 doi: 10.1016/j.engstruct.2012.02.037 – ident: e_1_2_9_45_1 |
SSID | ssj0003607 |
Score | 2.5976307 |
Snippet | The hybrid self‐centering braced frames (HSBFs) with shape memory alloy‐based braces (SMABs) and viscous dampers (VDs) are an emerging structural system... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3097 |
SubjectTerms | Acceleration Bracing BRBF Buildings Construction Construction costs Cost effectiveness Costs Dynamical systems Earthquake damage Earthquake dampers Earthquake resistance Earthquakes Economic benefits Frames hybrid self‐centering braced frames initial construction cost life‐cycle cost Mathematical models Monte Carlo simulation Nonlinear dynamics Numerical models Seismic activity Seismic response self‐centering shape memory alloy Shape memory alloys Statistical methods Viscous damping |
Title | Life‐cycle benefits estimation for hybrid seismic‐resistant self‐centering braced frames |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3914 https://www.proquest.com/docview/2834417848 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEURP28bso-lRpKWICoqFguCSZBMs1vWx20M9-RP8jf4SZ_bRVlEQTwvLTMgmk8k3y8w3hOwbZXkEkYMjtPQcj0OAIgWPHONq1dKMKZ1VvZ9fBN2ed9r3-0VWJdbC5PwQkx9ueDIyf40HXKqkMSUNNc8GAvashzWmaiEeupoyR7kBm9BlCvDAJe8s441S8etNNIWXsyA1u2U6S-SmnF-eXHJfH6Wqrl-_UTf-7wOWyWIBPulxbi0rZM7Eq2RhhpJwjdyeDaz5eHvXY5CgCjyhHaQJRS6OvMiRAsqld2Ms9KKJGSQPAw3iELQjEI1TeDe0qI9cnzgkhSlqE1GLWWDJOul12tcnXafoweBoAAKeo5sAeMAfSmOVH1gFt7v1I-EJCHsMt5pJpgADYtmhL4SL7HzKZS0OQJIrsA93g1Tix9hsEsoglDFguC3JhAfDSQBTSsvIBloLHTWr5LDcj1AXBOXYJ2MY5tTKPIQVC3HFqmRvIvmUk3L8IFMrtzQsjmUScuwqctSE6VfJQbY3v-qH7cs2Prf-KrhN5rEVfZ4cWCOV9GVkdgCwpGo3M81Pp8zsGQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kHtSDb7E-I4ietsbstk3xJNJStRaUFnoQl002waLWx64HPfkT_I3-Emd2u20VBfG0sEyWbDKZfF_IfAOwbZQVITIHR-rAczyBBCWQInSMq1VFc650kvV-1izV295Jp9gZg4MsFybVhxgcuNHKSOI1LXA6kN4bqoaaR4OMnYpYj1NB74RPXQy1o9wSHwhmSozBmfIsF3tZy6970RBgjsLUZJ-pzcBl1sP0eslN4TlWBf36Tbzxn78wC9N9_MkOU4eZgzHTm4epEVXCBbhqdK35eHvXL2jBFAZD240jRnIcaZ4jQ6DLrl8o14tFphvddTWaI28nLNqL8d2tpfYk90mfZNhHbUJm6SJYtAjtWrV1VHf6ZRgcjVjAc3QZMQ-GxMBYVSxZhRu8LYbSk8h8jLCaB1whDKTMw6KULgn0KZdXBGJJodBF3CXI9e57ZhkYRzZj0HcrAZcefi5APKV0ENqS1lKH5TzsZhPi675GOZXKuPVTdWXh44j5NGJ52BpYPqS6HD_YrGVz6vdXZuQLKiyyX8bu52EnmZxf2_vV8yo9V_5quAkT9dZZw28cN09XYZIq06d3BdcgFz89m3XEL7HaSPz0E1Zx8DQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQfTgW6xWjSB62jZmH02PYlt8o2KhILhssgkWa63uetCTP8Hf6C9xZh9tFQXxtLDMhGwymXyzzHxDyJaWhocQOVhCBY7lcAhQAsFDS9tK1hRjUiVV76dn3kHLOWq77SyrEmthUn6IwQ83PBmJv8YD3g9NZUgaqh81BOzYw3rc8ZhAi65fDqmjbI8N-DIFuOCceJbxSq759Soa4stRlJpcM80Zcp1PMM0uuSs_x7KsXr9xN_7vC2bJdIY-6V5qLnNkTPfmydQIJ-ECuTnpGP3x9q5eQIJKcIWmE0cUyTjSKkcKMJfevmClF410J7rvKBCHqB2RaC-Gd12D-kj2iUNSmKLSITWYBhYtklazcbV_YGVNGCwFSMCxVBUQDzjEQBvpekbC9W7cUDgC4h7NjWIBkwACse7QFcJGej5psxoHJMklGIi9RAq9h55eJpRBLKPBcmsBEw4MFwCakioIjaeUUGG1SHby_fBVxlCOjTK6fsqtzH1YMR9XrEg2B5L9lJXjB5lSvqV-di4jn2Nbkd0qTL9ItpO9-VXfb1w08LnyV8ENMnFeb_onh2fHq2QS29KniYIlUoifnvUagJdYridW-gm-me7s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life%E2%80%90cycle+benefits+estimation+for+hybrid+seismic%E2%80%90resistant+self%E2%80%90centering+braced+frames&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Hu%2C+Shuling&rft.au=Zhu%2C+Songye&rft.date=2023-08-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=52&rft.issue=10&rft.spage=3097&rft.epage=3119&rft_id=info:doi/10.1002%2Feqe.3914&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3914 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |