Recent developments in lignin modification and its application in lignin‐based green composites: A review
Lignins are the most important aromatic renewable natural resource today, serving as a sustainable, environmentally acceptable alternative feedstock to fossil‐derived chemicals and polymers in a vast scope of value‐added applications. Lignin is a biopolymeric molecule that, together with cellulose,...
Saved in:
Published in | Polymer composites Vol. 43; no. 8; pp. 4848 - 4865 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.08.2022
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Lignins are the most important aromatic renewable natural resource today, serving as a sustainable, environmentally acceptable alternative feedstock to fossil‐derived chemicals and polymers in a vast scope of value‐added applications. Lignin is a biopolymeric molecule that, together with cellulose, is a fundamental component of higher vascular plants structural cell walls. It can be extracted from by‐products of the pulp and paper industries, agricultural waste and residues, and biorefinery products. Lignin properties may vary depending on source and extraction method with carbon and aromatic as the main compositions in lignin structure. These rich compositions make lignin more valuable, allowing for the creation of high‐value‐added green composites. However, the complex structure of lignin creates low reactivity to interact with crosslinker, and hence chemical modification is substantial to overcome this problem. This review aimed to present and discuss lignin structure, variation of lignin chemical properties regarding its source and extraction process, recent advances in chemical modification of lignin to enhance its reactivity, and potential applications of modified lignin for manufacturing value‐added biocomposites with enhanced properties and lower environmental impact, such as food handling/packaging, seed coating, automotive devices, 3D printing, rubber industry, and wood adhesives. |
---|---|
Bibliography: | Funding information National Research and Innovation Agency; Ministry of Research and Technology; Deputy of Strengthening Research and Development; Ministry of Research and Technology in the National Competitive Research, Grant/Award Number: 95/UN5.2.3.1/PPM/KP‐DRPM/2021 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.26824 |